1
|
Tan H, Hu Z, Miao J, Chen B, Li H, Gao J, Ye Y, Xu W, Jiang J, Qin H, Tian H, Peng F, Tu Y. Enzymatic nanomotors with chemotaxis for product-based cancer therapy. J Control Release 2025; 377:288-300. [PMID: 39571653 DOI: 10.1016/j.jconrel.2024.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The development of an intelligent nanomotor system holds great promise for enhancing the efficiency and effectiveness of antitumor therapy. Leveraging the overexpressed substances in the tumor microenvironment as propellants and chemotactic factors for enzyme-powered nanomotors represents a versatile and compelling approach. Herein, a plasma amine oxidase (PAO)-based chemotactic nanomotor system has been successfully developed, with the ability to enzymatically produce toxic acrolein and H2O2 from the upregulated polyamines (PAs) in the tumor microenvironment for active tumor therapy. Zwitterionic polymeric nanoparticles with superior biocompatibility are synthesized, followed by PAO modification via electrostatic interactions. As expected, the resulting nanomotor system exhibits positive chemotaxis toward PAs concentration gradient. Upon reaching the tumor region, our nanomotors, actuated by the tumor microenvironmental PAs, effectively enhance diffusion and enable deep penetration into the tumor site. This leads to the induction of tumor apoptosis and simultaneous inhibition of tumor invasion and migration by decomposing PAs into toxic products. By smartly utilizing the consumption of these local chemotactic factors and their enzymatic products, our nanomotor system provides a versatile and intelligent platform for active and enhanced tumor therapy.
Collapse
Affiliation(s)
- Haixin Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziwei Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiajun Miao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huaan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenxin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Gharote H, Bhowate R, Dangore-Khasbage S. Enzyme-linked immunosorbent assay and immunohistochemical analysis of mast cell related biochemicals in oral submucous fibrosis. F1000Res 2024; 12:1288. [PMID: 38826574 PMCID: PMC11140300 DOI: 10.12688/f1000research.141179.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Oral submucous fibrosis (OSMF), a potentially malignant disorder, is developed by progressive fibrous tissue deposition in connective tissue along with atrophy of oral mucosa. Histological sections also show the mast cell infiltration in submucosa which may indicate their possible role in this entity. Abundant availability of biochemicals in mast cells like histamine and serine proteases like chymase may be released and play specific pathways in the disease pathophysiology. Possibly, if the histamine release has some part to play, diamine oxidase may also be found to have a relationship as it metabolizes histamine. The present study is proposed to identify the presence of chymase, histamine, and diamine oxidase in both, serum as well as tissue by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) respectively. This study may provide probable insight into the mast cell-related chemicals and their association with OSMF.
Collapse
Affiliation(s)
- Harshkant Gharote
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Rahul Bhowate
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| | - Suwarna Dangore-Khasbage
- Oral Medicine and Radiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, Maharashtra, 442004, India
| |
Collapse
|
3
|
Šebela M, Rašková M. Polyamine-Derived Aminoaldehydes and Acrolein: Cytotoxicity, Reactivity and Analysis of the Induced Protein Modifications. Molecules 2023; 28:7429. [PMID: 37959847 PMCID: PMC10648994 DOI: 10.3390/molecules28217429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | |
Collapse
|
4
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
5
|
Kaiser A, Agostinelli E. Hypusinated EIF5A as a feasible drug target for Advanced Medicinal Therapies in the treatment of pathogenic parasites and therapy-resistant tumors. Amino Acids 2022; 54:501-511. [DOI: 10.1007/s00726-021-03120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
|
6
|
Teratani T, Kasahara N, Ijichi T, Fujimoto Y, Sakuma Y, Sata N, Kitayama J. Activation of whole body by high levels of polyamine intake in rats. Amino Acids 2021; 53:1695-1703. [PMID: 34654958 PMCID: PMC8592999 DOI: 10.1007/s00726-021-03079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022]
Abstract
Polyamines are important to the survival and activation of organs and tissues via a homeostatic cell-metabolic process, and the polyamine content in cytoplasm decreases with aging. Decreases in cellular polyamine have been known to augment mutagenesis and cell death. Thus, supplementary polyamine in food is important to the prevention of aging. Here we show the anti-aging effects of oral intake of polyamine using luciferase-transgenic rats. Healthy rats, 10–12 weeks old, were given foods containing 0.01% and 0.1% (w/w) of polyamine, as compared a control food without polyamine, for 4 weeks. Using a bioimaging system, the photon intensities seen in the whole bodies and livers of rats consuming 0.1% of polyamine in food were stronger than those in rats consuming 0.01% and 0% of polyamine. However, there were no differences between groups in other characteristics, such as liver damage and body weight. In conclusion, we found that polyamine intake can activate cells throughout the whole body, providing an anti-aging effect.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan. .,Department of Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan.
