1
|
Bodine SP, Muir TW. Molecular Mechanisms of Virulence Regulation in Staphylococcus aureus: A Journey into Reconstitutive Biochemistry. Acc Chem Res 2025; 58:1657-1669. [PMID: 40331756 DOI: 10.1021/acs.accounts.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
ConspectusMethodological development in the fields of genetics, chemical biology, and biochemistry over the last several decades has provided researchers with a diverse set of powerful tools to investigate biological processes. Leveraging these innovations in concert, scientists can now characterize biological pathways at a level of complexity ranging from systems biology down to molecular and atomic detail.Throughout this Account, we illustrate how discoveries made using these tools build on each other to develop a comprehensive understanding of biological pathways. Advancements in genetic sequencing facilitates association of genotypes and phenotypes, independent of biochemical mechanism. Through the biochemical reconstitution of the interactions between biological macromolecules─including the small molecules (ligands and metabolites) and proteins─that participate in these biological pathways, scientists can characterize the specific molecular features that link genotype and phenotype. This facilitates identification of targets within these pathways that can be manipulated to achieve a greater understanding of the biological process or to develop interventions to improve human health outcomes.Specifically, we describe how this toolbox was leveraged to discover and characterize the molecular biochemistry underlying control of pathogenicity in the Gram-positive bacterium Staphylococcus aureus. Concurrent with advancements in the investigative tools available to the scientific community, we and others reported on the genetic, molecular, and biochemical/biophysical components of this regulatory system. Virulence control in S. aureus is achieved through a chemical system of bacterial cell-to-cell communication indexed to local population density, referred to as quorum sensing (QS). We and our collaborators identified that this QS system is encoded in the accessory gene regulator (agr) operon and functions via the biosynthesis, secretion, and accumulation of a short peptide signaling molecule─the autoinducing peptide (AIP)─in the local environment correlated with the growth of S. aureus in the same biological niche. Above a threshold concentration, these AIPs bind and activate a cell-surface receptor to stimulate an intracellular response resulting in altered gene expression and bacterial group behaviors. We discovered that chemical modification of these AIPs often generates molecules that exhibit potent inhibition of agr QS, with demonstrated therapeutic potential to treat S. aureus infections. We went on to characterize the biochemical mechanism of signaling molecule biosynthesis and receptor activation in controlled systems through in vitro reconstitution of the constituent enzymes and substrates. Biochemical reconstitution enabled quantitative assessment of biophysical parameters. These efforts culminated in the comprehensive characterization and functional in vitro reconstitution of agr QS in a synthetic system in a minimal model at the interface of genotype, mechanism, and phenotype.
Collapse
Affiliation(s)
- Steven P Bodine
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Choi S, Lee SH, Kee JM. Bringing Histidine Phosphorylation into Light: Role of Chemical Tools. ACS Chem Biol 2025; 20:778-790. [PMID: 40184269 DOI: 10.1021/acschembio.5c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Histidine phosphorylation is a historically underexplored post-translational modification (PTM). Once deemed "elusive" due to its chemical lability, phosphohistidine (pHis) has recently come to light thanks to emerging chemical tools─including stable pHis analogs, pHis-specific antibodies, and tailored proteomics workflows─that enable its detection and functional analysis. Together, these innovations have led to a surge in the identification of pHis sites and raised awareness of their roles in both bacterial and mammalian systems. New assay systems have also facilitated the characterization of histidine kinases and phosphatases. This Review summarizes recent breakthroughs in pHis research tools, examines the limitations of current approaches, and outlines future tools needed to fully unravel the potential of histidine phosphorylation.
Collapse
Affiliation(s)
- Solbee Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Shin Hyeon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Bilgin N, Hintzen JCJ, Mecinović J. Chemical tools for probing histidine modifications. Chem Commun (Camb) 2025; 61:3805-3820. [PMID: 39936705 DOI: 10.1039/d4cc06586g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Histidine is a unique amino acid with critical roles in protein structure and function, ranging from metal ion binding to enzyme catalysis. Histidine residues in proteins also undergo diverse posttranslational modifications, including methylation, phosphorylation and hydroxylation, by various enzymes, some of them being only recently identified and characterised. In this review, we describe the development of chemical tools for understanding the role of histidine residues in chemical and biological systems. We spotlight the application of histidine analogues in probing biomedically important posttranslational modifications of histidine residues in proteins, and we highlight novel bioconjugation methods that enable chemoselective modifications of histidine residues in peptides and proteins.
Collapse
Affiliation(s)
- Nurgül Bilgin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
4
|
Koczurowska A, Carrillo DR, Alai MG, Zakłos-Szyda M, Bujacz G, Pietrzyk-Brzezinska AJ. Structural and biophysical characterization of the cytoplasmic domains of HprS kinase and its interactions with the cognate regulator HprR. Arch Biochem Biophys 2025; 764:110269. [PMID: 39681306 DOI: 10.1016/j.abb.2024.110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The HprSR constitutes the bacterial two-component regulatory system engaged by Escherichia coli to reduce the damaging effects of reactive chlorine and oxygen species present in its cytosol. Hypochlorous acid (HOCl) has been shown to be the molecule capable of activating of the HprSR system. HOCl is produced upon pathogen invasion by phagocytic cells of the human innate immune system, particularly neutrophils, to take advantage of its powerful antimicrobial attributes. Therefore, comprehensive studies concerning bacterial sensing and regulatory HprSR system are indispensable in understanding and effectively eliminating pathogens. Here we present the first crystal structure, solved at 1.7 Å resolution, of the HprS cytoplasmic domains arranged as a homodimer. In both protomers, the catalytic ATP-binding domain contains a non-hydrolysable ATP analog coordinated by a magnesium ion. This structure allowed us to provide a detailed characterization of kinase-substrate interaction. Furthermore, the structural data are supported by biophysical studies of kinase interaction with cognate response regulator HprR and substrate ATP. The kinase activity is also assessed in the presence or absence of HprR.
Collapse
Affiliation(s)
- Anna Koczurowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - David Ruiz Carrillo
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | - María García Alai
- European Molecular Biology Laboratory, EMBL Hamburg, Notkestrasse 85, 22607, Hamburg, Germany
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Grzegorz Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland
| | - Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| |
Collapse
|
5
|
Li S, Li L, Ma M, Xing M, Qian X, Ying W. Integrated strategy for high-confident global profiling of the histidine phosphoproteome. Anal Chim Acta 2024; 1331:343336. [PMID: 39532420 DOI: 10.1016/j.aca.2024.343336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Histidine phosphorylation (pHis) plays a key role in signal transduction in prokaryotes and regulates tumour initiation and progression in mammals. However, the pHis substrates and their functions are rarely known due to the lack of effective analytical strategies. RESULTS Herein, we provide a strategy for unbiased enrichment and assignment of the pHis peptides. First, the entire procedure was designed under alkaline conditions to maintain the stability of the N-P bond of pHis and high-pH reverse-phase chromatography was used to efficiently separate the pHis peptides. Second, exploiting the coelution benefits of diethyl labelling, the ratios of light- and heavy-labelled peptides were accurately quantified, and the sites of phosphorylated histidine were assigned. Finally, Cu-IDA bead enrichment and data-independent acquisition mass spectrometry analysis were used to improve the coverage of the histidine phosphoproteome. With this novel strategy, 768 and 1125 potential pHis peptides were identified from lysates of E. coli and HeLa cells, respectively. And these values represent the highest coverage of the histidine phosphoproteome for both cell types. SIGNIFICANCE These data strongly support the presumption that pHis modifications are widely present in bacteria. The study provides an efficient strategy and can lead to a better understanding of pHis-modified substrates and their biological functions.
