1
|
Huang L, Liu F, Liu X, Niu L, Sun L, Fang F, Ma K, Hu P. Parthenolide inhibits the proliferation and migration of cervical cancer cells via FAK/GSK3β pathway. Cancer Chemother Pharmacol 2024; 93:203-213. [PMID: 38141074 DOI: 10.1007/s00280-023-04621-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/13/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Cervical cancer (CC) ranks as the fourth most prevalent malignancy among women worldwide, necessitating effective therapeutic interventions to mitigate its detrimental impact on both physical and mental health. Parthenolide (PTL), a natural product of the sesquiterpene lactone derived from Feverfew leaves, has exhibited promising anti-tumor properties in previous studies; however, its precise effects and underlying molecular mechanisms in CC remain elusive. METHODS In this work, we investigated the effect of PTL on the proliferation and migration of CC cells. Western blot analysis and Reverse transcription‑quantitative PCR were used for mechanistic elucidation. RESULTS Our findings indicated that PTL substantially inhibited the proliferation of HeLa and SiHa CC cell lines in a dose- and time-dependent manner. Moreover, PTL significantly suppressed the migration of CC cells by down-regulating the expression of vascular endothelial growth factor (VEGF), metastasis-associated protein 1 (MTA1), and transforming growth factor-β1 (TGF-β1). Mechanistically, PTL blocked the phosphorylation of focal adhesion kinase (FAK) and glycogen synthase kinase-3β (GSK3β) induced by epidermal growth factor (EGF). Further investigations revealed that PTL suppressed the proliferation of CC cells by inhibiting the EGF-mediated phosphorylation of the FAK/GSK3β signaling pathway. CONCLUSION Taken together, the present in vitro results suggest that PTL may inhibit the proliferation and migration of CC cells through down-regulating the FAK/GSK3β signaling pathway, providing new insights for the application of PTL in the treatment of CC.
Collapse
Affiliation(s)
- Liru Huang
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Fuhong Liu
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Xukai Liu
- School of Future Technology, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Liyan Niu
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Longhua Sun
- Department of Respiratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Fang Fang
- Department of Traditional Chinese Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kun Ma
- Queen Mary College of Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, 1299 Xuefu Avenue, Nanchang, Jiangxi, 330001, People's Republic of China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
2
|
Wang M, Chen J, Zhao S, Zheng J, He K, Liu W, Zhao W, Li J, Wang K, Wang Y, Liu J, Zhao L. Atrazine promotes breast cancer development by suppressing immune function and upregulating MMP expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114691. [PMID: 36868036 DOI: 10.1016/j.ecoenv.2023.114691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
There is evidence that the triazine herbicide atrazine, which is used extensively, is present in both surface water and groundwater, and its interfering effect on immune systems, endocrine systems, and tumours has been reported by laboratory and epidemiological studies. This study explored how atrazine affected 4T1 breast cancer cell development in vitro and in vivo. The obtained results showed that after exposure to atrazine, the cell proliferation and tumour volume were significantly increased and the expression of MMP2, MMP7, and MMP9 was upregulated. The thymus and spleen indices, the CD4 + and CD3 + lymphocyte percentages which from the spleen and inguinal lymph nodes, and the CD4 + /CD8 + ratio were noticeably lower than they were in the control group. Importantly, tumour-infiltrating lymphocytes such as CD4 + , CD8 + , and NK cells were decreased while Treg cells were increased. Moreover, IL-4 was increased and IFN-γ and TNF-α were decreased in the serum and tumour microenvironment. These results suggested that atrazine can suppress systemic as well as local tumour immune function and upregulate MMPs to promote breast tumour development.
Collapse
Affiliation(s)
- Mengqi Wang
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Junyu Chen
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Shuhua Zhao
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Jingying Zheng
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Wei Liu
- Jilin Academy of Environmental Science, Changchun 130021, China
| | - Weixin Zhao
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China
| | - Jingze Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Yuru Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Jian Liu
- Department of Gynecology, Second Hospital, Jilin University, Changchun 130041, China.
