1
|
Pokorná P, Krepl M, Šponer J. Residues flanking the ARK me3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2020; 1865:129771. [PMID: 33153976 DOI: 10.1016/j.bbagen.2020.129771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging. METHODS We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields. RESULTS The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted. CONCLUSIONS The CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues. GENERAL SIGNIFICANCE Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
2
|
Garay PG, Barrera EE, Pantano S. Post-Translational Modifications at the Coarse-Grained Level with the SIRAH Force Field. J Chem Inf Model 2020; 60:964-973. [PMID: 31840995 DOI: 10.1021/acs.jcim.9b00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Post-translational modifications (PTMs) on proteins significantly enlarge the physicochemical diversity present in biological macromolecules, altering function, localization, and interactions. Despite their critical role in regulating cellular processes, theoretical methods are not yet fully capable of coping with this diversity. These limitations are particularly more marked for coarse-grained (CG) models, in which comprehensive and self-consistent parametrizations are less frequent. Here we present a set of topologies and interaction parameters for the most common PTMs, fully compatible with the SIRAH force field. The PTMs introduced here reach the same level of structural description of the existing SIRAH force field, expanding the chemical spectrum with promising applications in dynamical protein-protein interactions in large and complex cellular environments.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay
| | - Exequiel E Barrera
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay
| | - Sergio Pantano
- Biomolecular Simulations Group , Institut Pasteur de Montevideo , Mataojo 2020, CP 11400 Montevideo , Uruguay.,Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| |
Collapse
|
3
|
Human DNA (cytosine-5)-methyltransferases: a functional and structural perspective for epigenetic cancer therapy. Biochimie 2017; 139:137-147. [DOI: 10.1016/j.biochi.2017.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/04/2017] [Indexed: 01/06/2023]
|
4
|
Audagnotto M, Dal Peraro M. Protein post-translational modifications: In silico prediction tools and molecular modeling. Comput Struct Biotechnol J 2017; 15:307-319. [PMID: 28458782 PMCID: PMC5397102 DOI: 10.1016/j.csbj.2017.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/09/2023] Open
Abstract
Post-translational modifications (PTMs) occur in almost all proteins and play an important role in numerous biological processes by significantly affecting proteins' structure and dynamics. Several computational approaches have been developed to study PTMs (e.g., phosphorylation, sumoylation or palmitoylation) showing the importance of these techniques in predicting modified sites that can be further investigated with experimental approaches. In this review, we summarize some of the available online platforms and their contribution in the study of PTMs. Moreover, we discuss the emerging capabilities of molecular modeling and simulation that are able to complement these bioinformatics methods, providing deeper molecular insights into the biological function of post-translational modified proteins.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24:377-86. [PMID: 24618358 DOI: 10.1016/j.tcb.2014.01.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins were originally identified as critical components in heterochromatin-mediated gene silencing and are now recognized to play essential roles in several other processes including gene activation. Several eukaryotes possess more than one HP1 paralog. Despite high sequence conservation, the HP1 paralogs achieve diverse functions. Further, in many cases, the same HP1 paralog is implicated in multiple functions. Recent biochemical studies have revealed interesting paralog-specific biophysical differences and unanticipated conformational versatility in HP1 proteins that may account for this functional promiscuity. Here we review these findings and describe a molecular framework that aims to link the conformational flexibility of HP1 proteins observed in vitro with their functional promiscuity observed in vivo.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Khoury GA, Thompson JP, Smadbeck J, Kieslich CA, Floudas CA. Forcefield_PTM: Ab Initio Charge and AMBER Forcefield Parameters for Frequently Occurring Post-Translational Modifications. J Chem Theory Comput 2013; 9:5653-5674. [PMID: 24489522 PMCID: PMC3904396 DOI: 10.1021/ct400556v] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we introduce Forcefield_PTM, a set of AMBER forcefield parameters consistent with ff03 for 32 common post-translational modifications. Partial charges were calculated through ab initio calculations and a two-stage RESP-fitting procedure in an ether-like implicit solvent environment. The charges were found to be generally consistent with others previously reported for phosphorylated amino acids, and trimethyllysine, using different parameterization methods. Pairs of modified and their corresponding unmodified structures were curated from the PDB for both single and multiple modifications. Background structural similarity was assessed in the context of secondary and tertiary structures from the global dataset. Next, the charges derived for Forcefield_PTM were tested on a macroscopic scale using unrestrained all-atom Langevin molecular dynamics simulations in AMBER for 34 (17 pairs of modified/unmodified) systems in implicit solvent. Assessment was performed in the context of secondary structure preservation, stability in energies, and correlations between the modified and unmodified structure trajectories on the aggregate. As an illustration of their utility, the parameters were used to compare the structural stability of the phosphorylated and dephosphorylated forms of OdhI. Microscopic comparisons between quantum and AMBER single point energies along key χ torsions on several PTMs were performed and corrections to improve their agreement in terms of mean squared errors and squared correlation coefficients were parameterized. This forcefield for post-translational modifications in condensed-phase simulations can be applied to a number of biologically relevant and timely applications including protein structure prediction, protein and peptide design, docking, and to study the effect of PTMs on folding and dynamics. We make the derived parameters and an associated interactive webtool capable of performing post-translational modifications on proteins using Forcefield_PTM available at http://selene.princeton.edu/FFPTM.