Collapse
Affiliation(s)
- Shiyi Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Li
- Central Laboratory, Capital Medical University, Beijing, 100069, China
| | - Mengran Ma
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Meining Xing
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Wantao Ying
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
6
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
7
|
Poprawa SM, Stasi M, Kriebisch BAK, Wenisch M, Sastre J, Boekhoven J. Active droplets through enzyme-free, dynamic phosphorylation. Nat Commun 2024; 15:4204. [PMID: 38760374 PMCID: PMC11101487 DOI: 10.1038/s41467-024-48571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Life continuously transduces energy to perform critical functions using energy stored in reactive molecules like ATP or NADH. ATP dynamically phosphorylates active sites on proteins and thereby regulates their function. Inspired by such machinery, regulating supramolecular functions using energy stored in reactive molecules has gained traction. Enzyme-free, synthetic systems that use dynamic phosphorylation to regulate supramolecular processes have not yet been reported, to our knowledge. Here, we show an enzyme-free reaction cycle that consumes the phosphorylating agent monoamidophosphate by transiently phosphorylating histidine and histidine-containing peptides. The phosphorylated species are labile and deactivate through hydrolysis. The cycle exhibits versatility and tunability, allowing for the dynamic phosphorylation of multiple precursors with a tunable half-life. Notably, we show the resulting phosphorylated products can regulate the peptide's phase separation, leading to active droplets that require the continuous conversion of fuel to sustain. The reaction cycle will be valuable as a model for biological phosphorylation but can also offer insights into protocell formation.
Collapse
Affiliation(s)
- Simone M Poprawa
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Michele Stasi
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Brigitte A K Kriebisch
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Monika Wenisch
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Judit Sastre
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany.
| |
Collapse
|
8
|
Maguire OR, Smokers IBA, Oosterom BG, Zheliezniak A, Huck WTS. A Prebiotic Precursor to Life's Phosphate Transfer System with an ATP Analog and Histidyl Peptide Organocatalysts. J Am Chem Soc 2024; 146:7839-7849. [PMID: 38448161 PMCID: PMC10958518 DOI: 10.1021/jacs.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Biochemistry is dependent upon enzyme catalysts accelerating key reactions. At the origin of life, prebiotic chemistry must have incorporated catalytic reactions. While this would have yielded much needed amplification of certain reaction products, it would come at the possible cost of rapidly depleting the high energy molecules that acted as chemical fuels. Biochemistry solves this problem by combining kinetically stable and thermodynamically activated molecules (e.g., ATP) with enzyme catalysts. Here, we demonstrate a prebiotic phosphate transfer system involving an ATP analog (imidazole phosphate) and histidyl peptides, which function as organocatalytic enzyme analogs. We demonstrate that histidyl peptides catalyze phosphorylations via a phosphorylated histidyl intermediate. We integrate these histidyl-catalyzed phosphorylations into a complete prebiotic scenario whereby inorganic phosphate is incorporated into organic compounds though physicochemical wet-dry cycles. Our work demonstrates a plausible system for the catalyzed production of phosphorylated compounds on the early Earth and how organocatalytic peptides, as enzyme precursors, could have played an important role in this.
Collapse
Affiliation(s)
- Oliver R. Maguire
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Iris B. A. Smokers
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Bob G. Oosterom
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Alla Zheliezniak
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen AJ 6525, The Netherlands
| |
Collapse
|
9
|
Daly L, Byrne DP, Perkins S, Brownridge PJ, McDonnell E, Jones AR, Eyers PA, Eyers CE. Custom Workflow for the Confident Identification of Sulfotyrosine-Containing Peptides and Their Discrimination from Phosphopeptides. J Proteome Res 2023; 22:3754-3772. [PMID: 37939282 PMCID: PMC10696596 DOI: 10.1021/acs.jproteome.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Protein tyrosine sulfation (sY) is a post-translational modification (PTM) catalyzed by Golgi-resident tyrosyl protein sulfo transferases (TPSTs). Information on sY in humans is currently limited to ∼50 proteins, with only a handful having verified sites of sulfation. As such, the contribution of sulfation to the regulation of biological processes remains poorly defined. Mass spectrometry (MS)-based proteomics is the method of choice for PTM analysis but has yet to be applied for systematic investigation of the "sulfome", primarily due to issues associated with discrimination of sY-containing from phosphotyrosine (pY)-containing peptides. In this study, we developed an MS-based workflow for sY-peptide characterization, incorporating optimized Zr4+ immobilized metal-ion affinity chromatography (IMAC) and TiO2 enrichment strategies. Extensive characterization of a panel of sY- and pY-peptides using an array of fragmentation regimes (CID, HCD, EThcD, ETciD, UVPD) highlighted differences in the generation of site-determining product ions and allowed us to develop a strategy for differentiating sulfated peptides from nominally isobaric phosphopeptides based on low collision energy-induced neutral loss. Application of our "sulfomics" workflow to a HEK-293 cell extracellular secretome facilitated identification of 21 new sulfotyrosine-containing proteins, several of which we validate enzymatically, and reveals new interplay between enzymes relevant to both protein and glycan sulfation.
Collapse
Affiliation(s)
- Leonard
A. Daly
- Centre
for Proteome Research, Institute of Systems, Molecular & Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, University
of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, University
of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Simon Perkins
- Computational
Biology Facility, Institute of Systems, Molecular & Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Institute of Systems, Molecular & Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Euan McDonnell
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, University
of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Computational
Biology Facility, Institute of Systems, Molecular & Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Andrew R. Jones
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, University
of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Computational
Biology Facility, Institute of Systems, Molecular & Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, University
of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Institute of Systems, Molecular & Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry, Cell & Systems Biology, Institute of Systems,
Molecular & Integrative Biology, University
of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
10
|
Daly LA, Clarke CJ, Po A, Oswald SO, Eyers CE. Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond. Chem Commun (Camb) 2023; 59:11484-11499. [PMID: 37681662 PMCID: PMC10521633 DOI: 10.1039/d3cc02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Post-translational modifications (PTMs) are ubiquitous and key to regulating protein function. Understanding the dynamics of individual PTMs and their biological roles requires robust characterisation. Mass spectrometry (MS) is the method of choice for the identification and quantification of protein modifications. This article focusses on the MS-based analysis of those covalent modifications that induce a mass shift of +80 Da, notably phosphorylation and sulfation, given the challenges associated with their discrimination and pinpointing the sites of modification on a polypeptide chain. Phosphorylation in particular is highly abundant, dynamic and can occur on numerous residues to invoke specific functions, hence robust characterisation is crucial to understanding biological relevance. Showcasing our work in the context of other developments in the field, we highlight approaches for enrichment and site localisation of phosphorylated (canonical and non-canonical) and sulfated peptides, as well as modification analysis in the context of intact proteins (top down proteomics) to explore combinatorial roles. Finally, we discuss the application of native ion-mobility MS to explore the effect of these PTMs on protein structure and ligand binding.
Collapse
Affiliation(s)
- Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Allen Po
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Sally O Oswald
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
11
|
Makwana MV, Dos Santos Souza C, Pickup BT, Thompson MJ, Lomada SK, Feng Y, Wieland T, Jackson RFW, Muimo R. Chemical Tools for Studying Phosphohistidine: Generation of Selective τ-Phosphohistidine and π-Phosphohistidine Antibodies. Chembiochem 2023; 24:e202300182. [PMID: 37183567 DOI: 10.1002/cbic.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Nonhydrolysable stable analogues of τ-phosphohistidine (τ-pHis) and π-pHis have been designed, aided by electrostatic surface potential calculations, and subsequently synthesized. The τ-pHis and π-pHis analogues (phosphopyrazole 8 and pyridyl amino amide 13, respectively) were used as haptens to generate pHis polyclonal antibodies. Both τ-pHis and π-pHis conjugates in the form of BSA-glutaraldehyde-τ-pHis and BSA-glutaraldehyde-π-pHis were synthesized and characterized by 31 P NMR spectroscopy. Commercially available τ-pHis (SC56-2) and π-pHis (SC1-1; SC50-3) monoclonal antibodies were used to show that the BSA-G-τ-pHis and BSA-G-π-pHis conjugates could be used to assess the selectivity of pHis antibodies in a competitive ELISA. Subsequently, the selectivity of the pHis antibodies generated by using phosphopyrazole 8 and pyridyl amino amide 13 as haptens was assessed by competitive ELISA against His, pSer, pThr, pTyr, τ-pHis and π-pHis. Antibodies generated by using phosphopyrazole 8 as a hapten were found to be selective for τ-pHis, and antibodies generated by using pyridyl amino amide 13 were found to be selective for π-pHis. Both τ- and π-pHis antibodies were shown to be effective in immunological experiments, including ELISA, western blot, and immunofluorescence. The τ-pHis antibody was also shown to be useful in the immunoprecipitation of proteins containing pHis.
