1
|
Duque HM, Dos Santos C, Brango-Vanegas J, Díaz-Martín RD, Dias SC, Franco OL. Unwrapping the structural and functional features of antimicrobial peptides from wasp venoms. Pharmacol Res 2024; 200:107069. [PMID: 38218356 DOI: 10.1016/j.phrs.2024.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The study of wasp venoms has captured attention due to the presence of a wide variety of active compounds, revealing a diverse array of biological effects. Among these compounds, certain antimicrobial peptides (AMPs) such as mastoparans and chemotactic peptides have emerged as significant players, characterized by their unique amphipathic short linear alpha-helical structure. These peptides exhibit not only antibiotic properties but also a range of other biological activities, which are related to their ability to interact with biological membranes to varying degrees. This review article aims to provide updated insights into the structure/function relationships of AMPs derived from wasp venoms, linking this knowledge to the potential development of innovative treatments against infections.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil.
| | - Cristiane Dos Santos
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| | - Ruben Dario Díaz-Martín
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; Program in Animal Biology, Universidade de Brasília, Brasília, DF70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160 Brasília, DF, Brazil; S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010 Campo Grande, MS, Brazil
| |
Collapse
|
2
|
Galante P, Campos GAA, Moser JCG, Martins DB, Dos Santos Cabrera MP, Rangel M, Coelho LC, Simon KS, Amado VM, de A I Muller J, Koehbach J, Lohman RJ, Cabot PJ, Vetter I, Craik DJ, Toffoli-Kadri MC, Monge-Fuentes V, Goulart JT, Schwartz EF, Silva LP, Bocca AL, Mortari MR. Exploring the therapeutic potential of an antinociceptive and anti-inflammatory peptide from wasp venom. Sci Rep 2023; 13:12491. [PMID: 37528129 PMCID: PMC10393941 DOI: 10.1038/s41598-023-38828-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
Animal venoms are rich sources of neuroactive compounds, including anti-inflammatory, antiepileptic, and antinociceptive molecules. Our study identified a protonectin peptide from the wasp Parachartergus fraternus' venom using mass spectrometry and cDNA library construction. Using this peptide as a template, we designed a new peptide, protonectin-F, which exhibited higher antinociceptive activity and less motor impairment compared to protonectin. In drug interaction experiments with naloxone and AM251, Protonectin-F's activity was decreased by opioid and cannabinoid antagonism, two critical antinociception pathways. Further experiments revealed that this effect is most likely not induced by direct action on receptors but by activation of the descending pain control pathway. We noted that protonectin-F induced less tolerance in mice after repeated administration than morphine. Protonectin-F was also able to decrease TNF-α production in vitro and modulate the inflammatory response, which can further contribute to its antinociceptive activity. These findings suggest that protonectin-F may be a potential molecule for developing drugs to treat pain disorders with fewer adverse effects. Our results reinforce the biotechnological importance of animal venom for developing new molecules of clinical interest.
Collapse
Affiliation(s)
- Priscilla Galante
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Gabriel A A Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jacqueline C G Moser
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Danubia B Martins
- Department of Physics, IBILCE, São Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Sao Paulo, SP, 05503-900, Brazil
| | - Luiza C Coelho
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Karina S Simon
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Veronica M Amado
- Faculty of Medicine and University Hospital of Brasília, University of Brasilia, Brasilia, DF, 79910-900, Brazil
| | - Jessica de A I Muller
- Laboratory of Pharmacology and Inflammation FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rink-Jan Lohman
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter J Cabot
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Monica C Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation FACFAN, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Victoria Monge-Fuentes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Jair T Goulart
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Elisabeth F Schwartz
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Luciano P Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70770917, Brazil
| | - Anamelia L Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, University of Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
3
|