| | - Naoya Kasahara
- Department of Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Tetsuo Ijichi
- Division of Translational Research, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Yasuhiro Fujimoto
- Department of Surgery, Hyogo College of Medicine, 1-3-6 Minatojima, Chuo-ku, Kobeshi, Hyogo, 663-8501, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan.,Department of Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsukeshi, Tochigi, 329-0498, Japan
| |
Collapse
|
7
|
Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell Mol Neurobiol 2021; 42:225-242. [PMID: 33839994 PMCID: PMC8732914 DOI: 10.1007/s10571-021-01078-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Collapse
|
8
|
Synthesis and crystal structures of arylamidine Ru(III) compounds containing a tetradentate Schiff base ligand from a amine-amine coupling reaction. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
10
|
Lopes de Carvalho L, Bligt-Lindén E, Ramaiah A, Johnson MS, Salminen TA. Evolution and functional classification of mammalian copper amine oxidases. Mol Phylogenet Evol 2019; 139:106571. [PMID: 31351182 DOI: 10.1016/j.ympev.2019.106571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Mammalian copper-containing amine oxidases (CAOs), encoded by four genes (AOC1-4) and catalyzing the oxidation of primary amines to aldehydes, regulate many biological processes and are linked to various diseases including inflammatory conditions and histamine intolerance. Despite the known differences in their substrate preferences, CAOs are currently classified based on their preference for either primary monoamines (EC 1.4.3.21) or diamines (EC 1.4.3.22). Here, we present the first extensive phylogenetic study of CAOs that, combined with structural analyses of the CAO active sites, provides in-depth knowledge of their relationships and guidelines for classification of mammalian CAOs into AOC1-4 sub-families. The phylogenetic results show that CAOs can be classified based on two residues, X1 and X2, from the active site motif: T/S-X1-X2-N-Y-D. Residue X2 discriminates among the AOC1 (Tyr), AOC2 (Gly), and AOC3/AOC4 (Leu) proteins, while residue X1 further classifies the AOC3 (Leu) and AOC4 (Met) proteins that so far have been poorly identified and annotated. Residues X1 and X2 conserved within each sub-family and located in the catalytic site seem to be the key determinants for the unique substrate preference of each CAO sub-family. Furthermore, one residue located at 10 Å distance from the catalytic site is different between the sub-families but highly conserved within each sub-family (Asp in AOC1, His in AOC2, Thr in AOC3 and Asn in AOC4) and likely contributes to substrate selectivity. Altogether, our results will benefit the design of new sub-family specific inhibitors and the design of in vitro tests to detect individual CAO levels for diagnostic purposes.