Collapse
Affiliation(s)
- Mehul V Makwana
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
- Department of Infection Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Cleide Dos Santos Souza
- Sheffield Instituate of Translational Neuroscience, The University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
| | - Barry T Pickup
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Mark J Thompson
- Department of Oncology and Metabolism, Medical School, The University Of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Santosh K Lomada
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology, European Center of Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Richard F W Jackson
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Richmond Muimo
- Department of Infection Immunity and Cardiovascular Disease, Medical School, The University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
12
|
Wang H, Gaston R, Ahmed KT, Dudley GB, Barrios AM. Derivatives of the Fungal Natural Product Illudalic Acid Inhibit the Activity of Protein Histidine Phosphatase PHPT1. ChemMedChem 2023; 18:e202300187. [PMID: 37267298 PMCID: PMC10443188 DOI: 10.1002/cmdc.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
PHPT1 is a protein histidine phosphatase that has been implicated in several disease pathways, but the chemical tools necessary to study the biological roles of this enzyme and investigate its utility as a therapeutic target have yet to be developed. To this end, the discovery of PHPT1 inhibitors is an area of significant interest. Here, we report an investigation of illudalic acid and illudalic acid analog-based inhibition of PHPT1 activity. Four of the seven analogs investigated had IC50 values below 5 μM, with the most potent compound (IA1-8H2) exhibiting an IC50 value of 3.4±0.7 μM. Interestingly, these compounds appear to be non-covalent, non-competitive inhibitors of PHPT1 activity, in contrast to other recently reported PHPT1 inhibitors. Mutating the three cysteine residues to alanine has no effect on inhibition, indicating that cysteine is not critical for interactions between inhibitor and enzyme.
Collapse
Affiliation(s)
- Hanfei Wang
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112
| | - Robert Gaston
- Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Kh Tanvir Ahmed
- Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Gregory B. Dudley
- Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84112
| |
Collapse
|
13
|
Tolomeu HV, Fraga CAM. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020838. [PMID: 36677894 PMCID: PMC9865940 DOI: 10.3390/molecules28020838] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/19/2023]
Abstract
Imidazole was first synthesized by Heinrich Debus in 1858 and was obtained by the reaction of glyoxal and formaldehyde in ammonia, initially called glyoxaline. The current literature provides much information about the synthesis, functionalization, physicochemical characteristics and biological role of imidazole. Imidazole is a structure that, despite being small, has a unique chemical complexity. It is a nucleus that is very practical and versatile in its construction/functionalization and can be considered a rich source of chemical diversity. Imidazole acts in extremely important processes for the maintenance of living organisms, such as catalysis in enzymatic processes. Imidazole-based compounds with antibacterial, anti-inflammatory, antidiabetic, antiparasitic, antituberculosis, antifungal, antioxidant, antitumor, antimalarial, anticancer, antidepressant and many others make up the therapeutic arsenal and new bioactive compounds proposed in the most diverse works. The interest and importance of imidazole-containing analogs in the field of medicinal chemistry is remarkable, and the understanding from the development of the first blockbuster drug cimetidine explores all the chemical and biological concepts of imidazole in the context of research and development of new drugs.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- Correspondence: ; Tel.: +55-21-39386447
| |
Collapse
|
14
|
Lee D, Lee Y, Hye Shin S, Min Choi S, Hyeon Lee S, Jeong S, Jang S, Kee JM. A simple protein histidine kinase activity assay for high-throughput inhibitor screening. Bioorg Chem 2023; 130:106232. [DOI: 10.1016/j.bioorg.2022.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
|
15
|
Wang S, Chen YZ, Fu S, Zhao Y. In silico approaches uncovering the systematic function of N-phosphorylated proteins in human cells. Comput Biol Med 2022; 151:106280. [PMID: 36375414 DOI: 10.1016/j.compbiomed.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Phosphorylation plays a key role in the regulation of protein function. In addition to the extensively studied O-phosphorylation of serine, threonine, and tyrosine, emerging evidence suggests that the non-canonical phosphorylation of histidine, lysine, and arginine termed N-phosphorylation, exists widely in eukaryotes. At present, the study of N-phosphorylation is still in its infancy, and its regulatory role and specific biological functions in mammalian cells are still unknown. Here, we report the in silico analysis of the systematic biological significance of N-phosphorylated proteins in human cells. The protein structural and functional domain enrichment analysis revealed that N-phosphorylated proteins are rich in RNA recognition motif, nucleotide-binding and alpha-beta plait domains. The most commonly enriched biological pathway is the metabolism of RNA. Besides, arginine phosphorylated (pArg) proteins are highly related to DNA repair, while histidine phosphorylated (pHis) proteins may play a role in the regulation of the cell cycle, and lysine phosphorylated (pLys) proteins are linked to cellular stress response, intracellular signal transduction, and intracellular transport, which are of great significance for maintaining cell homeostasis. Protein-protein interaction (PPI) network analysis revealed important hub proteins (i.e., SRSF1, HNRNPA1, HNRNPC, SRSF7, HNRNPH1, SRSF2, SRSF11, HNRNPD, SRRM2 and YBX1) which are closely related to neoplasms, nervous system diseases, and virus infection and have potential as therapeutic targets. Those proteins with clinical significance are worthy of attention, and the rational considerations of N-phosphorylation in occurrence and progression of diseases might be beneficial for further translational applications.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Songsen Fu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China; Key Lab of Bioorganic Phosphorus Chemistry&Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Kim HJ, Jung H, Kim S, Seo JK, Kee JM. Identification of a Target Site for Covalent Inhibition of Protein Phosphohistidine Phosphatase 1. ACS Med Chem Lett 2022; 13:1911-1915. [DOI: 10.1021/acsmedchemlett.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hyeong Jun Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soyeon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
17
|
Sakai Y, Hanafusa H, Hisamoto N, Matsumoto K. Histidine dephosphorylation of the Gβ protein GPB-1 promotes axon regeneration in C. elegans. EMBO Rep 2022; 23:e55076. [PMID: 36278516 PMCID: PMC9724660 DOI: 10.15252/embr.202255076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Histidine phosphorylation is an emerging noncanonical protein phosphorylation in animals, yet its physiological role remains largely unexplored. The protein histidine phosphatase (PHPT1) was recently identified for the first time in mammals. Here, we report that PHIP-1, an ortholog of PHPT1 in Caenorhabditis elegans, promotes axon regeneration by dephosphorylating GPB-1 Gβ at His-266 and inactivating GOA-1 Goα signaling, a negative regulator of axon regeneration. Overexpression of the histidine kinase NDK-1 also inhibits axon regeneration via GPB-1 His-266 phosphorylation. Thus, His-phosphorylation plays an antiregenerative role in C. elegans. Furthermore, we identify a conserved UNC-51/ULK kinase that functions in autophagy as a PHIP-1-binding protein. We demonstrate that UNC-51 phosphorylates PHIP-1 at Ser-112 and activates its catalytic activity and that this phosphorylation is required for PHIP-1-mediated axon regeneration. This study reveals a molecular link from ULK to protein histidine phosphatase, which facilitates axon regeneration by inhibiting trimeric G protein signaling.