de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci 2022; 9:824989. [PMID: 35813822 PMCID: PMC9263278 DOI: 10.3389/fmolb.2022.824989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Biologically active peptides have been attracting increasing attention, whether to improve the understanding of their mechanisms of action or in the search for new therapeutic drugs. Wasp venoms have been explored as a remarkable source for these molecules. In this review, the main findings on the group of wasp linear cationic α-helical peptides called mastoparans were discussed. These compounds have a wide variety of biological effects, including mast cell degranulation, activation of protein G, phospholipase A2, C, and D activation, serotonin and insulin release, and antimicrobial, hemolytic, and anticancer activities, which could lead to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Carlos José Correia de Santana
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Osmindo Rodrigues Pires Júnior
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Mário Sérgio Palma
- Department of Basic and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Mariana S. Castro
- Laboratory of Toxinology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
- *Correspondence: Mariana S. Castro,
| |
Collapse
|
4
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
5
|
de la Salud Bea R, North LJ, Horiuchi S, Frawley ER, Shen Q. Antimicrobial Activity and Toxicity of Analogs of Wasp Venom EMP Peptides. Potential Influence of Oxidized Methionine. Antibiotics (Basel) 2021; 10:antibiotics10101208. [PMID: 34680789 PMCID: PMC8532962 DOI: 10.3390/antibiotics10101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
The antibiotic and toxic properties for four synthetic analogs of eumenine mastoparan peptides (EMP) have been tested. These properties were compared to two natural peptides found in the venom of solitary wasps Anterhynchium flavomarginatum micado (natural peptide EMP-AF) and Eumenes rubrofemoratus (natural peptide EMP-ER), respectively. Only EMP-AF-OR showed concentration-dependent growth inhibition against all bacterial species tested. Gram positive species had MIC values of 10 μg/mL for B. subtilis and 25 μg/mL for S. aureus. Gram negative species had MIC values of 25 μg/mL for E. coli and 200 μg/mL for P. aeruginosa. Of the other tested peptides, EMP-ER-D2K2 also showed activity and inhibited growth of Bacillus subtilis in a concentration-dependent manner at 200 μg/mL. Peptide EMP-ER-OR reduced the final density of Escherichia coli and B. subtilis cultures but did not impact their growth kinetics. Peptides EMP-AF-OR, EMP-ER-OR, and EMP-ER-D2K2 showed limited antifungal activity against Candida albicans or Histoplasma capsulatum. The hemolytic activity of the analogs were moderated though reports of the natural peptides, especially EMP-AF-OR, already showed low toxicity against erythrocytes. These results are discussed in the context of the potential influence of oxidized methionine on EMP activity.
Collapse
Affiliation(s)
- Roberto de la Salud Bea
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA
- Correspondence: ; Tel.: +1-901-843-3649
| | - Lily J. North
- Department of Chemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Sakura Horiuchi
- School of Medicine and Health Sciences, George Washington University, 2300 I St., NW, Washington, DC 20052, USA;
| | - Elaine R. Frawley
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (E.R.F.); (Q.S.)
| | - Qian Shen
- Department of Biology, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (E.R.F.); (Q.S.)
| |
Collapse
|
6
|
Nihei KI, Peigneur S, Tytgat J, Lange AB, Konno K. Isolation and characterization of FMRFamide-like peptides in the venoms of solitary sphecid wasps. Peptides 2021; 142:170575. [PMID: 34023397 DOI: 10.1016/j.peptides.2021.170575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Purification of small peptide components in the venoms of the solitary sphecid wasps, Sphex argentatus argentatus and Isodontia harmandi, led to the isolation of several major peptides. Analysis of MS/MS spectra by MALDI-TOF/TOF revealed the sequence of a new peptide Sa112 (EDVDHVFLRF-NH2), which is structurally very similar to leucomyosupressin (pQDVDHVFLRF-NH2) and SchistoFLRFamide (PDVDHVFLRF-NH2), the FMRFamide-like peptides from cockroach and locust, respectively. Indeed, this new peptide, like SchistoFLRFamide, inhibited the frequency and amplitude of spontaneous contractions of the locust oviduct in a dose-dependent manner. A non-amidated peptide Sa12b (EDVDHVFLRF) was also isolated, but this peptide had no effect on spontaneous locust oviduct contraction. This is the first example of a FMRF-like peptide to be found in solitary wasp venom. Additionally, a truncated form of the myosuppressins, which has previously been synthesized and tested for biological activity, DVDHVFLRF-NH2 (Sh5b), was found for the first time as a natural product. Four other novel peptides were isolated and characterized as Sa81 (EDDLEDFNPTVS), Sa10 (EDDLEDFNPTIA), Sh41 (DDLSDFNPKV), and Sh42 (EDDLSDFNPKV). They are structurally related to each other, having a high content of acidic amino acids, but no structural similarity to any known peptides. Ion channel associated activities of Sh41 and Sh42 were tested, but did not show any activity for Na+, K+, Ca2+ channels.