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Qi H, Kikuchi M, Yoshino Y, Fang Z, Ohashi K, Gotoh T, Ideta R, Ui A, Endo S, Otsuka K, Shindo N, Gonda K, Ishioka C, Miki Y, Iwabuchi T, Chiba N. BRCA1 transports the DNA damage signal for CDDP-induced centrosome amplification through the centrosomal Aurora A. Cancer Sci 2022; 113:4230-4243. [PMID: 36082621 PMCID: PMC9746055 DOI: 10.1111/cas.15573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.
Collapse
Affiliation(s)
- Huicheng Qi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Megumi Kikuchi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yuki Yoshino
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Zhenzhou Fang
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazune Ohashi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takato Gotoh
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ryo Ideta
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Tohoku University School of MedicineSendaiJapan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shino Endo
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Otsuka
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Norihisa Shindo
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kohsuke Gonda
- Department of Medical PhysicsTohoku University Graduate School of MedicineSendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tokuro Iwabuchi
- Faculty of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
4
|
Nešpor Dadejová M, Franek M, Dvořáčková M. Laser microirradiation as a versatile system for probing protein recruitment and protein-protein interactions at DNA lesions in plants. THE NEW PHYTOLOGIST 2022; 234:1891-1900. [PMID: 35278223 DOI: 10.1111/nph.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Plant protoplasts are generated by treatment with digestion enzymes, producing plant cells devoid of the cell wall and competent for efficient polyethylene glycol mediated transformation. This way fluorescently tagged proteins can be introduced to the protoplasts creating an excellent system to probe the localization and function of uncharacterized plant proteins in vivo. We implement the method of laser microirradiation to generate DNA lesions in Arabidopsis thaliana, which enables monitoring the recruitment and dynamics of the DNA repair factors as well as bimolecular fluorescence complementation assay to test transient, conditional interactions of proteins directly at sites of DNA damage. We demonstrate that laser microirradiation in protoplasts yields a physiological cellular response to DNA lesions, based on proliferating cell nuclear antigen (PCNA) redistribution in the nucleus and show that factors involved in DNA repair, such as MRE11 or PCNA are recruited to induced DNA lesions. This technique is relatively easy to adopt by other laboratories and extends the current toolkit of methods aimed to understand the details of DNA damage response in plants. The presented method is fast, flexible and facilitates work with different mutant backgrounds or even different species, extending the utility of the system.
Collapse
Affiliation(s)
- Martina Nešpor Dadejová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, CZ-62500, Czech Republic
| |
Collapse
|
5
|
Chen J, Liu J, Wu S, Liu W, Xia Y, Zhao J, Yang Y, Wang Y, Peng Y, Zhao S. Atrazine Promoted Epithelial Ovarian Cancer Cells Proliferation and Metastasis by Inducing Low Dose Reactive Oxygen Species (ROS). IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2623. [PMID: 34435054 PMCID: PMC8358173 DOI: 10.30498/ijb.2021.2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: Atrazine (ATZ) is a triazine herbicide that is widely used in agriculture and has been detected in surface and underground water. Recently, laboratory and epidemiological research
have found that the bioaccumulation of ATZ in the environment leads to biotoxicity in the human immune and endocrine systems and results in tumor development. Objective: To investigate the effects of ATZ exposure on epithelial ovarian cancer (EOC) cells and elucidate the potential mechanisms governing these effects. Materials and Methods: The human EOC cell lines Skov3 and A2780 were used in this study to explore the effects and mechanisms of ATZ exposure on EOC. The mouse embryonic osteoblastic
precursor MC3T3-E1 cells served as the control cells to determine the effects of ATZ on cancer cell lines. After exposure to ATZ, the MTT assay, flow cytometry,
the colony formation assay, immunohistochemical staining, the cell scratch assay, and the Transwell assay were used to evaluate the proliferative activity, invasion,
and migration capabilities of EOC cell lines. Moreover, flow cytometry was also applied to detect the level of reactive oxygen species (ROS) in these two EOC cell lines,
as well as the MC3T3-E1 cells. To further illustrate the underlying mechanisms governing the effect of ATZ on EOC, real-time PCR and Western blotting were employed to assess
the transcription and the expression level of Stat3 signaling pathway-related genes in Skov3 and MC3T3-E1 cells. Results: The results showed that following ATZ treatment, the cell proliferation, migration, and invasion potencies of Skov3 and A2780 cells were increased compared to those of the
control group. Meanwhile, the ROS levels of EOC and MC3T3-E1 cells were notably elevated after ATZ treatment. In Skov3 cells, the expression levels of p53 and p21 were downregulated,
while those of Cyclin E, vascular endothelial growth factor (VEGF), matrix metallopeptidase 2 (MMP2), MMP9, signal transducers and activators of transcription 3 (Stat3),
and p-Stat3 were upregulated by ATZ treatment. In MC3T3-E1 cells, however, ATZ treatment did not affect the level of p53/p21 mRNA compared to the control groups.