Collapse
Affiliation(s)
- Leonor Lopes de Carvalho
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Eva Bligt-Lindén
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Arunachalam Ramaiah
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
11
|
Baker G, Matveychuk D, MacKenzie EM, Holt A, Wang Y, Kar S. Attenuation of the effects of oxidative stress by the MAO-inhibiting antidepressant and carbonyl scavenger phenelzine. Chem Biol Interact 2019; 304:139-147. [PMID: 30857888 DOI: 10.1016/j.cbi.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Phenelzine (β-phenylethylhydrazine) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. It possesses a number of important pharmacological properties which may alter the effects of oxidative stress. After conducting a comprehensive literature search, the authors of this review paper aim to provide an overview and discussion of the mechanisms by which phenelzine may attenuate oxidative stress. It inhibits γ-aminobutyric acid (GABA) transaminase, resulting in elevated brain GABA levels, inhibits both MAO and primary amine oxidase and, due to its hydrazine-containing structure, reacts chemically to sequester a number of reactive aldehydes (e.g. acrolein and 4-hydroxy-2-nonenal) proposed to be implicated in oxidative stress in a number of neurodegenerative disorders. Phenelzine is unusual in that it is both an inhibitor of and a substrate for MAO, the latter action producing at least one active metabolite, β-phenylethylidenehydrazine (PEH). This metabolite inhibits GABA transaminase, is a very weak inhibitor of MAO but a strong inhibitor of primary amine oxidase, and sequesters aldehydes. Phenelzine may ameliorate the effects of oxidative stress by reducing formation of reactive metabolites (aldehydes, hydrogen peroxide, ammonia/ammonia derivatives) produced by the interaction of MAO with biogenic amines, by sequestering various other reactive aldehydes and by inhibiting primary amine oxidase. In PC12 cells treated with the neurotoxin MPP+, phenelzine has been reported to reduce several adverse effects of MPP+. It has also been reported to reduce lipid peroxidative damage induced in plasma and platelet proteins by peroxynitrite. In animal models, phenelzine has a neuroprotective effect in global ischemia and in cortical impact traumatic brain injury. Recent studies reported in the literature on the possible involvement of acrolein in spinal cord injury and multiple sclerosis indicate that phenelzine can attenuate adverse effects of acrolein in these models. Results from studies in our laboratories on effects of phenelzine and PEH on primary amine oxidase (which catalyzes formation of toxic aldehydes and is overexpressed in Alzheimer's disease), on sequestration of the toxic aldehyde acrolein, and on reduction of acrolein-induced toxicity in mouse cortical neurons are also reported.
Collapse
Affiliation(s)
- Glen Baker
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Dmitriy Matveychuk
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Erin M MacKenzie
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Andrew Holt
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Yanlin Wang
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| | - Satyabrata Kar
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| |
Collapse
|
12
|
Wang L, Liu Y, Qi C, Shen L, Wang J, Liu X, Zhang N, Bing T, Shangguan D. Oxidative degradation of polyamines by serum supplement causes cytotoxicity on cultured cells. Sci Rep 2018; 8:10384. [PMID: 29991686 PMCID: PMC6039494 DOI: 10.1038/s41598-018-28648-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Serum is a common supplement for cell culture due to it containing the essential active components for the growth and maintenance of cells. However, the knowledges of the active components in serum are incomplete. Apart from the direct influence of serum components on cultured cells, the reaction of serum components with tested drugs cannot be ignored, which usually results in the false conclusion on the activity of the tested drugs. Here we report the toxicity effect of polyamines (spermidine and spermine) on cultured cells, especially on drug-resistant cancer cell lines, which resulted from the oxidative degradation of polyamines by amine oxidases in serum supplement. Upon adding spermidine or spermine, high concentration of H2O2, an enzyme oxidation product of polyamines, was generated in culture media containing ruminant serum, such as fetal bovine serum (FBS), calf serum, bovine serum, goat serum or horse serum, but not in the media containing human serum. Drug-resistant cancer cell lines showed much higher sensitivity to the oxidation products of polyamines (H2O2 and acrolein) than their wild cell lines, which was due to their low antioxidative capacity.
Collapse
Affiliation(s)
- Linlin Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Qi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Luyao Shen
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjun Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Bing
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Jimenez-Rosales A, Flores-Merino MV. A Brief Review of the Pathophysiology of Non-melanoma Skin Cancer and Applications of Interpenetrating and Semi-interpenetrating Polymer Networks in Its Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0061-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Öner Ç, Çolak E, Coşan DT. Potassium channel inhibitors induce oxidative stress in breast cancer cells. ASIAN BIOMED 2018. [DOI: 10.1515/abm-2018-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Background
Antioxidant levels increase to protect cell homeostasis when oxidant generation is increased by drug or inhibitor treatment. If the oxidant–antioxidant equilibrium is disrupted, oxidative stress will occur.
Objectives
To determine the effects of various potassium channel inhibitors in the disruption of oxidant–antioxidant equilibrium in breast cancer cell lines with various phenotypes.
Methods
MCF-7 or MDA-MB-231 breast cancer cells were treated with tetraethylammonium chloride (5 mM; TEA), 4-aminopyridine (5 mM; 4-AP), margatoxin (25 nM; MgTX), or astemizole (200 nM; AST). After treatment, total antioxidant, oxidant, and oxidative stress levels were determined.