Collapse
Affiliation(s)
- Ken-Ichi Nihei
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, Tochigi 321-0943, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, B-3000 Leuven, Belgium
| | - Angela B Lange
- Department of Biology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
7
|
Batista Martins D, Fadel V, Oliveira FD, Gaspar D, Alvares DS, Castanho MARB, Dos Santos Cabrera MP. Protonectin peptides target lipids, act at the interface and selectively kill metastatic breast cancer cells while preserving morphological integrity. J Colloid Interface Sci 2021; 601:517-530. [PMID: 34090029 DOI: 10.1016/j.jcis.2021.05.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Despite the need for innovative compounds as antimicrobial and anticancer agents, natural sources of peptides remain underexplored. Protonectin (PTN), a cationic dodecapeptide of pharmacological interest, presents large hydrophobicity that is associated with the tendency to aggregate and supposedly influences bioactivity. A disaggregating role was assigned to PTN' N-terminal fragment (PTN1-6), which enhances the bioactivity of PTN in a 1:1 mixture (PTN/PTN1-6). Spectroscopic techniques and model membranes (phospholipid bilayers and SDS micelles) revealed that environment-dependent aggregation is reduced for PTN/PTN1-6, but cytotoxicity of PTNs on MDA-MB-231 breast cancer showed the same CC50 values around 16 µM and on MCF-10A epithelial breast cells 6 to 5-fold higher values, revealing a selective interaction. Since PTN1-6 lacks activity on breast cells, its presence should differently affect PTN activity, suggesting that aggregation could modulate activity depending on the membrane characteristics. Indeed, increased partitioning and lytic activity of PTN/PTN1-6 were found in model membranes independently of charge density, but affected by the curvature tendency. PTN and PTN/PTN1-6 do not alter morphology and roughness of cancer cells, indicating a superficial interaction with membranes and consistent with results obtained in NMR experiments. Our results indicate that aggregation of PTNs depends on the membrane characteristics and modulates the activity of the peptides.
Collapse
Affiliation(s)
- Danubia Batista Martins
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Valmir Fadel
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Filipa D Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Dayane S Alvares
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marcia Perez Dos Santos Cabrera
- Departamento de Física, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil; Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas (IBILCE), R. Cristóvão Colombo, 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
8
|
Wasp Venom Biochemical Components and Their Potential in Biological Applications and Nanotechnological Interventions. Toxins (Basel) 2021; 13:toxins13030206. [PMID: 33809401 PMCID: PMC8000949 DOI: 10.3390/toxins13030206] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Wasps, members of the order Hymenoptera, are distributed in different parts of the world, including Brazil, Thailand, Japan, Korea, and Argentina. The lifestyles of the wasps are solitary and social. Social wasps use venom as a defensive measure to protect their colonies, whereas solitary wasps use their venom to capture prey. Chemically, wasp venom possesses a wide variety of enzymes, proteins, peptides, volatile compounds, and bioactive constituents, which include phospholipase A2, antigen 5, mastoparan, and decoralin. The bioactive constituents have anticancer, antimicrobial, and anti-inflammatory effects. However, the limited quantities of wasp venom and the scarcity of advanced strategies for the synthesis of wasp venom’s bioactive compounds remain a challenge facing the effective usage of wasp venom. Solid-phase peptide synthesis is currently used to prepare wasp venom peptides and their analogs such as mastoparan, anoplin, decoralin, polybia-CP, and polydim-I. The goal of the current review is to highlight the medicinal value of the wasp venom compounds, as well as limitations and possibilities. Wasp venom could be a potential and novel natural source to develop innovative pharmaceuticals and new agents for drug discovery.
Collapse
|
9
|
Lamiyan AK, Dalal R, Kumar NR. Venom peptides in association with standard drugs: a novel strategy for combating antibiotic resistance - an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200001. [PMID: 32843888 PMCID: PMC7416788 DOI: 10.1590/1678-9199-jvatitd-2020-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Ramkesh Dalal
- Department of Zoology, Panjab University, Chandigarh, India
| | | |
Collapse
|
10
|
Herrera C, Leza M, Martínez-López E. Diversity of compounds in Vespa spp. venom and the epidemiology of its sting: a global appraisal. Arch Toxicol 2020; 94:3609-3627. [PMID: 32700166 DOI: 10.1007/s00204-020-02859-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
Abstract
Poisonous animals imply a risk to human life, because their venom is a complex mixture of low molecular weight components, peptides and proteins. Hornets use the venom for self-defence, to repel intruders and to capture prey, but they can cause poisoning and allergic reactions to people. In particular, they seem to be a health problem in the countries where they are native due to their sting, which in the most severe cases can lead to severe or fatal systemic anaphylaxis. But this situation is being an emerging problem for new countries and continents because hornet incursions are increasing in the global change scenario, such as in Europe and America. Furthermore, 55 detailed cases of hornet sting were found in 27 papers during the current review where 36.4% died due to, mainly, a multi-organ failure, where renal failure and liver dysfunction were the most common complications. Moreover, the great taxonomic, ecological diversity, geographical distribution and the wide spectrum of pathophysiological symptoms of hornets have been the focus of new research. Considering this, the present systematic review summarizes the current knowledge about the components of Vespa venom and the epidemiology of its sting to serve as reference for the new research focused on the development of techniques for diagnosis, new drugs and treatments of its sting.
