1
|
Yang Y, Wang Z, Bai J, Qiao H. Prebiotic Peptide Synthesis: How Did Longest Peptide Appear? J Mol Evol 2025; 93:193-211. [PMID: 39992367 DOI: 10.1007/s00239-025-10237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The origin of proteins is a fundamental question in the study of the origin of life. Peptides, as the building blocks of proteins, necessarily preceded the first proteins in prebiotic chemical evolution. Prebiotic peptides may have also played crucial roles in early life's evolution, contributing to self-catalysis, interacting with nucleic acids, and stabilizing primitive cell compartments. Longer and more complicated prebiotic peptides often have greater structural flexibility and functional potential to support the emergence and evolution of early life. Since the Miller-Urey experiment demonstrated that amino acids can be synthesized in a prebiotic manner, the prebiotic synthesis route of peptides has garnered increasing attention from researchers. However, it is difficult for amino acids to condense into peptides in aqueous solutions spontaneously. Over the past few decades, researchers have explored various routes of prebiotic peptide synthesis in the plausible prebiotic Earth environment, such as thermal polymerization, clay mineral catalysis, wet-dry cycles, condensing agents, and lipid-mediated. This paper reviews advancements in prebiotic peptide synthesis research and discusses the conditions that may have facilitated the emergence of longer peptides.
Collapse
Affiliation(s)
- Yuling Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Hai Qiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Shitov DA, Krutin DV, Tupikina EY. Mutual influence of non-covalent interactions formed by imidazole: A systematic quantum-chemical study. J Comput Chem 2024; 45:1046-1060. [PMID: 38216334 DOI: 10.1002/jcc.27309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Imidazole is a five-membered heterocycle that is part of a number of biologically important molecules such as the amino acid histidine and the hormone histamine. Imidazole has a unique ability to participate in a variety of non-covalent interactions involving the NH group, the pyridine-like nitrogen atom or the π-system. For many biologically active compounds containing the imidazole moiety, its participation in formation of hydrogen bond NH⋯O/N and following proton transfer is the key step of mechanism of their action. In this work a systematic study of the mutual influence of various paired combinations of non-covalent interactions (e.g., hydrogen bonds and π-interactions) involving the imidazole moiety was performed by means of quantum chemistry (PW6B95-GD3/def2-QZVPD) for a series of model systems constructed based on analysis of available x-ray data. It is shown that for considered complexes formation of additional non-covalent interactions can only enhance the proton-donating ability of imidazole. At the same time, its proton-accepting ability can be both enhanced and weakened, depending on what additional interactions are added to a given system. The mutual influence of non-covalent interactions involving imidazole can be classified as weak geometric and strong energetic cooperativity-a small change in the length of non-covalent interaction formed by imidazole can strongly influence its strength. The latter can be used to develop methods for controlling the rate and selectivity of chemical reactions involving the imidazole fragment in larger systems. It is shown that the strong mutual influence of non-covalent interactions involving imidazole is due to the unique ability of the imidazole ring to effectively redistribute electron density in non-covalently bound systems with its participation.
Collapse
Affiliation(s)
- Daniil A Shitov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Danil V Krutin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Elena Yu Tupikina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
3
|
Li Z, Feng X, Yuan K, Zhang XX. Identification of Binding Sites in Copper(II)-Peptide Complexes Using Infrared Spectroscopy. J Phys Chem B 2024; 128:1884-1891. [PMID: 38378490 DOI: 10.1021/acs.jpcb.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Complex formation of the copper(II) ion (CuII) with histidine (H) and H-containing peptides plays a crucial role in various metallo-enzymatic reactions. To elucidate the nature of coordinate bonding in CuII complexes, Fourier-transform infrared spectroscopy and 2D IR spectroscopy were employed to investigate the coordination geometries of CuII with diglycine, l-histidylglycine (HG), glycyl-l-histidine (GH), and glycylglycyl-l-histidine. The coordination of CuII to different peptide groups, including the peptide N- and C-termini, the amide group, and the imidazole of the H side chain, exhibits distinct spectral features. The derived molecular structure of the CuII-HG complex based on these spectral features significantly differs from that of CuII-GH, suggesting a preference of the N-terminus and the steric hindrance of the H side chain in CuII chelation.