Moreover, there was no significant change in the expression levels of Stat3 and p-Stat3 in MC3T3-E1 cells exposed to ATZ. This phenomenon was observed while the
proliferation rate was enhanced in MC3T3-E1 cells by ATZ. Conclusions: The results of this study suggest that ATZ effectively promotes the proliferation and metastasis of EOC cells through the Stat3 signaling pathway by inducing low levels of ROS.
Additionally, although ATZ might also induce proliferative potential in normal cells, the mechanisms governing its effects in these cells might be different from those in EOC cells.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shan Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei Liu
- Research Center of Circular Economy and Pollution Prevention and Control, Jilin Academy of Environmental Sciences, Changchun 130021, China
| | - Yang Xia
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yanrong Yang
- Tongji University, School of Medicine, Shanghai 200092, China
| | - Yuan Wang
- School of nursing, Jilin University, Changchun 130021, China
| | - Yuanqing Peng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shuhua Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
6
|
Li SL, Jiang TQ, Cao QW, Liu SM. Transmembrane protein ADAM29 facilitates cell proliferation, invasion and migration in clear cell renal cell carcinoma. J Chemother 2020; 33:40-50. [PMID: 33164721 DOI: 10.1080/1120009x.2020.1842035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abnormal expression of ADAM29 has been frequently reported in several cancers, however, its role in clear cell renal cell carcinoma (ccRCC) has not evaluated in detail. Herein, we attempt to determine the biological role and the action mechanism of ADAM29 in ccRCC. Bioinformatics analysis based on the ccRCC RNA-Seq dataset from TCGA database revealed that ADAM29 was up-expressed in ccRCC tissues by comparison with normal tissues. And a significant increase of ADAM29 expression was also observed in 3 ccRCC cell lines (UT33A, Caki-1, and786-O) in comparison with normal cell line. Besides, high level of ADAM29 was found to be connected with the poor prognosis and could be considered as an independent prognosticator for patients with ccRCC. Furthermore, functional experiments in vitro demonstrated that ADAM29 promoted the growth, invasion and migration of ccRCC cells. Moreover, Western blot assays indicated that ADAM29 was positively correlated with the level of proliferation-related proteins Cyclin D1 and PCNA and motion-related proteins MMP9 and Snail. Our data indicate that ADAM29 acts as an oncogene that increases tumour cells proliferation, invasion and migration partly by regulating the expression of Cyclin D1/PCNA/MMP9/Snail, suggesting that ADAM29 may become a prognosticator and therapeutic candidate for ccRCC.