Collapse
Affiliation(s)
- Yoshiki Sakai
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Hiroshi Hanafusa
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
18
|
Zhao J, Zhuang M, Liu J, Zhang M, Zeng C, Jiang B, Wu J, Song X. pHisPred: a tool for the identification of histidine phosphorylation sites by integrating amino acid patterns and properties. BMC Bioinformatics 2022; 23:399. [PMID: 36171552 PMCID: PMC9520798 DOI: 10.1186/s12859-022-04938-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background Protein histidine phosphorylation (pHis) plays critical roles in prokaryotic signal transduction pathways and various eukaryotic cellular processes. It is estimated to account for 6–10% of the phosphoproteome, however only hundreds of pHis sites have been discovered to date. Due to the inherent disadvantages of experimental methods, it is an urgent task for developing efficient computational approaches to identify pHis sites. Results Here, we present a novel tool, pHisPred, for accurately identifying pHis sites from protein sequences. We manually collected the largest number of experimental validated pHis sites to build benchmark datasets. Using randomized tenfold CV, the weighted SVM-RBF model shows the best performance than other four commonly used classification models (LR, KNN, RF, and MLP). From ten thousands of features, 140 and 150 most informative features were individually selected out for eukaryotic and prokaryotic models. The average AUC and F1-score values of pHisPred were (0.81, 0.40) and (0.78, 0.46) for tenfold CV on the eukaryotic and prokaryotic training datasets, respectively. In addition, pHisPred significantly outperforms other tools on testing datasets, in particular on the eukaryotic one. Conclusion We implemented a python program of pHisPred, which is freely available for non-commercial use at https://github.com/xiaofengsong/pHisPred. Moreover, users can use it to train new models with their own data. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04938-x.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Cong Zeng
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
19
|
Makwana MV, Williamson MP, Jackson RFW, Muimo R. Quantitation of phosphohistidine in proteins in a mammalian cell line by 31P NMR. PLoS One 2022; 17:e0273797. [PMID: 36048825 PMCID: PMC9436146 DOI: 10.1371/journal.pone.0273797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
There is growing evidence to suggest that phosphohistidines are present at significant levels in mammalian cells and play a part in regulating cellular activity, in particular signaling pathways related to cancer. Because of the chemical instability of phosphohistidine at neutral or acid pH, it remains unclear how much phosphohistidine is present in cells. Here we describe a protocol for extracting proteins from mammalian cells in a way that avoids loss of covalent phosphates from proteins, and use it to measure phosphohistidine concentrations in human bronchial epithelial cell (16HBE14o-) lysate using 31P NMR spectroscopic analysis. Phosphohistidine is determined on average to be approximately one third as abundant as phosphoserine and phosphothreonine combined (and thus roughly 15 times more abundant than phosphotyrosine). The amount of phosphohistidine, and phosphoserine/phosphothreonine per gram of protein from a cell lysate was determined to be 23 μmol/g and 68 μmol/g respectively. The amount of phosphohistidine, and phosphoserine/phosphothreonine per cell was determined to be 1.8 fmol/cell, and 5.8 fmol/cell respectively. Phosphorylation is largely at the N3 (tele) position. Typical tryptic digest conditions result in loss of most of the phosphohistidine present, which may explain why the amounts reported here are greater than is generally seen using mass spectroscopy assays. The results further strengthen the case for a functional role of phosphohistidine in eukaryotic cells.
Collapse
Affiliation(s)
- Mehul V. Makwana
- Department of Chemistry, The University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Mike P. Williamson
- School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | | | - Richmond Muimo
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Crystal structure of the Escherichia coli CusS kinase core. J Struct Biol 2022; 214:107883. [PMID: 35907487 DOI: 10.1016/j.jsb.2022.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 10/16/2022]
Abstract
The CusS histidine kinase is a member of Escherichia coli two-component signal transduction system, engaged in a response to copper ions excess in the cell periplasm. The periplasmic sensor domain of CusS binds the free copper ions and the CusS kinase core phosphorylates the cognate CusR which regulates transcription of the efflux pomp CusCBA. A small amount of copper ions is indispensable for the aerobic cell metabolism. Nonetheless, its excess in the cytoplasm generates damaging and reactive hydroxyl radicals. For that reason, understanding the bacterial copper sensing mechanisms can contribute to reducing bacterial copper-resistance and developing bactericidal copper-based materials. The crystal structure of the CusS kinase core was solved at the resolution of 1.4 Å. The cytoplasmic catalytic core domains formed a homodimer. Based on the obtained structure, the intramolecular and intermolecular interactions crucial for the mechanism of CusS autophosphorylation were described.
Collapse
|
21
|
Paris J, Theisen A, Marzullo BP, Haris A, Morgan TE, Barrow MP, O’Hara J, O’Connor PB. Multimodal Tandem Mass Spectrometry Techniques for the Analysis of Phosphopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1126-1133. [PMID: 35604791 PMCID: PMC9264387 DOI: 10.1021/jasms.1c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collisionally activated dissociation (CAD), infrared multiphoton dissociation (IRMPD), ultraviolet photodissociation (UVPD), electron capture dissociation and electron detachment dissociation (EDD) experiments were conducted on a set of phosphopeptides, in a Fourier transform ion cyclotron resonance mass spectrometer. The fragmentation patterns were compared and varied according to the fragmentation mechanisms and the composition of the peptides. CAD and IRMPD produced similar fragmentation profiles of the phosphopeptides, while UVPD produced a large number of complementary fragments. Electron-based dissociation techniques displayed lower fragmentation efficiencies, despite retaining the labile phosphate group, and drastically different fragmentation profiles. EDD produced complex spectra whose interpretation proved challenging.
Collapse
Affiliation(s)
- Johanna Paris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alina Theisen
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bryan P. Marzullo
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Anisha Haris
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Tomos E. Morgan
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Mark P. Barrow
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - John O’Hara
- UCB, 216 Bath Road, Slough SL1 3WE, United
Kingdom
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
22
|
Cui F, Qian X, Ying W. Integrated Strategy for Unbiased Profiling of the Histidine Phosphoproteome. Anal Chem 2021; 93:15584-15589. [PMID: 34787389 DOI: 10.1021/acs.analchem.1c03374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histidine phosphorylation (pHis), which plays a key role in signal transduction in bacteria and lower eukaryotes, has been shown to be involved in tumorigenesis. Due to its chemical instability, substoichiometric properties, and lack of specific enrichment reagents, there is a lack of approaches for specific and unbiased enrichment of pHis-proteins/peptides. In this study, an integrated strategy was established and evaluated as an unbiased tool for exploring the histidine phosphoproteome. First, taking advantage of the lower charge states of pHis-peptides versus the non-modified naked peptides at weak acid solution (∼pH 2.7), strong cation exchange (SCX) chromatography was used to differentiate modified and non-modified naked peptides. Furthermore, selective enrichment of the pHis-peptide was performed by applying Cu-IDA beads enrichment. Finally, stable isotope dimethyl labeling was introduced to guarantee high-confidence assignment of pHis-peptides. Using this integrated strategy, 563 different pHis-peptides (H = 1) in 385 proteins were identified from HeLa lysates. Motif analysis revealed that pHis prefers hydrophobic amino acids and has the consensus motif-HxxK, which covered the reports from different approaches. Thus, our method may provide an unbiased and effective tool to reveal histidine phosphoproteome and to study the biological process and function of histidine phosphorylation.
Collapse
Affiliation(s)
- Fangfang Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Park Road, Changping District, Beijing, 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Park Road, Changping District, Beijing, 102206, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, No. 38, Life Park Road, Changping District, Beijing, 102206, China
| |
Collapse
|
23
|
Zhao X, Fu S, Zhao Y, Ni F. One-pot synthesis and multiple MS/MS fragmentation studies of phospholysine peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9186. [PMID: 34480769 DOI: 10.1002/rcm.9186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Compared with phosphorylation of arginine and histidine, the study of phosphorylation of lysine lags far behind. The major challenges toward the current study of phosphorylation of lysine include synthesis and unambiguous phosphosite identification. This study provided a simple chemical synthesis method to construct phospholysine peptides (pLys peptides) and investigated their fragmentation under multiple activation types. METHODS Herein, we developed a synthetic method for pLys peptides in aqueous solution within one pot. Two peptides were lysine-phosphorylated using this method. The purified pLys peptides were first characterized using NMR, then were subjected to nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis under multiple fragmentation method including collision-induced dissociation (CID), higher energy collisional dissociation (HCD), electron transfer dissociation (ETD), electron transfer/higher energy collisional dissociation (EThcD), and ultraviolet photodissociation (UVPD) fragmentation to investigate the relevant diagnostic ions. RESULTS Two pLys peptides were synthesized with a moderate yield following an easily handled experimental protocol. NMR spectra showed the phosphorylation occurred on ε-NH2 of lysine but not other groups. As for the fragmentation, in general, pLys immonium ions and phosphate-related neutral losses were ubiquitous among spectra derived from these activation types except for ETD. Using these ions as diagnostic ions, the misassigned phosphosites by algorithm could be recorrected. UVPD-generated spectra owned good sequence-coverage and abundant fragment ions, with pLys immonium ions and neutral losses of weak intensity. CONCLUSIONS A synthetic method was developed for pLys peptides in aqueous solution within one pot. The characteristic pLys immonium ions and phosphate-related neutral loss could serve as the diagnostic ions for unambiguous phosphosite identification of pLys peptides. In addition, UVPD was promising for the identification of pLys peptides.