Collapse
Affiliation(s)
- Zhenghangcheng Li
- School of Physics, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xueyu Feng
- School of Physics, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xin-Xing Zhang
- School of Physics, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
4
|
Szeremeta M, Samczuk P, Pietrowska K, Kowalczyk T, Przeslaw K, Sieminska J, Kretowski A, Niemcunowicz-Janica A, Ciborowski M. In Vitro Animal Model for Estimating the Time since Death with Attention to Early Postmortem Stage. Metabolites 2022; 13:metabo13010026. [PMID: 36676951 PMCID: PMC9861157 DOI: 10.3390/metabo13010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Estimating the postmortem interval (PMI) has remained the subject of investigations in forensic medicine for many years. Every kind of death results in changes in metabolites in body tissues and fluids due to lack of oxygen, altered circulation, enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites. Metabolic changes may provide markers determining the time since death, which is challenging in current analytical and observation-based methods. The study includes metabolomics analysis of blood with the use of an animal model to determine the biochemical changes following death. LC-MS is used to fingerprint postmortem porcine blood. Metabolites, significantly changing in blood after death, are selected and identified using univariate statistics. Fifty-one significant metabolites are found to help estimate the time since death in the early postmortem stage. Hypoxanthine, lactic acid, histidine, and lysophosphatidic acids are found as the most promising markers in estimating an early postmortem stage. Selected lysophosphatidylcholines are also found as significantly increased in blood with postmortal time, but their practical utility as PMI indicators can be limited due to a relatively low increasing rate. The findings demonstrate the great potential of LC-MS-based metabolomics in determining the PMI due to sudden death and provide an experimental basis for applying this attitude in investigating various mechanisms of death. As we assume, our study is also one of the first in which the porcine animal model is used to establish PMI metabolomics biomarkers.
Collapse
Affiliation(s)
- Michal Szeremeta
- Department of Forensic Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
- Correspondence:
| | - Paulina Samczuk
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Katarzyna Przeslaw
- Department of Physical Chemistry, Medical University of Bialystok, 15-328 Bialystok, Poland
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| | | | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Center, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
5
|
Wang W, Qiao L, He J, Ju Y, Yu K, Kan G, Guo C, Zhang H, Jiang J. Water Microdroplets Allow Spontaneously Abiotic Production of Peptides. J Phys Chem Lett 2021; 12:5774-5780. [PMID: 34134488 DOI: 10.1021/acs.jpclett.1c01083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemistry of abiotic synthesis of peptides in the context of their prebiotic origins is a continuing challenge that arises from thermodynamic and kinetic constraints in aqueous media. Here we reported a strategy of microdroplets' mass spectrometry for peptide bonds formed from pure amino acids or a mixture in the presence of phosphoric acids in aqueous microdroplets. In contrast to bulk experiments, the condensation reactions proceed spontaneously under ambient conditions. The microdroplet gave a negative free-energy change (ΔG ∼ -1.1 kcal/mol), and product yields of ∼75% were obtained at the scale of a few milliseconds. Experiments in which nebulization gas pressure and external charge were varied established dependence of peptide production on the droplet size that has a high surface-to-volume ratio. It is concluded that the condensation reactions occurred at or near the air-water interfaces of microdroplets. This aqueous microdroplets approach also provides a route for chemistry synthesis in the prebiotic era.
Collapse
Affiliation(s)
- Wenxin Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Lina Qiao
- Marine College, Shandong University (Weihai), Weihai, Shandong 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Changlu Guo
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
6
|
Kunnev D. Origin of Life: The Point of No Return. Life (Basel) 2020; 10:life10110269. [PMID: 33153087 PMCID: PMC7693465 DOI: 10.3390/life10110269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Origin of life research is one of the greatest scientific frontiers of mankind. Many hypotheses have been proposed to explain how life began. Although different hypotheses emphasize different initial phenomena, all of them agree around one important concept: at some point, along with the chain of events toward life, Darwinian evolution emerged. There is no consensus, however, how this occurred. Frequently, the mechanism leading to Darwinian evolution is not addressed and it is assumed that this problem could be solved later, with experimental proof of the hypothesis. Here, the author first defines the minimum components required for Darwinian evolution and then from this standpoint, analyzes some of the hypotheses for the origin of life. Distinctive features of Darwinian evolution and life rooted in the interaction between information and its corresponding structure/function are then reviewed. Due to the obligatory dependency of the information and structure subject to Darwinian evolution, these components must be locked in their origin. One of the most distinctive characteristics of Darwinian evolution in comparison with all other processes is the establishment of a fundamentally new level of matter capable of evolving and adapting. Therefore, the initiation of Darwinian evolution is the "point of no return" after which life begins. In summary: a definition and a mechanism for Darwinian evolution are provided together with a critical analysis of some of the hypotheses for the origin of life.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Department of Oral Biology, University at Buffalo, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