Collapse
Affiliation(s)
- Shun-Lai Li
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, P.R. China
| | - Ting-Qi Jiang
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, P.R. China
| | - Qing-Wei Cao
- Department of Urology, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Shan-Mei Liu
- Department of Urology, The Fifth People's Hospital of Jinan, Jinan, P.R. China
| |
Collapse
|
7
|
Krishnan P, Sundaram J, Salam S, Subramaniam N, Mari A, Balaraman G, Thiruvengadam D. Citral inhibits N-nitrosodiethylamine-induced hepatocellular carcinoma via modulation of antioxidants and xenobiotic-metabolizing enzymes. ENVIRONMENTAL TOXICOLOGY 2020; 35:971-981. [PMID: 32302048 DOI: 10.1002/tox.22933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth position among various cancers worldwide. Recent research shows that natural and dietary compounds possess many therapeutic effects. Citral is a monoterpene aldehyde that contains geranial and neral. The present study was considered to study the role of citral against N-nitrosodiethylamine (NDEA)-induced HCC via modulation of antioxidants and xenobiotic-metabolizing enzymes in vivo. NDEA-alone-administered group II animals profoundly showed increased tumor incidence, reactive oxygen species, liver marker enzyme levels, serum bilirubin levels, tumor markers of carcinoembryonic antigen, α-fetoprotein, proliferative markers of argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen (PCNA) expressions, phase I xenobiotic-metabolic enzymes and simultaneously decreased antioxidants, and phase II enzymes levels. Citral (100 mg/kg b.w.) treatment significantly reverted the levels in group III cancer-bearing animals when compared to group II cancer-bearing animals. In group IV animals, citral-alone administration did not produce any adverse effect during the experimental condition. Based on the results, citral significantly inhibits the hepatocellular carcinogenesis through restoring the antioxidants and phase II xenobiotic-enzyme levels; thereby, it strongly proves as an antiproliferative agent against rat HCC.
Collapse
Affiliation(s)
- Palanisamy Krishnan
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Jagan Sundaram
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Sharmila Salam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Nirmala Subramaniam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Ashok Mari
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Devaki Thiruvengadam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
8
|
Liu Y, Xi Y, Chen G, Wu X, He M. URG4 mediates cell proliferation and cell cycle in osteosarcoma via GSK3β/β-catenin/cyclin D1 signaling pathway. J Orthop Surg Res 2020; 15:226. [PMID: 32552851 PMCID: PMC7301506 DOI: 10.1186/s13018-020-01681-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/28/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Osteosarcoma is one of the most common malignant bone tumors with the annual global incidence of approximately four per million. Upregulated gene 4 (URG4) expression in the osteosarcoma tissue is closely associated with recurrence, metastasis, and poor prognosis of osteosarcoma. However, the biological function and underlying mechanisms of URG4 in osteosarcoma have not been elucidated. This study aimed to explore the expression and underlying mechanism of URG4 in osteosarcoma. METHODS The expression level of URG4 in osteosarcoma and normal tissues was compared using immunohistochemistry (IHC). PCR and western blotting (WB) techniques are used to detect URG4 mRNA and protein levels. Wound healing and Transwell analysis to assess the effect of URG4 on osteosarcoma cell migration and invasion. Cell Counting Kit-8 assay and colony proliferation assay were performed to evaluate the effects of silencing URG4 on the inhibition of cell proliferation. The cell cycle distribution was detected by flow cytometry, and a xenograft mouse model was used to verify the function of URG4 in vivo. RESULTS URG4 was found to be highly expressed in osteosarcoma tissues and cells, and its high expression was correlated with advanced Enneking stage, large tumor size, and tumor metastasis in osteosarcoma patients. The proliferation in osteosarcoma cell lines and cell cycle in the S phase was suppressed when siRNA was used to downregulate URG4. URG4 promoted cell proliferation and tumorigenesis in vitro and in vivo. WB verified that URG4 promotes cell proliferation in osteosarcoma via pGSK3β/β-catenin/cyclinD1 signaling. CONCLUSION URG4, which is high-expressed in osteosarcoma, promotes cell cycle progression via GSK3β/β-catenin/cyclin D1 signaling pathway and may be a novel biomarker and potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yayun Liu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No. 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Yizhe Xi
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Gang Chen
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No. 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Xidong Wu