Collapse
Affiliation(s)
- Xuelian Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Songsen Fu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
24
|
The many ways that nature has exploited the unusual structural and chemical properties of phosphohistidine for use in proteins. Biochem J 2021; 478:3575-3596. [PMID: 34624072 DOI: 10.1042/bcj20210533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023]
Abstract
Histidine phosphorylation is an important and ubiquitous post-translational modification. Histidine undergoes phosphorylation on either of the nitrogens in its imidazole side chain, giving rise to 1- and 3- phosphohistidine (pHis) isomers, each having a phosphoramidate linkage that is labile at high temperatures and low pH, in contrast with stable phosphomonoester protein modifications. While all organisms routinely use pHis as an enzyme intermediate, prokaryotes, lower eukaryotes and plants also use it for signal transduction. However, research to uncover additional roles for pHis in higher eukaryotes is still at a nascent stage. Since the discovery of pHis in 1962, progress in this field has been relatively slow, in part due to a lack of the tools and techniques necessary to study this labile modification. However, in the past ten years the development of phosphoproteomic techniques to detect phosphohistidine (pHis), and methods to synthesize stable pHis analogues, which enabled the development of anti-phosphohistidine (pHis) antibodies, have accelerated our understanding. Recent studies that employed anti-pHis antibodies and other advanced techniques have contributed to a rapid expansion in our knowledge of histidine phosphorylation. In this review, we examine the varied roles of pHis-containing proteins from a chemical and structural perspective, and present an overview of recent developments in pHis proteomics and antibody development.
Collapse
|
25
|
Mathis CL, Barrios AM. Histidine phosphorylation in metalloprotein binding sites. J Inorg Biochem 2021; 225:111606. [PMID: 34555600 DOI: 10.1016/j.jinorgbio.2021.111606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored. This gap in knowledge regarding the molecular basis for histidine phosphorylation as a regulatory agent exists in part because of the relative instability of phosphorylated histidine as compared with phosphorylated serine, threonine and tyrosine. However, the unique metal binding abilities of histidine make it one of the most common metal coordinating ligands in nature, and it is interesting to consider how phosphorylation would change the metal coordinating ability of histidine, and consequently, the properties of the phosphorylated metalloprotein. In this review, we examine eleven metalloproteins that have been shown to undergo reversible histidine phosphorylation at or near their metal binding sites. These proteins are described with respect to their biological activity and structure, with a particular emphasis on how phosphohistidine may tune the primary coordination sphere and protein conformation. Furthermore, several common methods, challenges, and limitations of studying sensitive, high affinity metalloproteins are discussed.
Collapse
Affiliation(s)
- Cheryl L Mathis
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
26
|
Jakobsson ME. Enzymology and significance of protein histidine methylation. J Biol Chem 2021; 297:101130. [PMID: 34461099 PMCID: PMC8446795 DOI: 10.1016/j.jbc.2021.101130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.
Collapse
|
27
|
Abstract
Organophosphorus compounds play a vital role as nucleic acids, nucleotide coenzymes, metabolic intermediates and are involved in many biochemical processes. They are part of DNA, RNA, ATP and a number of important biological elements of living organisms. Synthetic compounds of this class have found practical application as agrochemicals, pharmaceuticals, bioregulators, and othrs. In recent years, a large number of phosphorus compounds containing P-O, P-N, P-C bonds have been isolated from natural sources. Many of them have shown interesting biological properties and have become the objects of intensive scientific research. Most of these compounds contain asymmetric centers, the absolute configurations of which have a significant effect on the biological properties of the products of their transformations. This area of research on natural phosphorus compounds is still little-studied, that prompted us to analyze and discuss it in our review. Moreover natural organophosphorus compounds represent interesting models for the development of new biologically active compounds, and a number of promising drugs and agrochemicals have already been obtained on their basis. The review also discusses the history of the development of ideas about the role of organophosphorus compounds and stereochemistry in the origin of life on Earth, starting from the prebiotic period, that allows us in a new way to consider this most important problem of fundamental science.
Collapse
|
28
|
Yan C, Li X, Zhang G, Zhu Y, Bi J, Hao H, Hou H. Quorum Sensing-Mediated and Growth Phase-Dependent Regulation of Metabolic Pathways in Hafnia alvei H4. Front Microbiol 2021; 12:567942. [PMID: 33737914 PMCID: PMC7960787 DOI: 10.3389/fmicb.2021.567942] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a widespread regulatory mechanism in bacteria used to coordinate target gene expression with cell density. Thus far, little is known about the regulatory relationship between QS and cell density in terms of metabolic pathways in Hafnia alvei H4. In this study, transcriptomics analysis was performed under two conditions to address this question. The comparative transcriptome of H. alvei H4 wild-type at high cell density (OD600 = 1.7) relative to low cell density (OD600 = 0.3) was considered as growth phase-dependent manner (GPDM), and the transcriptome profile of luxI/R deletion mutant (ΔluxIR) compared to the wild-type was considered as QS-mediated regulation. In all, we identified 206 differentially expressed genes (DEGs) mainly presented in chemotaxis, TCA cycle, two-component system, ABC transporters and pyruvate metabolism, co-regulated by the both density-dependent regulation, and the results were validated by qPCR and swimming phenotypic assays. Aside from the co-regulated DEGs, we also found that 59 DEGs, mediated by density-independent QS, function in pentose phosphate and histidine metabolism and that 2084 cell-density-dependent DEGs involved in glycolysis/gluconeogenesis and phenylalanine metabolism were influenced only by GPDM from significantly enriched analysis of transcriptome data. The findings provided new information about the interplay between two density-dependent metabolic regulation, which could assist with the formulation of control strategies for this opportunistic pathogen, especially at high cell density.
Collapse
Affiliation(s)
- Congyang Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Yaolei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
29
|
Incel A, Arribas Díez I, Wierzbicka C, Gajoch K, Jensen ON, Sellergren B. Selective Enrichment of Histidine Phosphorylated Peptides Using Molecularly Imprinted Polymers. Anal Chem 2021; 93:3857-3866. [PMID: 33591162 PMCID: PMC8023515 DOI: 10.1021/acs.analchem.0c04474] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Protein histidine
phosphorylation
(pHis) is involved in molecular signaling networks in bacteria, fungi,
plants, and higher eukaryotes including mammals and is implicated
in human diseases such as cancer. Detailed investigations of the pHis
modification are hampered due to its acid-labile nature and consequent
lack of tools to study this post-translational modification (PTM).
We here demonstrate three molecularly imprinted polymer (MIP)-based
reagents, MIP1–MIP3, for enrichment of pHis peptides and subsequent
characterization by chromatography and mass spectrometry (LC–MS).
The combination of MIP1 and β-elimination provided some selectivity
for improved detection of pHis peptides. MIP2 was amenable to larger
pHis peptides, although with poor selectivity. Microsphere-based MIP3
exhibited improved selectivity and was amenable to enrichment and
detection by LC–MS of pHis peptides in tryptic digests of protein
mixtures. These MIP protocols do not involve any acidic solvents during
sample preparation and enrichment, thus preserving the pHis modification.
The presented proof-of-concept results will lead to new protocols
for highly selective enrichment of labile protein phosphorylations
using molecularly imprinted materials.