A6H polypeptide membranes: Molecular dynamics simulation, GIAO-DFT-NMR and TD-DFT spectroscopy analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Liao SM, Shen NK, Liang G, Lu B, Lu ZL, Peng LX, Zhou F, Du LQ, Wei YT, Zhou GP, Huang RB. Inhibition of α-amylase Activity by Zn2+: Insights from Spectroscopy and Molecular Dynamics Simulations. Med Chem 2019; 15:510-520. [DOI: 10.2174/1573406415666181217114101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 02/08/2023]
Abstract
Background:Inhibition of α-amylase activity is an important strategy in the treatment of diabetes mellitus. An important treatment for diabetes mellitus is to reduce the digestion of carbohydrates and blood glucose concentrations. Inhibiting the activity of carbohydrate-degrading enzymes such as α-amylase and glucosidase significantly decreases the blood glucose level. Most inhibitors of α-amylase have serious adverse effects, and the α-amylase inactivation mechanisms for the design of safer inhibitors are yet to be revealed.Objective:In this study, we focused on the inhibitory effect of Zn2+ on the structure and dynamic characteristics of α-amylase from Anoxybacillus sp. GXS-BL (AGXA), which shares the same catalytic residues and similar structures as human pancreatic and salivary α-amylase (HPA and HSA, respectively).Methods:Circular dichroism (CD) spectra of the protein (AGXA) in the absence and presence of Zn2+ were recorded on a Chirascan instrument. The content of different secondary structures of AGXA in the absence and presence of Zn2+ was analyzed using the online SELCON3 program. An AGXA amino acid sequence similarity search was performed on the BLAST online server to find the most similar protein sequence to use as a template for homology modeling. The pocket volume measurer (POVME) program 3.0 was applied to calculate the active site pocket shape and volume, and molecular dynamics simulations were performed with the Amber14 software package.Results:According to circular dichroism experiments, upon Zn2+ binding, the protein secondary structure changed obviously, with the α-helix content decreasing and β-sheet, β-turn and randomcoil content increasing. The structural model of AGXA showed that His217 was near the active site pocket and that Phe178 was at the outer rim of the pocket. Based on the molecular dynamics trajectories, in the free AGXA model, the dihedral angle of C-CA-CB-CG displayed both acute and planar orientations, which corresponded to the open and closed states of the active site pocket, respectively. In the AGXA-Zn model, the dihedral angle of C-CA-CB-CG only showed the planar orientation. As Zn2+ was introduced, the metal center formed a coordination interaction with H217, a cation-π interaction with W244, a coordination interaction with E242 and a cation-π interaction with F178, which prevented F178 from easily rotating to the open state and inhibited the activity of the enzyme.Conclusion:This research may have uncovered a subtle mechanism for inhibiting the activity of α-amylase with transition metal ions, and this finding will help to design more potent and specific inhibitors of α-amylases.
Collapse
Affiliation(s)
- Si-Ming Liao
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Nai-Kun Shen
- School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, Guangxi, 530008, China
| | - Ge Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Bo Lu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Zhi-Long Lu
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li-Xin Peng
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Li-Qin Du
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu-Tuo Wei
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Guo-Ping Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China
| | - Ri-Bo Huang
- Department of Bioengineering, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
10
|
Romagnoli C, Prati F, Benassi R, Orteca G, Saladini M, Ferrari E. Synthesis, characterization and metal coordination of a potential β-lactamase inhibitor: 5-Methyl-2-phenoxymethyl-3- H -imidazole-4-carboxylic acid (PIMA). ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2015.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
On the Origin of Sequence. Life (Basel) 2015; 5:1629-37. [PMID: 26580656 PMCID: PMC4695840 DOI: 10.3390/life5041629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 11/21/2022] Open
Abstract
Three aspects which make planet Earth special, and which must be taken in consideration with respect to the emergence of peptides, are the mineralogical composition, the Moon which is in the same size class, and the triple environment consisting of ocean, atmosphere, and continent. GlyGly is a remarkable peptide because it stimulates peptide bond formation in the Salt-Induced Peptide Formation reaction. The role glycine and aspartic acid play in the active site of RNA polymerase is remarkable too. GlyGly might have been the original product of coded peptide synthesis because of its importance in stimulating the production of oligopeptides with a high aspartic acid content, which protected small RNA molecules by binding Mg2+ ions. The feedback loop, which is closed by having RNA molecules producing GlyGly, is proposed as the essential element fundamental to life. Having this system running, longer sequences could evolve, gradually solving the problem of error catastrophe. The basic structure of the standard genetic code (8 fourfold degenerate codon boxes and 8 split codon boxes) is an example of the way information concerning the emergence of life is frozen in the biological constitution of organisms: the structure of the code contains historical information.
