Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region.
Amino Acids 2009;
38:679-90. [PMID:
19350368 DOI:
10.1007/s00726-009-0274-3]
[Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
Fourier transform spectroscopy in the mid-infrared (400-5,000 cm(-1)) (FT-IR) is being recognized as a powerful tool for analyzing chemical composition of food, with special concern to molecular architecture of food proteins. Unlike other spectroscopic techniques, it provides high-quality spectra with very small amount of protein, in various environments irrespective of the molecular mass. The fraction of peptide bonds in alpha-helical, beta-pleated sheet, turns and aperiodic conformations can be accurately estimated by analysis of the amide I band (1,600-1,700 cm(-1)) in the mid-IR region. In addition, FT-IR measurement of secondary structure highlights the mechanism of protein aggregation and stability, making this technique of strategic importance in the food proteomic field. Examples of applications of FT-IR spectroscopy in the study of structural features of food proteins critical of nutritional and technological performance are discussed.
Collapse