Collapse
Affiliation(s)
- Cayetano Herrera
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain.
| | - Emma Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain.,Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, 30100, Murcia, Spain
| |
Collapse
|
11
|
Molecular composition of the paralyzing venom of three solitary wasps (Hymenoptera: Pompilidae) collected in southeast Mexico. Toxicon 2019; 168:98-102. [DOI: 10.1016/j.toxicon.2019.06.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/18/2022]
|
12
|
Chemical and Biological Characteristics of Antimicrobial α-Helical Peptides Found in Solitary Wasp Venoms and Their Interactions with Model Membranes. Toxins (Basel) 2019; 11:toxins11100559. [PMID: 31554187 PMCID: PMC6832458 DOI: 10.3390/toxins11100559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Solitary wasps use their stinging venoms for paralyzing insect or spider prey and feeding them to their larvae. We have surveyed bioactive substances in solitary wasp venoms, and found antimicrobial peptides together with some other bioactive peptides. Eumenine mastoparan-AF (EMP-AF) was the first to be found from the venom of the solitary eumenine wasp Anterhynchium flavomarginatum micado, showing antimicrobial, histamine-releasing, and hemolytic activities, and adopting an α-helical secondary structure under appropriate conditions. Further survey of solitary wasp venom components revealed that eumenine wasp venoms contained such antimicrobial α-helical peptides as the major peptide component. This review summarizes the results obtained from the studies of these peptides in solitary wasp venoms and some analogs from the viewpoint of (1) chemical and biological characterization; (2) physicochemical properties and secondary structure; and (3) channel-like pore-forming properties.
Collapse
|
13
|
Konno K, Kazuma K, Rangel M, Stolarz-de-Oliveira J, Fontana R, Kawano M, Fuchino H, Hide I, Yasuhara T, Nakata Y. New Mastoparan Peptides in the Venom of the Solitary Eumenine Wasp Eumenes micado. Toxins (Basel) 2019; 11:toxins11030155. [PMID: 30857348 PMCID: PMC6468405 DOI: 10.3390/toxins11030155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 01/03/2023] Open
Abstract
Comprehensive LC-MS and MS/MS analysis of the crude venom extract from the solitary eumenine wasp Eumenes micado revealed the component profile of this venom mostly consisted of small peptides. The major peptide components, eumenine mastoparan-EM1 (EMP-EM1: LKLMGIVKKVLGAL-NH2) and eumenine mastoparan-EM2 (EMP-EM2: LKLLGIVKKVLGAI-NH2), were purified and characterized by the conventional method. The sequences of these new peptides are homologous to mastoparans, the mast cell degranulating peptides from social wasp venoms; they are 14 amino acid residues in length, rich in hydrophobic and basic amino acids, and C-terminal amidated. Accordingly, these new peptides can belong to mastoparan peptides (in other words, linear cationic α-helical peptides). Indeed, the CD spectra of these new peptides showed predominantly α-helix conformation in TFE and SDS. In biological evaluation, both peptides exhibited potent antibacterial activity, moderate degranulation activity from rat peritoneal mast cells, and significant leishmanicidal activity, while they showed virtually no hemolytic activity on human or mouse erythrocytes. These results indicated that EMP-EM peptides rather strongly associated with bacterial cell membranes rather than mammalian cell membranes.
