1
|
Arias A, Costa CE, Moreira MT, Feijoo G, Domingues L. Resveratrol-based biorefinery models for favoring its inclusion along the market value-added chains: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168199. [PMID: 37914108 DOI: 10.1016/j.scitotenv.2023.168199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Resveratrol, a natural organic polyhydroxyphenolic compound, has gained significant attention in the last years given its potential health benefits, including antioxidant, anti-cancer, and anti-inflammatory properties. It can be directly extracted from plants, vegetables, and related products and waste resources, but also chemically/enzymatically/microbially synthesized. However, certain process strategies have some limitations, such as high costs, reduced yield or high energy demand, thus implying significant environmental loads. In this context, the search for more sustainable and circular process schemes is key to the integration of resveratrol into the market value chain of the food, cosmetic and pharmaceutical sectors. The extraction of resveratrol has traditionally been based on conventional methods such as solvent extraction, but advanced green extraction techniques offer more efficient and environmentally friendly alternatives. This review analyses both conventional and green alternative extraction technologies, as well as its bioproduction through microbial fermentation, in terms of production capacity, yield, purity and sustainability. It also presents alternative biorefinery models based on resveratrol bioproduction using by-products and waste streams as resources, specifically considering wine residues, peanut shells and wood bark as input resources, and also following a circular approach. This critical review provides some insight into the opportunities that resveratrol offers for promoting sustainable development and circularity in the related market value chains, and thus provides some criteria for decision making for biorefinery models in which resveratrol is one of the targeted high value-added products. It also identifies the future challenges to promote the inclusion of resveratrol in value chains, with the scale-up of green technologies and its demonstrated economic feasibility being the most prominent.
Collapse
Affiliation(s)
- Ana Arias
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carlos E Costa
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Maria Teresa Moreira
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gumersindo Feijoo
- CRETUS, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucília Domingues
- CEB - Center of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Hunt NJ, Wahl D, Westwood LJ, Lockwood GP, Le Couteur DG, Cogger VC. Targeting the liver in dementia and cognitive impairment: Dietary macronutrients and diabetic therapeutics. Adv Drug Deliv Rev 2022; 190:114537. [PMID: 36115494 PMCID: PMC10125004 DOI: 10.1016/j.addr.2022.114537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Many people living with dementia and cognitive impairment have dysfunctional mitochondrial and insulin-glucose metabolism resembling type 2 diabetes mellitus and old age. Evidence from human trials shows that nutritional interventions and anti-diabetic medicines that target nutrient-sensing pathways overcome these deficits in glucose and energy metabolism and can improve cognition and/or reduce symptoms of dementia. The liver is the main organ that mediates the systemic effects of diets and many diabetic medicines; therefore, it is an intermediate target for such dementia interventions. A challenge is the efficacy of these treatments in older age. Solutions include the targeted hepatic delivery of diabetic medicines using nanotechnologies and titration of macronutrients to optimize hepatic energy metabolism.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; Sydney Nano Institute, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Devin Wahl
- Department of Health and Exercise Science & Centre for Healthy Aging, Colorado State University, CO 80523, United States
| | - Lara J Westwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Glen P Lockwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - David G Le Couteur
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Victoria C Cogger
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia.
| |
Collapse
|
3
|
Natural phytoalexin stilbene compound resveratrol and its derivatives as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. Sci Rep 2021; 11:16509. [PMID: 34389790 PMCID: PMC8363727 DOI: 10.1038/s41598-021-96069-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022] Open
Abstract
Plant diseases caused by plant viruses and pathogens seriously affect crop yield and quality, and it is very difficult to control them. The discovery of new leads based on natural products is an important way to innovate pesticides. Based on the resveratrol is a kind of natural phytoalexin, but it cannot be used as candidate for the development of new drug due to its poor druggability. The phenolic hydroxyl groups in the resveratrol structure are easily destroyed by oxidation, in order to improve its stability, ester formation is the most commonly used modification method in drug design. Their structures were characterized by 1H NMR, 13C NMR and HRMS. The activity against tobacco mosaic virus (TMV) of these ester derivatives has been tested for the first time. The bioassay results showed part of the target compounds exhibited good to excellent in vivo activities against TMV. The optimum compounds III-2 (inhibitory rates of 50, 53, and 59% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively), III-4 (inhibitory rates of 57, 59, and 51% at 500 μg/mL, respectively), and II-5 (inhibitory rates of 54, 52, and 51% at 500 μg/mL, respectively) displayed higher activity than commercial plant virucide ribavirin (inhibitory rates of 38, 37, and 40% at 500 μg/mL, respectively). Compounds I-9 and I-10 also showed excellent activities. The systematic study provides strong evidence that these simple resveratrol derivatives could become potential TMV inhibitors. The novel concise structure provides another new template for antiviral studies.