Collapse
Affiliation(s)
- Anıl Incel
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Ignacio Arribas Díez
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Celina Wierzbicka
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Katarzyna Gajoch
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Börje Sellergren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
30
|
Awais M, Hussain W, Khan YD, Rasool N, Khan SA, Chou KC. iPhosH-PseAAC: Identify Phosphohistidine Sites in Proteins by Blending Statistical Moments and Position Relative Features According to the Chou's 5-Step Rule and General Pseudo Amino Acid Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:596-610. [PMID: 31144645 DOI: 10.1109/tcbb.2019.2919025] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein phosphorylation is one of the key mechanism in prokaryotes and eukaryotes and is responsible for various biological functions such as protein degradation, intracellular localization, the multitude of cellular processes, molecular association, cytoskeletal dynamics, and enzymatic inhibition/activation. Phosphohistidine (PhosH) has a key role in a number of biological processes, including central metabolism to signalling in eukaryotes and bacteria. Thus, identification of phosphohistidine sites in a protein sequence is crucial, and experimental identification can be expensive, time-taking, and laborious. To address this problem, here, we propose a novel computational model namely iPhosH-PseAAC for prediction of phosphohistidine sites in a given protein sequence using pseudo amino acid composition (PseAAC), statistical moments, and position relative features. The results of the proposed predictor are validated through self-consistency testing, 10-fold cross-validation, and jackknife testing. The self-consistency validation gave the 100 percent accuracy, whereas, for cross-validation, the accuracy achieved is 94.26 percent. Moreover, jackknife testing gave 97.07 percent accuracy for the proposed model. Thus, the proposed model iPhosH-PseAAC for prediction of iPhosH site has the great ability to predict the PhosH sites in given proteins.
Collapse
|
31
|
Structural basis for differential recognition of phosphohistidine-containing peptides by 1-pHis and 3-pHis monoclonal antibodies. Proc Natl Acad Sci U S A 2021; 118:2010644118. [PMID: 33547238 PMCID: PMC8017925 DOI: 10.1073/pnas.2010644118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 2015, monoclonal antibodies (mAbs) that selectively recognize the 1-pHis or 3-pHis isoforms of phosphohistidine were developed by immunizing rabbits with degenerate Ala/Gly peptides containing the nonhydrolyzable phosphohistidine (pHis) analog- phosphotriazolylalanine (pTza). Here, we report structures of five rabbit mAbs bound to cognate pTza peptides: SC1-1 and SC50-3 that recognize 1-pHis, and their 3-pHis-specific counterparts, SC39-4, SC44-8, and SC56-2. These cocrystal structures provide insights into the binding modes of the pTza phosphate group that are distinct for the 1- and 3-pHis mAbs with the selectivity arising from specific contacts with the phosphate group and triazolyl ring. The mode of phosphate recognition in the 3-pHis mAbs recapitulates the Walker A motif, as present in kinases. The complementarity-determining regions (CDRs) of four of the Fabs interact with the peptide backbone rather than peptide side chains, thus conferring sequence independence, whereas SC44-8 shows a proclivity for binding a GpHAGA motif mediated by a sterically complementary CDRL3 loop. Specific hydrogen bonding with the triazolyl ring precludes recognition of pTyr and other phosphoamino acids by these mAbs. Kinetic binding experiments reveal that the affinity of pHis mAbs for pHis and pTza peptides is submicromolar. Bound pHis mAbs also shield the pHis peptides from rapid dephosphorylation. The epitope-paratope interactions illustrate how these anti-pHis antibodies are useful for a wide range of research techniques and this structural information can be utilized to improve the specificity and affinity of these antibodies toward a variety of pHis substrates to understand the role of histidine phosphorylation in healthy and diseased states.
Collapse
|
32
|
Minkiewicz P, Darewicz M, Iwaniak A, Turło M. Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes. Molecules 2021; 26:molecules26030712. [PMID: 33573096 PMCID: PMC7866520 DOI: 10.3390/molecules26030712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Phosphorylation represents one of the most important modifications of amino acids, peptides, and proteins. By modifying the latter, it is useful in improving the functional properties of foods. Although all these substances are broadly annotated in internet databases, there is no unified code for their annotation. The present publication aims to describe a simple code for the annotation of phosphopeptide sequences. The proposed code describes the location of phosphate residues in amino acid side chains (including new rules of atom numbering in amino acids) and the diversity of phosphate residues (e.g., di- and triphosphate residues and phosphate amidation). This article also includes translating the proposed biological code into SMILES, being the most commonly used chemical code. Finally, it discusses possible errors associated with applying the proposed code and in the resulting SMILES representations of phosphopeptides. The proposed code can be extended to describe other modifications in the future.
Collapse
|
33
|
A Quantitative Method for the Measurement of Protein Histidine Phosphorylation. Methods Mol Biol 2020; 2077:51-61. [PMID: 31707651 DOI: 10.1007/978-1-4939-9884-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The method described in this chapter provides a quantitative means of assaying for protein histidine phosphorylation and thus protein histidine kinase activity, even in the presence of other protein kinases, for example, serine/threonine or tyrosine kinases. The method involves the measurement of 32P, derived from [γ32P]ATP, incorporation into phosphohistidine in a protein substrate. The method makes use of the differential stabilities of phosphohistidine and the common phosphohydroxyamino acids to alkali and acid treatments to measure phosphohistidine incorporation. Phosphoserine and phosphothreonine are depleted by alkali treatment, while phosphohistidine, which is alkali-stable, is removed by acid treatment. Phosphotyrosine is stable to both alkali and acid treatments. The method is filter-based and allows for rapid assay of multiple protein histidine kinase samples, for example, screening for histidine kinase activity, allowing for the calculation of specific activity. In addition, quantitative time-course assays can also be performed to allow for kinetic analysis of histidine kinase activity.
Collapse
|
34
|
Hu Y, Jiang B, Weng Y, Sui Z, Zhao B, Chen Y, Liu L, Wu Q, Liang Z, Zhang L, Zhang Y. Bis(zinc(II)-dipicolylamine)-functionalized sub-2 μm core-shell microspheres for the analysis of N-phosphoproteome. Nat Commun 2020; 11:6226. [PMID: 33277485 PMCID: PMC7718886 DOI: 10.1038/s41467-020-20026-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/03/2020] [Indexed: 01/23/2023] Open
Abstract
Protein N-phosphorylation plays a critical role in central metabolism and two/multicomponent signaling of prokaryotes. However, the current enrichment methods for O-phosphopeptides are not preferred for N-phosphopeptides due to the intrinsic lability of P-N bond under acidic conditions. Therefore, the effective N-phosphoproteome analysis remains challenging. Herein, bis(zinc(II)-dipicolylamine)-functionalized sub-2 μm core-shell silica microspheres (SiO2@DpaZn) are tailored for rapid and effective N-phosphopeptides enrichment. Due to the coordination of phosphate groups to Zn(II), N-phosphopeptides can be effectively captured under neutral conditions. Moreover, the method is successfully applied to an E.coli and HeLa N-phosphoproteome study. These results further broaden the range of methods for the discovery of N-phosphoproteins with significant biological functions. N-phosphorylation plays a critical role in central metabolism and signaling processes, however, enrichment methods for N-phosphopeptides are limited by the P-N bond lability. Here, the authors report the synthesis and use of silica microspheres functionalized with bis(zinc(II)-dipicolylamine) in N-phosphopeptides effective enrichment.
Collapse
Affiliation(s)
- Yechen Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Yejing Weng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yuanbo Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiong Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
35
|
Schulte JE, Roggiani M, Shi H, Zhu J, Goulian M. The phosphohistidine phosphatase SixA dephosphorylates the phosphocarrier NPr. J Biol Chem 2020; 296:100090. [PMID: 33199374 PMCID: PMC7948535 DOI: 10.1074/jbc.ra120.015121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Histidine phosphorylation is a posttranslational modification that alters protein function and also serves as an intermediate of phosphoryl transfer. Although phosphohistidine is relatively unstable, enzymatic dephosphorylation of this residue is apparently needed in some contexts, since both prokaryotic and eukaryotic phosphohistidine phosphatases have been reported. Here we identify the mechanism by which a bacterial phosphohistidine phosphatase dephosphorylates the nitrogen-related phosphotransferase system, a broadly conserved bacterial pathway that controls diverse metabolic processes. We show that the phosphatase SixA dephosphorylates the phosphocarrier protein NPr and that the reaction proceeds through phosphoryl transfer from a histidine on NPr to a histidine on SixA. In addition, we show that Escherichia coli lacking SixA are outcompeted by wild-type E. coli in the context of commensal colonization of the mouse intestine. Notably, this colonization defect requires NPr and is distinct from a previously identified in vitro growth defect associated with dysregulation of the nitrogen-related phosphotransferase system. The widespread conservation of SixA, and its coincidence with the phosphotransferase system studied here, suggests that this dephosphorylation mechanism may be conserved in other bacteria.