Collapse
Affiliation(s)
- Katsuhiro Konno
- Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan.
| | - Kohei Kazuma
- Institute of Natural Medicine, University of Toyama, Toyama, Toyama 930-0194, Japan.
| | - Marisa Rangel
- Immunopathology Laboratory, Butantan Institute, Sao Paulo SP 05503-900, Brazil.
| | - Joacir Stolarz-de-Oliveira
- Laboratory of Physiology and Animal Toxins, Federal University of West Pará, Santarém PA 68040-070, Brazil.
| | - Renato Fontana
- Department of Biological Sciences, State University of Santa Cruz, Ilhéus BA 45662-900, Brazil.
| | - Marii Kawano
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.
| | - Hiroyuki Fuchino
- Research Center for Medicinal Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.
| | - Izumi Hide
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima 734-8551, Japan.
| | - Tadashi Yasuhara
- Laboratory of Microbial Chemistry, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8641, Japan.
| | - Yoshihiro Nakata
- Department of Pharmacology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima 734-8553, Japan.
| |
Collapse
|
14
|
dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148:172-196. [DOI: 10.1016/j.toxicon.2018.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
|
15
|
Extraction and preliminary chemical characterization of the venom of the spider wasp Pepsis decorata (Hymenoptera: Pompilidae). Toxicon 2018; 150:74-76. [PMID: 29705151 DOI: 10.1016/j.toxicon.2018.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/19/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
Arthropod venoms may be considered important sources of bioactive molecules; however, technical difficulties, such as venom extraction and homogeneity may impair the biochemical identification of new molecules. In this context, we have developed a method to maintain wasps in captivity that allows the collection of the venom, without use of chemical, mechanical or electrical stimuli. The crude venom was analyzed by RP-HPLC-ESIQ-ToF and 20 peptides were identified by de novo peptide sequencing, among them Eumenine-Mastoparan and a Ponericin-G2-simile peptide.
Collapse
|
16
|
Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola. Toxins (Basel) 2017; 9:toxins9100323. [PMID: 29027956 PMCID: PMC5666370 DOI: 10.3390/toxins9100323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/07/2023] Open
Abstract
Ants (hymenoptera: Formicidae) have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.
Collapse
|
17
|
Kawakami H, Goto SG, Murata K, Matsuda H, Shigeri Y, Imura T, Inagaki H, Shinada T. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata. J Venom Anim Toxins Incl Trop Dis 2017; 23:29. [PMID: 28546807 PMCID: PMC5442655 DOI: 10.1186/s40409-017-0119-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Background Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. Methods The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Results Three novel peptides with m/z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata. The peptide with m/z 16508 was characterized as a secretory phospholipase A2 (PLA2) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA2s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. Conclusion We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0119-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hiroko Kawakami
- Graduate School of Material Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| | - Shin G Goto
- Graduate School of Science, Department of Biology & Geosciences, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| | - Kazuya Murata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 Japan
| | - Hideaki Matsuda
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502 Japan
| | - Yasushi Shigeri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Tomohiro Imura
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hidetoshi Inagaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Tetsuro Shinada
- Graduate School of Material Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan
| |
Collapse
|
18
|
Peptide Toxins in Solitary Wasp Venoms. Toxins (Basel) 2016; 8:114. [PMID: 27096870 PMCID: PMC4848640 DOI: 10.3390/toxins8040114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022] Open
Abstract
Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs), in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na⁺ channel inactivation, in particular against neuronal type Na⁺ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B₁ or B₂ receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.
Collapse
|
19
|
Lee SH, Baek JH, Yoon KA. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps. Toxins (Basel) 2016; 8:32. [PMID: 26805885 PMCID: PMC4773785 DOI: 10.3390/toxins8020032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps' sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed.
Collapse
Affiliation(s)
- Si Hyeock Lee
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.
| | - Ji Hyeong Baek
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Kyungjae Andrew Yoon
- Department of Agricultural Biology, Seoul National University, Seoul 151-921, Korea.
| |
Collapse
|
20
|
Dias NB, de Souza BM, Gomes PC, Brigatte P, Palma MS. Peptidome profiling of venom from the social wasp Polybia paulista. Toxicon 2015; 107:290-303. [PMID: 26303042 DOI: 10.1016/j.toxicon.2015.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
Most crude venom from Polybia paulista is composed of short, linear peptides; however, only five of these peptides are structurally and functionally characterized. Therefore, the peptides in this venom were profiled using an HPLC-IT-TOF/MS and MS(n) system. The presence of type -d and -w ions that are generated from the fragmentation of the side chains was used to resolve I/L ambiguity. The distinction between K and Q residues was achieved through esterification of the α- and ε-amino groups in the peptide chains, followed by mass spectrometry analysis. Fourteen major peptides were detected in P. paulista venom and sequenced; all the peptides were synthesized on solid-phase and submitted to a series of bioassays. Five of them had been previously characterized, and nine were novel toxins. The novel peptides correspond to two wasp kinins, two chemotactic components, three mastoparans, and two peptides of unknown function. The seven novel peptides with identified functions appear to act synergistically with the previously known ones, constituting three well-known families of peptide toxins (wasp kinins, chemotactic peptides, and mastoparans) in the venom of social wasps. These multifunctional toxins can cause pain, oedema formation, haemolysis, chemotaxis of PMNLs, and mast cell degranulation in victims who are stung by wasps.