Collapse
|
4
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
5
|
Omar SH. Biophenols pharmacology against the amyloidogenic activity in Alzheimer’s disease. Biomed Pharmacother 2017; 89:396-413. [DOI: 10.1016/j.biopha.2017.02.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 02/01/2023] Open
|
6
|
Kamal R, Dhawan DK, Chadha VD. Evaluation of 99m Tc-resveratrol as a colon cancer targeting probe. Eur J Cancer Care (Engl) 2016; 26. [PMID: 27194670 DOI: 10.1111/ecc.12504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/30/2022]
Abstract
The study aimed to evaluate cancer-targeting potential of a newly synthesised radiopharmaceutical, 99m Tc-resveratrol in vivo, using colon cancer model. Colon cancer was induced in 20 male Sprague-Dawley rats by subcutaneous administration of 1,2-dimethylhydrazine (DMH), dissolved in 1 mM EDTA-normal saline, at a dose of 30 mg/kg body weight twice a week for first 4 weeks and once a week for next 12 weeks. A control group containing normal rats was used for result comparison. Colon cancer in DMH-treated group was confirmed by gross analysis of the colon, by histopathological analysis and molecular marker study in tumour tissue. At the end of the treatment period, the animals from the two groups were used for bio-distribution evaluation of 99m Tc-resveratrol at different time intervals. High uptake of 99m Tc-resveratrol was recorded in rat liver, spleen and kidneys, and the ratio of colon tumour uptake to normal colon uptake in DMH-treated rats increased significantly (P ≤ 0.01) with time, to reach a maximum value at 2 h but decreased thereafter. High uptake at the tumour site as compared to normal colon tissue was observed; however, the uptake by cancer cells at the target site was limited by high reticulo-endothelial uptake and rapid metabolism.
Collapse
Affiliation(s)
- R Kamal
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| | - D K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, India
| | - V D Chadha
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Aldawsari FS, Elshenawy OH, El Gendy MAM, Aguayo-Ortiz R, Baksh S, El-Kadi AOS, Velázquez-Martínez CA. Design and synthesis of resveratrol–salicylate hybrid derivatives as CYP1A1 inhibitors. J Enzyme Inhib Med Chem 2014; 30:884-95. [DOI: 10.3109/14756366.2014.979347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fahad S. Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,
| | - Osama H. Elshenawy
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,
| | - Mohamed A. M. El Gendy
- Experimental Oncology Unit, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada,
- Department of Pharmacognosy, Pharmaceutical Sciences Division, Natural Research Centre, Dokki, Giza, Egypt,
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México,
| | - Shairaz Baksh
- Department of Pediatrics, Oncology and Biochemistry, University of Alberta, Edmonton, Alberta, Canada, and
- Alberta Inflammatory Bowel Disease Consortium, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,
| | | |
Collapse
|
8
|
Kim YH, Fujimura Y, Sasaki M, Yang X, Yukihira D, Miura D, Unno Y, Ogata K, Nakajima H, Yamashita S, Nakahara K, Murata M, Lin IC, Wariishi H, Yamada K, Tachibana H. In situ label-free visualization of orally dosed strictinin within mouse kidney by MALDI-MS imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9279-9285. [PMID: 25195619 DOI: 10.1021/jf503143g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualizing the distribution of a wide range of biomolecules within tissue sections. However, methodology for visualizing a bioactive ellagitannin has not yet been established. This paper presents a novel in situ label-free MALDI-MSI technique for visualizing the distribution of strictinin, a bioactive ellagitannin found in green tea, within mammalian kidney after oral dosing. Among nine representative matrix candidates, 1,5-diaminonaphthalene (1,5-DAN), harmane, and ferulic acid showed higher sensitivity to strictinin spotted onto a MALDI sample plate. Of these, 1,5-DAN enables visualization of a two-dimensional image of strictinin directly spotted on mouse kidney sections with the highest sensitivity. Furthermore, 1,5-DAN-based MALDI-MSI could detect the unique distribution of orally dosed strictinin within kidney sections. This in situ label-free imaging technique will contribute to the localization analysis of strictinin and its biological mechanisms.