- Department of drug safety evaluation, Jiangxi Testing Center of Medical Device, No. 181 Nanjing East Road, Nanchang, 330000, Jiangxi, China
| | - Maolin He
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
9
|
Pei XD, He SQ, Shen LQ, Wei JC, Li XS, Wei YY, Zhang YM, Wang XY, Lin F, He ZL, Jiang LH. 14,15β-dihydroxyklaineanone inhibits HepG2 cell proliferation and migration through p38MAPK pathway. J Pharm Pharmacol 2020; 72:1165-1175. [PMID: 32419149 DOI: 10.1111/jphp.13289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Eurycoma longifolia Jack (Simaroubaceae) is commonly distributed in the Southeast Asia and Indo China, which has been shown to possess antianxiety, antibacterial, anticancer, antifungal, anti-inflammatory, antimalarial and antioxidant biological activities. 14,15β-dihydroxyklaineanone is a diterpene isolated from E. longifolia Jack, which is cytotoxic against human lung cancer and human breast cancer cell lines. However, the effects and underlying mechanisms of 14,15β-dihydroxyklaineanone on hepatocellular carcinoma remain unknown. METHODS Cell viability assay and colony formation assay were used to measure HepG2 cell proliferation. Flow cytometry was used to analyse cell cycle and apoptosis. Wound-healing assay and transwell assay were used to observe cells migration. RNA sequencing and the enrichment of differentially expressed genes (DEGs) in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to find and determine underlying pathways. KEY FINDINGS We found that 14,15β-dihydroxyklaineanone inhibited the growth and migration of HepG2 cells but did not induce cell apoptosis. 14,15β-dihydroxyklaineanone induced S cell cycle arrest by downregulating the expression levels of cyclin A, p-CDK2, cyclin B1, p21, E2F-1 and PCNA. In addition, RNA sequencing showed that 14,15β-dihydroxyklaineanone regulated MAPK pathway by increasing the expression levels of phosphor-p38. Downregulating of p38 via both p38 inhibitor (SB203580) and p38-siRNA could antagonize the inhibition of cell proliferation and migration and reverse the changes in p-p38, E-cadherin, N-cadherin and PCNA expression induced by 14,15β-dihydroxyklaineanone treatment. CONCLUSIONS 14,15β-dihydroxyklaineanone inhibited cell proliferation and migration through regulating p38 MAPK pathway in HCC cells.
Collapse
Affiliation(s)
- Xiao-Dong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Qun Shen
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Jing-Chen Wei
- Department of Pharmacology, Guilin Medical University, Guilin, China
| | - Xue-Sheng Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture, Guangxi University, Nanning, China
| | - Yan-Yan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China
| | - Yu-Meng Zhang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Xin-Yu Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Feng Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhi-Long He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Li-He Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, China
| |
Collapse
|
10
|
Mi L, Zhou Y, Wu D, Tao Q, Wang X, Zhu H, Gao X, Wang J, Ling R, Deng J, Mao C, Chen D. ACSS2/AMPK/PCNA pathway‑driven proliferation and chemoresistance of esophageal squamous carcinoma cells under nutrient stress. Mol Med Rep 2019; 20:5286-5296. [PMID: 31638228 DOI: 10.3892/mmr.2019.10735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Although platinum‑based chemotherapy is the first‑line choice for locally advanced or metastatic esophageal squamous cell carcinoma (ESCC) patients, accelerated recurrence and chemoresistance remain inevitable. New evidence suggests that metabolism reprogramming under stress involves independent processes that are executed with a variety of proteins. This study investigated the functions of nutrient stress (NS)‑mediated acetyl‑CoA synthetase short‑chain family member 2 (ACSS2) in cell proliferation and cisplatin‑resistance and examined its combined effects with proliferating cell nuclear antigen (PCNA), a key regulator of DNA replication and repair. Here, it was demonstrated that under NS, when the AMP‑activated protein kinase (AMPK) pathway was activated, ESCC cells maintained proliferation and chemoresistance was distinctly upregulated as determined by CCK‑8 assay. As determined using immunoblotting and RT‑qPCR, compared with normal esophageal epithelial cells (Het‑1A), ESCC cells were less sensitive to NS and showed increased intracellular levels of ACSS2. Moreover, it was shown that ACSS2 inhibition by siRNA not only greatly interfered with proliferation under NS but also participated in DNA repair after cisplatin treatment via PCNA suppression, and the acceleration of cell death was dependent on the activation of the AMPK pathway as revealed by the Annexin V/PI and TUNEL assay results. Our study identified crosstalk between nutrient supply and chemoresistance that could be exploited therapeutically to target AMPK signaling, and the results suggest ACSS2 as a potential biomarker for identifying higher‑risk patients.