Collapse
Affiliation(s)
- Nathalia Batista Dias
- Dept. Biology/CEIS, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Brazil
| | - Bibiana Monson de Souza
- Dept. Biology/CEIS, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Brazil
| | - Paulo Cesar Gomes
- Dept. Biology/CEIS, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Brazil
| | - Patricia Brigatte
- Dept. Biology/CEIS, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Brazil
| | - Mario Sergio Palma
- Dept. Biology/CEIS, Institute of Biosciences of Rio Claro, University of São Paulo State (UNESP), Brazil.
| |
Collapse
|
21
|
Moreau SJM. "It stings a bit but it cleans well": venoms of Hymenoptera and their antimicrobial potential. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:186-204. [PMID: 23073394 DOI: 10.1016/j.jinsphys.2012.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
Venoms from Hymenoptera display a wide range of functions and biological roles. These notably include manipulation of the host, capture of prey and defense against competitors and predators thanks to endocrine and immune systems disruptors, neurotoxic, cytolytic and pain-inducing venom components. Recent works indicate that many hymenopteran species, whatever their life style, have also evolved a venom with properties which enable it to regulate microbial infections, both in stinging and stung animals. In contrast to biting insects and their salivary glands, stinging Hymenoptera seem to constitute an under-exploited ecological niche for agents of vector-borne disease. Few parasitic or mutualistic microorganisms have been reported to be hosted by venom-producing organs or to be transmitted to stung animals. This may result from the presence of potent antimicrobial molecules in venoms, histological features of venom apparatuses and selective effects of venoms on immune defenses of targeted organisms. The present paper reviews for the first time the venom antimicrobial potential of solitary and social Hymenoptera in molecular, ecological, and evolutionary perspectives.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, 37200 Tours, France.
| |
Collapse
|
22
|
Yang MJ, Lin WY, Lu KH, Tu WC. Evaluating antioxidative activities of amino acid substitutions on mastoparan-B. Peptides 2011; 32:2037-43. [PMID: 21924309 DOI: 10.1016/j.peptides.2011.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Mastoparan-B is a peptide toxin isolated from the venom of Vespa basalis, the most dangerous hornet found in Taiwan. This study is aimed to evaluate the antioxidative activities of several amino acid substitutions on MP-B, and examined the influences of mast cell degranulation and hemolytic activities in parallel with antioxidative activities. The correlations between the biological function and amino acid sequence were assessed. Our study shows original MP-B is a valuable antioxidant at low concentration in competing with nitric-oxide for oxygen molecules and possesses good antioxidative enzyme activities resembled to superoxidase dismutase and glutathione peroxidase. And there are no predominant rates of mast cell degranulation and hemolytic effects in such condition. With proper substitutions, the reducing power, DPPH scavenging activity and glutathione reductase-like enzyme activity of MP-B can increase clearly. The results demonstrate that MP-B analogs are very potential to be applicable antioxidants for other antioxidative usages.
Collapse
Affiliation(s)
- Mars J Yang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | |
Collapse
|
23
|
Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. Insect natural products and processes: new treatments for human disease. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:747-69. [PMID: 21658450 DOI: 10.1016/j.ibmb.2011.05.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 05/09/2023]
Abstract
In this overview, some of the more significant recent developments in bioengineering natural products from insects with use or potential use in modern medicine are described, as well as in utilisation of insects as models for studying essential mammalian processes such as immune responses to pathogens. To date, insects have been relatively neglected as sources of modern drugs although they have provided valuable natural products, including honey and silk, for at least 4-7000 years, and have featured in folklore medicine for thousands of years. Particular examples of Insect Folk Medicines will briefly be described which have subsequently led through the application of molecular and bioengineering techniques to the development of bioactive compounds with great potential as pharmaceuticals in modern medicine. Insect products reviewed have been derived from honey, venom, silk, cantharidin, whole insect extracts, maggots, and blood-sucking arthropods. Drug activities detected include powerful antimicrobials against antibiotic-resistant bacteria and HIV, as well as anti-cancer, anti-angiogenesis and anti-coagulant factors and wound healing agents. Finally, the many problems in developing these insect products as human therapeutic drugs are considered and the possible solutions emerging to these problems are described.