Collapse
Affiliation(s)
- Jane E Schulte
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hui Shi
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; College of Food Science, Southwest University, Beibei, Chongqing, China
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
36
|
Ahn S, Jung H, Kee JM. Quest for the Crypto-phosphoproteome. Chembiochem 2020; 22:319-325. [PMID: 33094900 DOI: 10.1002/cbic.202000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.
Collapse
Affiliation(s)
- Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| |
Collapse
|
37
|
Liu Y, Pan X, Zhao M, Gao Y. Global chemical modifications comparison of human plasma proteome from two different age groups. Sci Rep 2020; 10:14998. [PMID: 32929118 PMCID: PMC7490693 DOI: 10.1038/s41598-020-72196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, two groups of human plasma proteome at different age groups (old and young) were used to perform a comparison of global chemical modifications, as determined by tandem mass spectrometry (MS/MS) combined with non-limiting modification identification algorithms. The sulfhydryl in the cysteine A total of 4 molecular modifications were found to have significant differences passing random grouping tests: the succinylation and phosphorylation modification of cysteine (Cys, C) and the modification of lysine (Lys, K) with threonine (Thr, T) were significantly higher in the old group than in the young group, while the carbamylation of lysine was lower in the young group. We speculate that there is an increase in certain modified proteins in the blood of the old people which, in turn, changes the function of those proteins. This change may be one of the reasons why old people are more likely than young people to be at risk for age-related diseases, such as metabolic diseases, cerebral and cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Yongtao Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China
| | - Xuanzhen Pan
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China
| | - Mindi Zhao
- Department of Laboratory Medicine, National Geriatrics Center, Beijing Hospital, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Gene Engineering Drug and Biotechnology, Beijing Normal University, Beijing, China.
| |
Collapse
|
38
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
39
|
Hryniewicz BM, Wolfart F, Gómez-Romero P, Orth ES, Vidotti M. Enhancement of organophosphate degradation by electroactive pyrrole and imidazole copolymers. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Campos RB, Silva VB, Menezes LRA, Ocampos FMM, Fernandes JM, Barison A, Oliveira ARM, Tantillo DJ, Orth ES. Competitive Reactivity of Tautomers in the Degradation of Organophosphates by Imidazole Derivatives. Chemistry 2020; 26:5017-5026. [DOI: 10.1002/chem.201905379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/21/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Renan B. Campos
- Academic Department of Chemistry and BiologyUniversidade Tecnológica Federal do Paraná 81280-340 Curitiba-PR Brazil
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| | - Valmir B. Silva
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| | - Leociley R. A. Menezes
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| | - Fernanda M. M. Ocampos
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| | - Juliano M. Fernandes
- Academic Department of Chemistry and BiologyUniversidade Tecnológica Federal do Paraná 81280-340 Curitiba-PR Brazil
| | - Andersson Barison
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| | - Alfredo R. M. Oliveira
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| | - Dean J. Tantillo
- Department of ChemistryUniversity of California-Davis Davis CA 95616 USA
| | - Elisa S. Orth
- Department of ChemistryUniversidade Federal do Paraná, CP 19081 CEP 81531-990 Curitiba-PR Brazil
| |
Collapse
|
41
|
Kang JAKHS, Bae KH, Lee SC, Oh KJ, Kim WK, Kim WK. Roles of Protein Histidine Phosphatase 1 (PHPT1) in Brown Adipocyte Differentiation. J Microbiol Biotechnol 2020; 30:306-312. [PMID: 31752058 PMCID: PMC9728239 DOI: 10.4014/jmb.1909.09003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the importance of brown adipocytes as a therapeutic target for the prevention and treatment of obesity, the molecular mechanism underlying brown adipocyte differentiation is not fully understood. In particular, the role of post-translational modifications in brown adipocyte differentiation has not been extensively studied. Histidine phosphorylation is increasingly recognized an important process for protein post-translational modifications. In this study, we show that histidine phosphorylation patterns change during brown adipocyte differentiation. In addition, the expression level of protein histidine phosphatase 1 (PHPT1), a major mammalian phosphohistidine phosphatase, is reduced rapidly at the early phase of differentiation and recovers at the later phase. During white adipocyte differentiation of 3T3- L1 preadipocytes, however, the expression level of PHPT1 do not significantly change. Knockdown of PHPT1 promotes brown adipocyte differentiation, whereas ectopic expression of PHPT1 suppresses brown adipocyte differentiation. These results collectively suggest that histidine phosphorylation is closely linked to brown adipocyte differentiation and could be a therapeutic target for obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Joo Ae Kang Hyun Sup Kang
- Metabolic Regulation Research Center, KRIBB, Daejeon 344, Republic of Korea,Department of Functional Genomics, University of Science and Technology (UST), UST-KRIBB School, Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, KRIBB, Daejeon 344, Republic of Korea,Department of Functional Genomics, University of Science and Technology (UST), UST-KRIBB School, Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, KRIBB, Daejeon 344, Republic of Korea,Department of Functional Genomics, University of Science and Technology (UST), UST-KRIBB School, Daejeon 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, KRIBB, Daejeon 344, Republic of Korea,Department of Functional Genomics, University of Science and Technology (UST), UST-KRIBB School, Daejeon 34141, Republic of Korea,K.-J.O. Phone: +82-42-879-8265 Fax: +82-42-860-4149 E-mail:
| | - Won Kon Kim
- Metabolic Regulation Research Center, KRIBB, Daejeon 344, Republic of Korea,Department of Functional Genomics, University of Science and Technology (UST), UST-KRIBB School, Daejeon 34141, Republic of Korea,Corresponding authors W.K.K. Phone: +82-42-860-4265 Fax: +82-42-860-4149 E-mail:
| | - Won Kon Kim
- Metabolic Regulation Research Center, KRIBB, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST), UST-KRIBB School, Daejeon 34141, Republic of Korea
| |
Collapse
|
42
|
Widespread arginine phosphorylation in human cells—a novel protein PTM revealed by mass spectrometry. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9656-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Mideros-Mora C, Miguel-Romero L, Felipe-Ruiz A, Casino P, Marina A. Revisiting the pH-gated conformational switch on the activities of HisKA-family histidine kinases. Nat Commun 2020; 11:769. [PMID: 32034139 PMCID: PMC7005713 DOI: 10.1038/s41467-020-14540-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
Histidine is a versatile residue playing key roles in enzyme catalysis thanks to the chemistry of its imidazole group that can serve as nucleophile, general acid or base depending on its protonation state. In bacteria, signal transduction relies on two-component systems (TCS) which comprise a sensor histidine kinase (HK) containing a phosphorylatable catalytic His with phosphotransfer and phosphatase activities over an effector response regulator. Recently, a pH-gated model has been postulated to regulate the phosphatase activity of HisKA HKs based on the pH-dependent rotamer switch of the phosphorylatable His. Here, we have revisited this model from a structural and functional perspective on HK853-RR468 and EnvZ-OmpR TCS, the prototypical HisKA HKs. We have found that the rotamer of His is not influenced by the environmental pH, ruling out a pH-gated model and confirming that the chemistry of the His is responsible for the decrease in the phosphatase activity at acidic pH.
Collapse
Affiliation(s)
- Cristina Mideros-Mora
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain.,Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Rumipamba s/n, Quito, Ecuador
| | - Laura Miguel-Romero
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain.,Institute of Infection, Inmmunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain
| | - Patricia Casino
- Departament de Bioquímica i Biología molecular, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Spain. .,Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Dr Moliner 50, 46100, Burjassot, Spain. .,CIBER de enfermedades raras (CIBERER-ISCIII), Madrid, Spain.