Collapse
Affiliation(s)
- George A. Khoury
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - Jeff P. Thompson
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - James Smadbeck
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | - Chris A. Kieslich
- Department of Chemical and Biological Engineering, Princeton, NJ, USA
| | | |
Collapse
|
7
|
Papamokos GV, Tziatzos G, Papageorgiou DG, Georgatos SD, Politou AS, Kaxiras E. Structural role of RKS motifs in chromatin interactions: a molecular dynamics study of HP1 bound to a variably modified histone tail. Biophys J 2012; 102:1926-33. [PMID: 22768949 DOI: 10.1016/j.bpj.2012.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/12/2011] [Accepted: 03/05/2012] [Indexed: 12/11/2022] Open
Abstract
The current understanding of epigenetic signaling assigns a central role to post-translational modifications that occur in the histone tails. In this context, it has been proposed that methylation of K9 and phosphorylation of S10 in the tail of histone H3 represent a binary switch that controls its reversible association to heterochromatin protein 1 (HP1). To test this hypothesis, we performed a comprehensive molecular dynamics study in which we analyzed a crystallographically defined complex that involves the HP1 chromodomain and an H3 tail peptide. Microsecond-long simulations show that the binding of the trimethylated K9 H3 peptide in the aromatic cage of HP1 is only slightly affected by S10 phosphorylation, because the modified K9 and S10 do not interact directly with one another. Instead, the phosphate group of S10 seems to form a persistent intramolecular salt bridge with R8, an interaction that can provoke a major structural change and alter the hydrogen-bonding regime in the H3-HP1 complex. These observations suggest that interactions between adjacent methyl-lysine and phosphoserine side chains do not by themselves provide a binary switch in the H3-HP1 system, but arginine-phosphoserine interactions, which occur in both histones and nonhistone proteins in the context of a conserved RKS motif, are likely to serve a key regulatory function.
Collapse
Affiliation(s)
- George V Papamokos
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
8
|
Quy VC, Pantano S, Rossetti G, Giacca M, Carloni P. HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods. BIOLOGY 2012; 1:277-96. [PMID: 24832227 PMCID: PMC4009784 DOI: 10.3390/biology1020277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/09/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022]
Abstract
The binding between the HIV-1 trans-activator of transcription (Tat) and p300/(CREB-binding protein)-associated factor (PCAF) bromodomain is a crucial step in the HIV-1 life cycle. However, the structure of the full length acetylated Tat bound to PCAF has not been yet determined experimentally. Acetylation of Tat residues can play a critical role in enhancing HIV-1 transcriptional activation. Here, we have combined a fully flexible protein-protein docking approach with molecular dynamics simulations to predict the structural determinants of the complex for the common HIV-1BRU variant. This model reproduces all the crucial contacts between the Tat peptide 46SYGR(AcK)KRRQRC56 and the PCAF bromodomain previously reported by NMR spectroscopy. Additionally, inclusion of the entire Tat protein results in additional contact points at the protein-protein interface. The model is consistent with the available experimental data reported and adds novel information to our previous structural predictions of the PCAF bromodomain in complex with the rare HIVZ2 variant, which was obtained with a less accurate computational method. This improved characterization of Tat.PCAF bromodomain binding may help in defining the structural determinants of other protein interactions involving lysine acetylation.
Collapse
Affiliation(s)
- Vo Cam Quy
- Computational Biophysics, German Research School for Simulation Sciences, Computational Biomedicine, Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich D-52425, Germany.
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay.
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, Computational Biomedicine, Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich D-52425, Germany.
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste 34149, Italy.
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, Computational Biomedicine, Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich D-52425, Germany.
| |
Collapse
|
9
|
Amino acids special issue 'Protein interactions in the virus-host relationship'. Amino Acids 2009; 41:1135-6. [PMID: 20020162 DOI: 10.1007/s00726-009-0441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|