Collapse
Affiliation(s)
- Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, 21045-900, RJ, Brazil.
| | | | | | | | | |
Collapse
|
24
|
Lin CH, Tzen JTC, Shyu CL, Yang MJ, Tu WC. Structural and biological characterization of mastoparans in the venom of Vespa species in Taiwan. Peptides 2011; 32:2027-36. [PMID: 21884742 DOI: 10.1016/j.peptides.2011.08.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/15/2011] [Accepted: 08/15/2011] [Indexed: 11/30/2022]
Abstract
Mastoparans, a family of small peptides, are isolated from the wasp venom. In this study, six mastoparans were identified in the venom of six Vespa species in Taiwan. The precursors of these mastoparans are composed of N-terminal signal sequence, prosequence, mature mastoparan, and appendix glycine at C-terminus. These mature mastoparans all have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bond. Therefore, these peptides could be predicted to adopt an amphipathic α-helical secondary structure. In fact, the CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 8 mM SDS or 40% 2,2,2-trifluoroethanol (TFE). All mastoparans exhibit mast cell degranulation activity, antimicrobial activity against both Gram-positive and -negative bacteria tested, various degree of hemolytic activity on chicken, human, and sheep erythrocytes as well as membrane permeabilization on Escherichia coli BL21. Our results also show that the hemolytic activity of mastoparans is correlated to mean hydrophobicity and mean hydrophobic moment.
Collapse
Affiliation(s)
- Chun-Hsien Lin
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
25
|
Cabrera MPDS, Alvares DS, Leite NB, de Souza BM, Palma MS, Riske KA, Neto JR. New insight into the mechanism of action of wasp mastoparan peptides: lytic activity and clustering observed with giant vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10805-10813. [PMID: 21797216 DOI: 10.1021/la202608r] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Antimicrobial peptides of the mastoparans family exert their bactericidal activity by binding to lipid membranes, inducing pores or defects and leaking the internal contents of vesicles and cells. However, this does not seem to be the only mechanism at play, and they might be important in the search for improved peptides with lower undesirable side effects. This work deals with three mastoparans peptides, Polybia-MP-1(MP-1), N2-Polybia-MP-1 (N-MP-1), and Mastoparan X (MPX), which exhibit high sequence homology. They all have three lysine residues and amidated C termini, but because of the presence of two, one, and no aspartic acid residues, respectively, they have +2, +3, and +4 net charges at physiological pH. Here we focus on the effects of these mastoparans peptides on anionic model membranes made of palmitoleyoilphosphatidylcholine (POPC) and palmitoleyoilphosphatidylglycerol (POPG) at 1:1 and 3:1 molar ratios in the presence and in the absence of saline buffer. Zeta potential experiments were carried out to measure the extent of the peptides' binding and accumulation at the vesicle surface, and CD spectra were acquired to quantify the helical structuring of the peptides upon binding. Giant unilamellar vesicles were observed under phase contrast and fluorescence microscopy. We found that the three peptides induced the leakage of GUVs at a gradual rate with many characteristics of the graded mode. This process was faster in the absence of saline buffer. Additionally, we observed that the peptides induced the formation of dense regions of phospholipids and peptides on the GUV surface. This phenomenon was easily observable for the more charged peptides (MPX > N-MP-1 > MP-1) and in the absence of added salt. Our data suggest that these mastoparans accumulate on the bilayer surface and induce a transient interruption to its barrier properties, leaking the vesicle contents. Next, the bilayer recovers its continuity, but this happens in an inhomogeneous way, forming a kind of ply with peptides sandwiched between two juxtaposed membranes. Eventually, a peptide-lipid aggregate forming a lump is formed at high peptide-to-lipid ratios.