Collapse
Affiliation(s)
- Yoon Hee Kim
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Caputi L, Rejzek M, Louveau T, O’Neill EC, Hill L, Osbourn A, Field RA. A one-pot enzymatic approach to the O-fluoroglucoside of N-methylanthranilate. Bioorg Med Chem 2013; 21:4762-7. [PMID: 23806835 PMCID: PMC3898844 DOI: 10.1016/j.bmc.2013.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/23/2013] [Accepted: 05/28/2013] [Indexed: 11/25/2022]
Abstract
In connection with prospective (18)F-PET imaging studies, the potential for enzymatic synthesis of fluorine-labelled glycosides of small molecules was investigated. Approaches to the enzymatic synthesis of anomeric phosphates of d-gluco-configured fluorosugars proved ineffective. In contrast, starting in the d-galacto series and relying on the consecutive action of Escherichia coli galactokinase (GalK), galactose-1-phosphate uridylyltransferase (GalPUT), uridine-5'-diphosphogalactose 4-epimerase (GalE) and oat root glucosyltransferase (SAD10), a quick and effective synthesis of 6-deoxy-6-fluoro-d-glucosyl N-methylanthranilate ester was achieved.
Collapse
Affiliation(s)
- Lorenzo Caputi
- Laboratory of Bioorganic Chemistry and Crystallography, Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Thomas Louveau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ellis C. O’Neill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A. Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
10
|
Kim SK, Lee WS, Han SJ, Kim EJ, El-Gamal MI, Kim BS, Choi TH, Choi CW, Ham IH, Oh CH, Choi HY, Cho JH. Radiosynthesis and Biodistribution of an125I-labeled Resveratrol Derivative. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.2.489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Lee I, Choe YS, Choi JY, Lee KH, Kim BT. Synthesis and evaluation of ¹⁸F-labeled styryltriazole and resveratrol derivatives for β-amyloid plaque imaging. J Med Chem 2012; 55:883-92. [PMID: 22236086 DOI: 10.1021/jm201400q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, a styryltriazole and four resveratrol derivatives were synthesized as candidates for β-amyloid (Aβ) plaque imaging. On the basis of their binding affinities to Aβ(1-42) aggregates, the styryltriazole (1, K(i) = 12.8 nM) and one resveratrol derivative (5, K(i) = 0.49 nM) were labeled with (18)F. In normal mice, tissue distribution of [(18)F]5 showed good initial brain uptake (3.26% ID/g at 2 min) but slow wash-out from brains (2-to-60 min uptake ratio: 2.9). Furthermore, it underwent in vivo metabolic defluorination (1.88% ID/g at 2 min and 9.73% ID/g at 60 min). In contrast, [(18)F]1 displayed high initial brain uptake (5.38% ID/g at 2 min) with rapid wash-out from brains (0.52% ID/g at 60 min; 2-to-60 min uptake ratio: 10.3). These results indicate that [(18)F]1 has in vivo kinetics comparable to PET radiopharmaceuticals currently under commercial development, demonstrating that [(18)F]1 is a desirable PET radioligand for Aβ plaque imaging.
Collapse
Affiliation(s)
- Iljung Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | | | | | | | | |
Collapse
|
12
|
Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells. Blood 2011; 117:5683-91. [DOI: 10.1182/blood-2010-12-328138] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1+, CD63, and HLA-DR+ endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.
Collapse
|
13
|
Abstract
Liver diseases incorporate several maladies, which can range from benign histological changes to serious life-threatening conditions. These may include inborn metabolic disease, primary and metastatic cancers, alcoholic cirrhosis, viral hepatitis and drug-induced hepatotoxicity. Liver disease remains a major cause of morbidity and mortality with significant economic and social costs. Several novel approaches are currently being studied which may provide a better therapeutic outcome. The use of naturally occurring phytochemicals, some of them obtained from dietary sources, in the amelioration of illness have recently gained considerable popularity. These agents, having anti-oxidant and anti-inflammatory properties, provide a safe and effective means of ameliorating chronic disease. Resveratrol, a grape polyphenol, has shown considerable promise as a therapeutic agent in the treatment of the aforementioned liver ailments. Several studies have highlighted the hepatoprotective properties of resveratrol. Resveratrol has been shown to prevent hepatic damage because of free radicals and inflammatory cytokines, induce anti-oxidant enzymes and elevate glutathione content. Resveratrol has also been shown to modulate varied signal transduction pathways implicated in liver diseases. This review critically examines the current preclinical in vitro and in vivo studies on the preventive and therapeutic effects of resveratrol in liver diseases. The review highlights the pharmacological mechanisms involved in mediating the aforementioned effects. Toxicity, pharmacokinetics and clinical bioavailability of resveratrol are also reviewed in this article. The challenges involved, future directions and novel approaches such as site-specific drug delivery in the use of resveratrol for the prevention and treatment of liver disease are also discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH, USA.