Results
Incubation with TEA, 4-AP, MgTX, and AST increased oxidative stress in both MCF-7 and MDA-MB-231 cells (P < 0.001). Specific inhibitors of calcium-activated potassium channels and ether á go-go 1-related potassium channels produce greater oxidative stress than other inhibitors in MCF-7 breast cancer cells, whereas in MDA-MB-231 cells, the nonselective channel inhibitor 4-AP produces the greatest oxidative stress.
Conclusions
Potassium channel inhibitors used in our study disrupted the antioxidant–oxidant equilibrium and increased oxidative stress in the cancer cell lines. Although all of the channel inhibitors increased oxidative stress in cells, TEA and AST were the most effective inhibitors in MCF-7 cells. 4-AP was the most effective inhibitor in MDA-MB-231 cells. Voltage-gated potassium channels are attractive targets for anticancer therapy, and their inhibitors may enhance the effects of anticancer drugs.
Collapse
Affiliation(s)
- Çağri Öner
- Department of Medical Biology, Medical Faculty , Eskişehir Osmangazi University , Eskişehir , 26480 , Turkey
| | - Ertuğrul Çolak
- Department of Biostatics and Bioinformatics, Medical Faculty , Eskişehir Osmangazi University , Eskişehir 26480 , Turkey
| | - Didem Turgut Coşan
- Department of Medical Biology, Medical Faculty , Eskişehir Osmangazi University , Eskişehir , 26480 , Turkey
| |
Collapse
|
15
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Vishnubhakthula S, Elupula R, Durán-Lara EF. Recent Advances in Hydrogel-Based Drug Delivery for Melanoma Cancer Therapy: A Mini Review. JOURNAL OF DRUG DELIVERY 2017; 2017:7275985. [PMID: 28852576 PMCID: PMC5567449 DOI: 10.1155/2017/7275985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022]
Abstract
The purpose of this study is to describe some of the latest advances in using hydrogels for cancer melanoma therapy. Hydrogel formulations of polymeric material from natural or synthetic sources combined with therapeutic agents have gained great attention in the recent years for treating various maladies. These formulations can be categorized according to the strategies that induce cancer cell death in melanoma. First of all, we should note that these formulations can only play a supporting role that releases bioactive agents against cancer cells rather than the main role. This strategy involves delivering the drug via transdermal pathways, resulting in the death of cancerous cells. Another strategy utilizes magnetic gel composites to combat melanoma via hyperthermia therapy. This review discusses both transdermal and hyperthermia therapies and the recent advances that have occurred in the field.
Collapse
Affiliation(s)
- Sowmya Vishnubhakthula
- St. Peters Institute of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana, India
| | - Ravinder Elupula
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Esteban F. Durán-Lara
- Laboratory of Nanobiomaterials, Institute of Chemistry and Natural Resources and Núcleo Científico Multidisciplinario, Universidad de Talca, Talca, Maule, Chile
| |
Collapse
|
17
|
Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, Anfuso CD. Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol Med Rep 2017; 16:4393-4402. [PMID: 28791360 PMCID: PMC5646999 DOI: 10.3892/mmr.2017.7179] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is the formation of new vessels starting from pre-existing vasculature. Tumour environment is characterized by 'aberrant angiogenesis', whose main features are tortuous and permeable blood vessels, heterogeneous both in their structure and in efficiency of perfusion and very different from normal vessels. Therapeutic strategies targeting the three pathways chiefly involved in tumour angiogenesis, VEGF, Notch and Ang signalling, have been identified to block the vascular supply to the tumour. However, phenomena of toxicity, development of primary and secondary resistance and hypoxia significantly blunted the effects of anti-angiogenic drugs in several tumour types. Thus, different strategies aimed to overcome these problems are imperative. The focus of the present review was some principal 'alternative' approaches to classic antiangiogenic therapies, including the cyclooxygenase-2 (COX-2) blockade, the use of oligonucleotide complementary to the miRNA to compete with the mRNA target (antimiRs) and the inhibition of matrix metalloproteinases (MMPs). The role of blood soluble VEGFA as a predictive biomarker during antiangiogenic therapy in gastric, ovarian and colorectal cancer was also examined.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