Collapse
|
12
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Abstract
Background Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. Results Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations. The energies of π-π stacking interactions and hydrogen-π interactions are calculated using CCSD/6-31+G(d,p). The energies of cation-π interactions and coordinate interactions are calculated using B3LYP/6-31+G(d,p) method and adjusted by empirical method for dispersion energy. Conclusions The coordinate interactions between histidine and metallic cations are the strongest one acting in broad range, followed by the cation-π, hydrogen-π, and π-π stacking interactions. When the histidine is in neutral form, the cation-π interactions are attractive; when it is protonated (His+), the interactions turn to repulsive. The two protonation forms (and pKa values) of histidine are reversibly switched by the attractive and repulsive cation-π interactions. In proteins the π-π stacking interaction between neutral histidine and aromatic amino acids (Phe, Tyr, Trp) are in the range from -3.0 to -4.0 kcal/mol, significantly larger than the van der Waals energies.
Collapse
|
14
|
Li F, Fitz D, Rode BM. Isoleucine as a possible bridge between exogenous delivery and terrestrial enhancement of homochirality. Amino Acids 2012; 44:725-32. [PMID: 22968664 DOI: 10.1007/s00726-012-1396-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 08/27/2012] [Indexed: 11/24/2022]
Abstract
We report a highly enantioselective oligomerization of isoleucine stereomers in the salt-induced peptide formation reaction under plausibly prebiotic earth conditions. Up to 6.5-fold superiority in reactivity of L-isoleucine was observed, compared to its D-enantiomer, after 14 evaporation cycles in the presence of Cu(2+) and NaCl. Since isoleucine is among the proteinogenic amino acids that were found enantioenriched in meteorites, this present work may further correlate the extraterrestrial delivery and endogenous production of biological homochirality by virtue of a protein constituent rather than the rarely occurring α-methylated amino acids.
Collapse
Affiliation(s)
- Feng Li
- Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
15
|
Jakschitz TAE, Rode BM. Chemical evolution from simple inorganic compounds to chiral peptides. Chem Soc Rev 2012; 41:5484-9. [PMID: 22733315 DOI: 10.1039/c2cs35073d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous experiments performed in the past 50 years have strongly changed ideas of how life could have emerged on the primitive Earth. This review deals with the synthesis of biomolecule precursors under the conditions prevailing on the primordial Earth, and describes possible scenarios for their combination and elongation to form peptides and proteins. Furthermore it proposes different answers to one of the big secrets of nature: why DNA-coded biohomochiral life emerged using amino acids in their l-form?
Collapse
Affiliation(s)
- Thomas A E Jakschitz
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.
| | | |
Collapse
|
16
|
A quantum-chemical study of the binding ability of βXaaHisGlyHis towards copper(II) ion. J Mol Model 2012; 18:1365-74. [PMID: 21761180 PMCID: PMC3313029 DOI: 10.1007/s00894-011-1162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/24/2011] [Indexed: 11/30/2022]
Abstract
The present study analyzed binding of Cu2+ to tetrapeptides in water solution at several levels of theoretical approximation. The methods used to study the energetic and structural properties of the complexes in question include semiempirical hamiltonians, density functional theory as well as ab initio approaches including electron correlation effects. In order to shed light on the character of interactions between Cu2+ and peptides, which are expected to be mainly electrostatic in nature, decomposition of interaction energy into physically meaningful components was applied.
Collapse
|
17
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Fraser DG, Greenwell HC, Skipper NT, Smalley MV, Wilkinson MA, Demé B, Heenan RK. Chiral interactions of histidine in a hydrated vermiculite clay. Phys Chem Chem Phys 2011; 13:825-30. [DOI: 10.1039/c0cp01387k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of L-histidine and zwitterionic L-histidine. Amino Acids 2010; 39:1309-19. [PMID: 20364281 DOI: 10.1007/s00726-010-0573-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of L-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m=0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral L-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of L-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to L-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from -130 to -1,300 kJ/mol), and upon hydration are appreciably lowered.
Collapse
|
20
|
Li F, Fitz D, Fraser DG, Rode BM. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, l- and d-histidine. Amino Acids 2010; 39:579-85. [DOI: 10.1007/s00726-010-0479-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 01/07/2010] [Indexed: 01/24/2023]
|