| | | | | | | |
Collapse
|
14
|
Bishayee A, Politis T, Darvesh AS. Resveratrol in the chemoprevention and treatment of hepatocellular carcinoma. Cancer Treat Rev 2009; 36:43-53. [PMID: 19910122 DOI: 10.1016/j.ctrv.2009.10.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and lethal diseases in the world. Although the majority of HCC cases occur in developing countries of Asia and Africa, the prevalence of liver cancer has risen considerably in Japan, Western Europe as well as the United States. HCC most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, iron overload and dietary carcinogens, including aflatoxins and nitrosamines. The current treatment modalities, including surgical resection and liver transplantation, have been found to be mostly ineffective. Hence, there is an obvious critical need to develop alternative strategies for the chemoprevention and treatment of HCC. Oxidative stress as well as inflammation has been implicated in the development and progression of hepatic neoplasia. Using naturally occurring phytochemicals and dietary compounds endowed with potent antioxidant and antiinflammatory properties is a novel approach to prevent and control HCC. One such compound, resveratrol, present in grapes, berries, peanuts as well as red wine, has emerged as a promising molecule that inhibits carcinogenesis with a pleiotropic mode of action. This review examines the current knowledge on mechanism-based in vitro and in vivo studies on the chemopreventive and chemotherapeutic potential of resveratrol in liver cancer. Pre-clinical and clinical toxicity studies as well as pharmacokinetic data of resveratrol have also been highlighted in this review. Future directions and challenges involved in the use of resveratrol for the prevention and treatment of HCC are also discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- Department of Pharmaceutical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, 44272, USA
| | | | | |
Collapse
|
15
|
Forester SC, Waterhouse AL. Metabolites are key to understanding health effects of wine polyphenolics. J Nutr 2009; 139:1824S-31S. [PMID: 19640966 DOI: 10.3945/jn.109.107664] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phenolic compounds in grapes and wine are grouped within the following major classes: stilbenes, phenolic acids, ellagitannins, flavan-3-ols, anthocyanins, flavonols, and proanthocyanidins. Consumption of foods containing phenolic substances has been linked to beneficial effects toward chronic diseases such as coronary heart disease and colorectal cancer. However, such correlations need to be supported by in vivo testing and bioavailability studies are the first step in establishing cause and effect. Class members from all phenolic groups can be glucuronidated, sulfated, and/or methylated and detected at low concentrations in the bloodstream and in urine. But the majority of phenolic compounds from grapes and wine are metabolized in the gastrointestinal tract, where they are broken down by gut microflora. This typically involves deglycosylation, followed by breakdown of ring structures to produce phenolic acids and aldehydes. These metabolites can be detected in bloodstream, urine, and fecal samples by using sophisticated instrumentation methods for quantitation and identification at low concentrations. The health effects related to grape and wine consumption may well be due to these poorly understood phenolic acid metabolites. This review discusses the known metabolism of each major class of wine and grape phenolics, the means to measure them, and ideas for future investigations.
Collapse
Affiliation(s)
- Sarah C Forester
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
16
|
Moon HI, Chung IM, Jung JC, Lim E, Lee Y, Oh S, Jung M. The convenient synthesis and evaluation of the anticancer activities of new resveratrol derivatives. J Enzyme Inhib Med Chem 2009; 24:328-36. [PMID: 18608762 DOI: 10.1080/14756360802185731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In the present study we report the simple synthesis and antitumour activity of novel stilbene derivatives 13-22. The key synthetic strategies involved Wadsworth-Horner-Emmons condensation and coupling reactions in high yields. All compounds showed significant growth inhibition on human tumour cell lines, with the most potent compound (19) exhibiting an IC(50) of 5.7 microM-11.4 microM in vitro.