Collapse
Affiliation(s)
- Lei Mi
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuepeng Zhou
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dan Wu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Tao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xuefeng Wang
- Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Haitao Zhu
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingyu Gao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jingzhi Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Rui Ling
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jing Deng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Chaoming Mao
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
11
|
Kong D, Chen J, Sun X, Lin Y, Du Y, Huang D, Cheng H, He P, Yang L, Wu S, Zhao L, Meng X. GRIM-19 over-expression represses the proliferation and invasion of orthotopically implanted hepatocarcinoma tumors associated with downregulation of Stat3 signaling. Biosci Trends 2019; 13:342-350. [DOI: 10.5582/bst.2019.01185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dexia Kong
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Junyu Chen
- Department of Gynaecology and Obstetrics, Second Hospital of Jilin University
| | - Xun Sun
- Department of Gastroenterology, First Hospital of Jilin University
| | - Yan Lin
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Yanwei Du
- Department of Pathophysiology, Basic Medicine School of Jilin University
| | - Di Huang
- Department of Pathophysiology, Basic Medicine School of Jilin University
| | - Hongjing Cheng
- Department of Gastroenterology, First Hospital of Jilin University
| | - Ping He
- Department of Gastroenterology, First Hospital of Jilin University
| | - Luoluo Yang
- Department of Gastroenterology, First Hospital of Jilin University
| | - Shan Wu
- Department of Gynaecology and Obstetrics, Second Hospital of Jilin University
| | - Lijing Zhao
- Department of Recovery, Nursing School of Jilin University
| | - Xiangwei Meng
- Department of Gastroenterology, First Hospital of Jilin University
| |
Collapse
|
12
|
Chang L, Feng X, Gao W. Proliferation of rheumatoid arthritis fibroblast-like synoviocytes is enhanced by IL-17-mediated autophagy through STAT3 activation. Connect Tissue Res 2019; 60:358-366. [PMID: 30477351 DOI: 10.1080/03008207.2018.1552266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibroblast-like synoviocytes (FLSs), with their tumor-like proliferation, play an important role in rheumatoid arthritis (RA), and interleukin-17 (IL-17) participates in RA pathology by affecting FLSs. The aims of this study were to investigate the effects of IL-17 on the proliferation and autophagy of FLSs and the role of signal transducer and activator of transcription-3 (STAT3) in RA. FLSs were treated with IL-17 at different concentrations (0, 1, 10, and 20 ng/mL); then, autophagy was assayed with western blotting, immunofluorescence, and transmission electron microscopy. The effects of IL-17 on FLSs proliferation were measured with the Cell Counting Kit-8 assay and flow cytometry to analyze cell cycle distribution, and proliferating cell nuclear antigen (PCNA) was detected by western blotting. The autophagy inhibitors, 3-methyladenine (3-MA) and chloroquine (CQ), were used to determine the effect of autophagy on proliferation in IL-17-treated FLSs. Finally, the STAT3 inhibitor STA21 was used to examine the relationship between STAT3 and autophagy in IL-17-treated FLSs. Our results showed that IL-17 positively affected autophagy and proliferation in FLSs. Inhibition of autophagy suppressed the IL-17-mediated proliferation of FLSs. Additionally, suppression of STAT3 activation decreased autophagy in IL-17-treated FLSs. Our findings showed that IL-17 promoted the tumor-like proliferation of FLSs by upregulating autophagy via STAT3 activation.