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Jaume Roig 11, 46010, Valencia, Spain. .,CIBER de enfermedades raras (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
44
|
Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. Int J Biol Macromol 2020; 145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
|
45
|
Adaptation to host-specific bacterial pathogens drive rapid evolution of novel PhoP/PhoQ regulation pathway modulating the virulence. Microb Pathog 2020; 141:103997. [PMID: 31982569 DOI: 10.1016/j.micpath.2020.103997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/18/2023]
Abstract
The presence of the PhoP-PhoQ system is usually different in various bacterial groups, suggesting that PhoP can control the expression of different genes in species. However, little is known about the evolution of the PhoP-PhoQ system among bacterial pathogens. Here, we study the evolution of PhoP and PhoQ regulation in 15 species of Enterobacteriaceae family. We have determined that the regulatory objectives adopted by PhoP and PhoQ are mainly different, due to the result of horizontal gene transfer events and even the change in the genetic content between closely related species. We have compared many possibilities tests (M1 vs. M2 and M7 with M8) to determine the positive selection. Estimating parameters at M1 and M2, with positive selection in M2 of the two proteins. The proportions of positive selection sites significant with ω = 4.53076 for PhoP and ω = 4.21041 PhQ. M8 was significant for PhoP and PhQ proteins. To further confirm the positive selection results, we used the Selecton server to confer positive selection on individual sites using the Mechanistic-Empirical Combination model, and we noticed that several sites had been identified under selection pressure during the evolution. There was a strong indication for the positive selection in bacterial genes of PhoP and PhoQ showed the results. By the use of REL and IFEL, the positive selection for PhoP was detected 14 and 11 sites respectively at different codon positions. The positively selected sites of amino acids such as Arginine, Alanine, Lysine, and Leucine are more important for the production of signals. Our results suggest that the positive selection of PhoP-PhoQ genes in host adaptation during evolution raises an intriguing possibility causes subtle variations in actions of PhoP-PhoQ and also increases the opportunities that cause modification in protein structure for the evolution of increasing pathogenicity in bacterial pathogens.
Collapse
|
46
|
Kalagiri R, Adam K, Hunter T. Empirical Evidence of Cellular Histidine Phosphorylation by Immunoblotting Using pHis mAbs. Methods Mol Biol 2020; 2077:181-191. [PMID: 31707659 PMCID: PMC9828874 DOI: 10.1007/978-1-4939-9884-5_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immunoblotting is a ubiquitous immunological technique that aids in detecting and quantifying proteins (including those of lower abundance) and their posttranslational modifications such as phosphorylation, acetylation, ubiquitylation, and sumoylation. The technique involves electrophoretically separating proteins on an SDS-PAGE gel, transferring them onto a PVDF (or nitrocellulose) membrane and probing with specific antibodies. Here we describe an immunoblotting technique for detecting cellular phosphohistidine, a labile posttranslational modification, by optimizing experimental conditions such that the labile phosphohistidine signal is conserved throughout the experiment.
Collapse
Affiliation(s)
- Rajasree Kalagiri
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kevin Adam
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
47
|
Samarasimhareddy M, Mayer G, Hurevich M, Friedler A. Multiphosphorylated peptides: importance, synthetic strategies, and applications for studying biological mechanisms. Org Biomol Chem 2020; 18:3405-3422. [DOI: 10.1039/d0ob00499e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in the synthesis of multiphosphorylated peptides and peptide libraries: tools for studying the effects of phosphorylation patterns on protein function and regulation.
Collapse
Affiliation(s)
- Mamidi Samarasimhareddy
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Guy Mayer
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Mattan Hurevich
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Assaf Friedler
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| |
Collapse
|
48
|
High-Throughput Characterization of Histidine Phosphorylation Sites Using UPAX and Tandem Mass Spectrometry. Methods Mol Biol 2020; 2077:225-235. [PMID: 31707662 DOI: 10.1007/978-1-4939-9884-5_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid chromatography (LC)-tandem mass spectrometry (MS/MS) is key for the characterization of phosphorylation sites in a high-throughput manner, and its application has proven essential to elucidate the phosphoproteome of many biological systems. Following proteolytic digestion of proteins extracted from tissues or cells, phosphopeptides are typically enriched by affinity chromatography using TiO2 or metal-ions (e.g., Fe3+) coupled to solid-phase materials, prior to LC-MS/MS analysis. Separation of relatively low abundance phosphopeptides from nonphosphorylated peptides in these types of extremely complex mixtures is essential to maximize coverage of the phosphoproteome. Maintaining acidic conditions during these IMAC or TiO2-based enrichment minimizes the concurrent unwanted binding of highly acidic peptides. However, while peptides containing phosphomonoesters, namely, phosphoserine (pSer), phosphothreonine (pThr), and phosphotyrosine (pTyr), are stable under these acidic binding conditions, phosphopeptides containing acid-labile phosphate group such as phosphohistidine (pHis), are not. Consequently, hydrolysis of these types of phosphopeptides occurs during standard phosphopeptide enrichment, and subsequent phosphosite identification by LC-MS/MS is severely compromised. Here we describe UPAX, unbiased phosphopeptide enrichment using strong anion exchange, for the separation of both acid-stable (pSer, pThr, pTyr) and acid-labile phosphopeptides (including those containing pHis) from nonphosphorylated peptides. We outline how implementation of UPAX prior to a minimally modified standard proteomics workflow can be used to identify sites of pHis as well as other acid-labile, as well as acid-stable phosphosites.
Collapse
|
49
|
Hardman G, Perkins S, Brownridge PJ, Clarke CJ, Byrne DP, Campbell AE, Kalyuzhnyy A, Myall A, Eyers PA, Jones AR, Eyers CE. Strong anion exchange-mediated phosphoproteomics reveals extensive human non-canonical phosphorylation. EMBO J 2019; 38:e100847. [PMID: 31433507 PMCID: PMC6826212 DOI: 10.15252/embj.2018100847] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation is a key regulator of protein function under (patho)physiological conditions, and defining site-specific phosphorylation is essential to understand basic and disease biology. In vertebrates, the investigative focus has primarily been on serine, threonine and tyrosine phosphorylation, but mounting evidence suggests that phosphorylation of other "non-canonical" amino acids also regulates critical aspects of cell biology. However, standard methods of phosphoprotein characterisation are largely unsuitable for the analysis of non-canonical phosphorylation due to their relative instability under acidic conditions and/or elevated temperature. Consequently, the complete landscape of phosphorylation remains unexplored. Here, we report an unbiased phosphopeptide enrichment strategy based on strong anion exchange (SAX) chromatography (UPAX), which permits identification of histidine (His), arginine (Arg), lysine (Lys), aspartate (Asp), glutamate (Glu) and cysteine (Cys) phosphorylation sites on human proteins by mass spectrometry-based phosphoproteomics. Remarkably, under basal conditions, and having accounted for false site localisation probabilities, the number of unique non-canonical phosphosites is approximately one-third of the number of observed canonical phosphosites. Our resource reveals the previously unappreciated diversity of protein phosphorylation in human cells, and opens up avenues for high-throughput exploration of non-canonical phosphorylation in all organisms.
Collapse
Affiliation(s)
- Gemma Hardman
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Simon Perkins
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Philip J Brownridge
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J Clarke
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Amy E Campbell
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anton Kalyuzhnyy
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ashleigh Myall
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andrew R Jones
- Department of Comparative and Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
50
|
Boosting NAD + with a small molecule that activates NAMPT. Nat Commun 2019; 10:3241. [PMID: 31324777 PMCID: PMC6642140 DOI: 10.1038/s41467-019-11078-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Pharmacological strategies that boost intracellular NAD+ are highly coveted for their therapeutic potential. One approach is activation of nicotinamide phosphoribosyltransferase (NAMPT) to increase production of nicotinamide mononucleotide (NMN), the predominant NAD+ precursor in mammalian cells. A high-throughput screen for NAMPT activators and hit-to-lead campaign yielded SBI-797812, a compound that is structurally similar to active-site directed NAMPT inhibitors and blocks binding of these inhibitors to NAMPT. SBI-797812 shifts the NAMPT reaction equilibrium towards NMN formation, increases NAMPT affinity for ATP, stabilizes phosphorylated NAMPT at His247, promotes consumption of the pyrophosphate by-product, and blunts feedback inhibition by NAD+. These effects of SBI-797812 turn NAMPT into a “super catalyst” that more efficiently generates NMN. Treatment of cultured cells with SBI-797812 increases intracellular NMN and NAD+. Dosing of mice with SBI-797812 elevates liver NAD+. Small molecule NAMPT activators such as SBI-797812 are a pioneering approach to raise intracellular NAD+ and realize its associated salutary effects. Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate determining step for NAD+ synthesis and is of interest as a drug target. Here the authors identify and characterize a small molecule NAMPT activator SBI-797812, elucidate its mode of action and show that it increases intracellular NMN and NAD+ levels in cultured cells and elevates liver NAD+ in mice.
Collapse
|