Collapse
Affiliation(s)
- Marcia P dos Santos Cabrera
- UNESP - São Paulo State University, IBILCE, Department of Physics, R. Cristóvão Colombo, 2265 CEP 15054-000, São José do Rio Preto SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chemical and biological characterization of four new linear cationic α-helical peptides from the venoms of two solitary eumenine wasps. Toxicon 2011; 57:1081-92. [PMID: 21549739 DOI: 10.1016/j.toxicon.2011.04.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/13/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022]
Abstract
Four novel peptides were isolated from the venoms of the solitary eumenine wasps Eumenes rubrofemoratus and Eumenes fraterculus. Their sequences were determined by MALDI-TOF/TOF (matrix assisted laser desorption/ionization time-of-flight mass spectrometry) analysis, Edman degradation and solid-phase synthesis. Two of them, eumenitin-R (LNLKGLIKKVASLLN) and eumenitin-F (LNLKGLFKKVASLLT), are highly homologous to eumenitin, an antimicrobial peptide from a solitary eumenine wasp, whereas the other two, EMP-ER (FDIMGLIKKVAGAL-NH(2)) and EMP-EF (FDVMGIIKKIAGAL-NH(2)), are similar to eumenine mastoparan-AF (EMP-AF), a mast cell degranulating peptide from a solitary eumenine wasp. These sequences have the characteristic features of linear cationic cytolytic peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, they can be predicted to adopt an amphipathic α-helix secondary structure. In fact, the CD (circular dichroism) spectra of these peptides showed significant α-helical conformation content in the presence of TFE (trifluoroethanol), SDS (sodium dodecylsulfate) and asolectin vesicles. In the biological evaluation, all the peptides exhibited a significant broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity.
Collapse
|
27
|
Baptista-Saidemberg NB, Saidemberg DM, de Souza BM, César-Tognoli LM, Ferreira VM, Mendes MA, dos Santos Cabrera MP, Neto JR, Palma MS. Protonectin (1–6): A novel chemotactic peptide from the venom of the social wasp Agelaia pallipes pallipes. Toxicon 2010; 56:880-9. [DOI: 10.1016/j.toxicon.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/08/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022]
|
28
|
Baek JH, Lee SH. Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae). Toxicon 2010; 55:711-8. [DOI: 10.1016/j.toxicon.2009.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 12/17/2022]
|
29
|
Brigatte P, Cury Y, de Souza BM, Baptista-Saidemberg NB, Saidemberg DM, Gutierrez VP, Palma MS. Hyperalgesic and edematogenic effects of peptides isolated from the venoms of honeybee (Apis mellifera) and neotropical social wasps (Polybia paulista and Protonectarina sylveirae). Amino Acids 2010; 40:101-11. [DOI: 10.1007/s00726-010-0512-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/03/2010] [Indexed: 11/29/2022]
|
30
|
de Souza BM, Dos Santos Cabrera MP, Neto JR, Palma MS. Investigating the effect of different positioning of lysine residues along the peptide chain of mastoparans for their secondary structures and biological activities. Amino Acids 2010; 40:77-90. [PMID: 20108158 DOI: 10.1007/s00726-010-0481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/08/2010] [Indexed: 11/28/2022]
Abstract
In order to investigate the effect of the different positions of the positive charges generated by the ionization of the side-chain of lysine residues, on the structure-activity relationship of the mastoparans, the peptides Protonectarina-MP (INWKALLDAAKKVL-NH2), Parapolybia-MP (INWKKMAATALKMI-NH2) and Asn-2-Polybia-MP I (INWKKLLDAAKQIL-NH2) and MK-578 (INWLKAKKVAGMIL-NH2) were investigated as models. Thus, the four peptides had their secondary structure studied and were submitted to assays of mast cell degranulation, hemolysis, and antibiosis. The results of the bioassays made clear that those peptides bearing the positive charges positioned at the positions 4/5 and/or from 11 to 13 are the most active ones; meanwhile, the localization of the positive charges in the middle of peptide chain resulted in a poorly active peptide. Thus, Protonectarina-MP, Parapolybia-MP, and Asn-2-Polybia-MP I presented physiologically important hemolysis and antibiosis, while MK-578 presented only a reduced antibiotic activity. Circular dichroism analysis were carried-out in different environments revealing that the anionic environment of a mixture of phosphatidylcholine and phosphatidylglycerol (70:30) liposomes favored the higher helical content of the four peptides in this study in relation to the zwiterionic environment of 100% phosphatidylcholine liposomes. The positioning of the lysine residues at the strategic positions (4/5 and 11-13), flanking and maintaining stable α-helix which extends from the 4th to the 13th residue along the peptide chain, seems to contribute to maximal lytic efficiency of the mastoparans, which in turn results in a more homogeneous hydrophobic surface in the amphipathic structure.
Collapse
Affiliation(s)
- Bibiana Monson de Souza
- CEIS/Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Avenue 24-A no 1515, Bela Vista, 13506-900, Rio Claro, SP, Brazil
| | | | | | | |
Collapse
|