Collapse
Affiliation(s)
- Le Chang
- a Department of Rheumatoid Immunity , the First Affiliated Hospital of Jinzhou Medical University , Jinzhou , Liaoning , China
| | - Xin Feng
- a Department of Rheumatoid Immunity , the First Affiliated Hospital of Jinzhou Medical University , Jinzhou , Liaoning , China
| | - Wei Gao
- a Department of Rheumatoid Immunity , the First Affiliated Hospital of Jinzhou Medical University , Jinzhou , Liaoning , China
| |
Collapse
|
13
|
Dark-colored maple syrup treatment induces S-phase cell cycle arrest via reduced proliferating cell nuclear antigen expression in colorectal cancer cells. Oncol Lett 2019; 17:2713-2720. [PMID: 30854045 PMCID: PMC6365951 DOI: 10.3892/ol.2019.9928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2018] [Indexed: 11/05/2022] Open
Abstract
Maple syrup is a natural sweetener that is consumed worldwide. It has been previously reported that dark-colored maple syrup exerts an inhibitory effect on colorectal cancer (CRC) proliferation and invasion. In the present study, the underlying mechanism of CRC cell growth inhibition was examined with dark-colored maple syrup treatment using a shotgun liquid chromatography-tandem mass spectrometry-based global proteomic approach. Applying a semi-quantitative method based on spectral counting, 388 proteins were identified with expression changes of >1.5-fold following dark-colored maple syrup treatment. Gene Ontology analysis revealed that these proteins possessed cell cycle-associated functions. It was also indicated that CRC cells treated with dark-colored maple syrup exhibited decreased proliferating cell nuclear antigen (PCNA) expression and S-phase cell cycle arrest. Dark-colored maple syrup treatment also resulted in altered expression of cell cycle-associated genes, including cyclin-dependent kinase (CDK)4 and CDK6. In conclusion, these data suggested that dark-colored maple syrup induced S-phase cell cycle arrest in CRC cells by reducing the expression of PCNA and regulating cell cycle-associated genes. These findings suggest that dark-colored maple syrup may be a source of compounds for the development of novel drugs for colorectal cancer treatment.
Collapse
|
14
|
Legartová S, Suchánková J, Krejčí J, Kovaříková A, Bártová E. Advanced Confocal Microscopy Techniques to Study Protein-protein Interactions and Kinetics at DNA Lesions. J Vis Exp 2017. [PMID: 29155761 DOI: 10.3791/55999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Local microirradiation with lasers represents a useful tool for studies of DNA-repair-related processes in live cells. Here, we describe a methodological approach to analyzing protein kinetics at DNA lesions over time or protein-protein interactions on locally microirradiated chromatin. We also show how to recognize individual phases of the cell cycle using the Fucci cellular system to study cell-cycle-dependent protein kinetics at DNA lesions. A methodological description of the use of two UV lasers (355 nm and 405 nm) to induce different types of DNA damage is also presented. Only the cells microirradiated by the 405-nm diode laser proceeded through mitosis normally and were devoid of cyclobutane pyrimidine dimers (CPDs). We also show how microirradiated cells can be fixed at a given time point to perform immunodetection of the endogenous proteins of interest. For the DNA repair studies, we additionally describe the use of biophysical methods including FRAP (Fluorescence Recovery After Photobleaching) and FLIM (Fluorescence Lifetime Imaging Microscopy) in cells with spontaneously occurring DNA damage foci. We also show an application of FLIM-FRET (Fluorescence Resonance Energy Transfer) in experimental studies of protein-protein interactions.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences
| | | | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences
| | | | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences;
| |
Collapse
|