Collapse
Affiliation(s)
- Hyung-In Moon
- Department of Neuroscience and, Inam Neuroscience Research Center, Sanbon Medical Center, Wonkwang University, Kyunggido, South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Wuest F. Fluorine-18 labeling of small molecules: the use of 18F-labeled aryl fluorides derived from no-carrier-added [18F]fluoride as labeling precursors. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:51-78. [PMID: 17172152 DOI: 10.1007/978-3-540-49527-7_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The favourable long-half life, the ease of production and the low energy of the emitted positron make 18F an ideal radionuclide for PET imaging. Radiochemistry of 18F basically relies on two distinctive types of reactions: nucleophilic and electrophilic reactions. All syntheses of 18F-labeled radiotracers are based on either [18F]fluoride ion or [18F]fluorine gas as simple primary labeling precursors which are obtained directly from the cyclotron. They can be applied either directly to the radiosynthesis or they can be transformed into more complex labeling precursors enabling the multi-step build-up of organic tracer molecules. The topic of this review is a survey on the application of several 18F-labeled aryl fluorides as building blocks derived from no-carrier-added (n.c.a.) [18F] fluoride to build up small monomeric PET radiotracers at high specific radioactivity by multi-step synthesis procedures.
Collapse
Affiliation(s)
- F Wuest
- PET Tracer Department, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Centre Rossendorf, Dresden, Germany.
| |
Collapse
|
18
|
Gester S, Pietzsch J, Wuest FR. Synthesis of18F-labelled stilbenes from 4-[18F]fluorobenz-aldehyde using the Horner–Wadsworth–Emmons reaction. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Bergmann R, Pietzsch J. Small animal positron emission tomography in food sciences. Amino Acids 2005; 29:355-76. [PMID: 16142524 DOI: 10.1007/s00726-005-0237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/13/2005] [Indexed: 02/07/2023]
Abstract
Positron emission tomography (PET) is a 3-dimensional imaging technique that has undergone tremendous developments during the last decade. Non-invasive tracing of molecular pathways in vivo is the key capability of PET. It has become an important tool in the diagnosis of human diseases as well as in biomedical and pharmaceutical research. In contrast to other imaging modalities, radiotracer concentrations can be determined quantitatively. By application of appropriate tracer kinetic models, the rate constants of numerous different biological processes can be determined. Rapid progress in PET radiochemistry has significantly increased the number of biologically important molecules labelled with PET nuclides to target a broader range of physiologic, metabolic, and molecular pathways. Progress in PET physics and technology strongly contributed to better scanners and image processing. In this context, dedicated high resolution scanners for dynamic PET studies in small laboratory animals are now available. These developments represent the driving force for the expansion of PET methodology into new areas of life sciences including food sciences. Small animal PET has a high potential to depict physiologic processes like absorption, distribution, metabolism, elimination and interactions of biologically significant substances, including nutrients, 'nutriceuticals', functional food ingredients, and foodborne toxicants. Based on present data, potential applications of small animal PET in food sciences are discussed.
Collapse
Affiliation(s)
- R Bergmann
- Positron Emission Tomography Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, Dresden, Germany.
| | | |
Collapse
|
20
|
Pawelke B. Metabolite analysis in positron emission tomography studies: examples from food sciences. Amino Acids 2005; 29:377-88. [PMID: 15924213 DOI: 10.1007/s00726-005-0202-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 02/07/2005] [Indexed: 10/25/2022]
Abstract
Substances of various chemical structures can be labelled with appropriate positron emitting isotopes and applied as tracer compounds in PET examinations. Using dynamic data acquisition protocols, time-activity curves of radioactivity uptake in organs can be derived and the measurements of tissue tracer concentrations can be translated into quantitative values of tissue function. However, analysis of metabolites of these tracers regarding their nature and distribution in the living organism is an essential need for the quantitative analysis of PET measurements. In addition, metabolite analysis contributes to the interpretation of the images obtained as well as to the identification of pathological changes in metabolic pathways. This paper reports on representative examples of radiolabelled compounds which might be of importance in food science (e.g., amino acids, polyphenols, and model compounds for advanced glycation end products (AGEs)). Typical procedures of analysis (radio-HPLC, radio-TLC) including pre-analytical sample preparation are described. Specific challenges of the method, e.g., trace amounts of radiolabelled compounds and the influence of the often very short half-lives of positron-emitting nuclides used are highlighted. Representative results of analyses of plasma, urine, and tissue samples are presented and discussed in terms of the metabolic fate of the tracers.
Collapse
Affiliation(s)
- B Pawelke
- Positron Emission Tomography Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, Dresden, Germany.
| |
Collapse
|