18
|
Zhu Y, Zhu R, Wang M, Wu B, He X, Qian Y, Wang S. Anti-Metastatic and Anti-Angiogenic Activities of Core-Shell SiO 2@LDH Loaded with Etoposide in Non-Small Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600229. [PMID: 27980999 PMCID: PMC5102674 DOI: 10.1002/advs.201600229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/13/2016] [Indexed: 05/29/2023]
Abstract
Currently, nanoparticles have gained a great attention in the anti-tumor research area. However, to date, studies on the anti-metastasis action of core-shell SiO2@LDH (LDH: layered double hydroxide) nanoparticles remain untouched. Two emerging aspects considered are establishing research on the controlling delivery effect of SiO2@LDH combined with anti-cancer medicine from a new perspective. The fine properties synthetic SiO2@LDH-VP16 (VP16: etoposide) are practiced to exhibit the nanoparticle's suppression on migration and invasion of non-small cell lung cancer (NSCLC). Both in vitro and in vivo inspection shows that SiO2@LDH can help VP16 better function as an anti-metastasis agent. On the other hand, anti-angiogenic efficiency, co-localization, as well as western blot are investigated to explain the possible mechanism. A clear mergence of SiO2@LDH-VP16 and cytomembrane/microtubule may be observed from co-location images. Results offer evidence that SiO2@LDH-VP16 plays positions on cytomembrane and microtubules. It efficiently inhibits metastasis on NSCLC by reducing vascularization, and eliciting depression of the PI3K-AKT and FAK-Paxillin signaling pathways. SiO2@LDH-VP16, the overall particle morphology, and function on anti-metastasis and anti-angiogenic may be tuned to give new opportunities for novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Yanjing Zhu
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Rongrong Zhu
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Mei Wang
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Bin Wu
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Xiaolie He
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Yechang Qian
- Department of Respiratory DiseaseBaoshan District Hospital of Integrated Traditional Chinese and Western MedicineShanghai201900China
| | - Shilong Wang
- Research Center for Translational Medicine at East HospitalSchool of Life Science and TechnologyTongji UniversityShanghai200092China
| |
Collapse
|
19
|
|
20
|
Tamoxifen metabolite endoxifen interferes with the polyamine pathway in breast cancer. Amino Acids 2016; 48:2293-302. [PMID: 27438264 DOI: 10.1007/s00726-016-2300-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
Tamoxifen is the most widely used drug to treat women with estrogen receptor α (ERα)-positive breast cancer. Endoxifen is recognized as the active metabolite of tamoxifen in humans. We studied endoxifen effects on ERα-positive MCF-7 breast cancer cells. Estradiol increased the proliferation of MCF-7 cells by two- to threefold and endoxifen suppressed its effects. Endoxifen suppressed c-myc, c-fos and Tff1 oncogene expression, as revealed by RT-PCR. Estradiol increased the activity of ornithine decarboxylase (ODC) and adenosyl methioninedecarboxylase (AdoMetDC), whereas endoxifen suppressed these enzyme activities. Endoxifen increased activities of spermine oxidase (SMO) and acetyl polyamine oxidase (APAO) significantly, and reduced the levels of putrescine and spermidine. These data suggest a possible mechanism for the antiestrogenic effects of tamoxifen/endoxifen, involving the stimulation of polyamine oxidase enzymes. Therefore, SMO and APAO stimulation might be useful biomarkers for the efficacy of endoxifen treatment of breast cancer.
Collapse
|
21
|
Grancara S, Dalla Via L, García-Argáez AN, Ohkubo S, Pacella E, Manente S, Bragadin M, Toninello A, Agostinelli E. Spermine cycling in mitochondria is mediated by adenine nucleotide translocase activity: mechanism and pathophysiological implications. Amino Acids 2016; 48:2327-37. [PMID: 27255894 DOI: 10.1007/s00726-016-2264-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Spermine, besides to be transported in mitochondria by an energy dependent electrophoretic mechanism, can be also released by two different mechanisms. The first one is induced in deenergizing conditions by FCCP or antimycin A and it is mediated by an electroneutral exchange spermine protons. The second one takes place in energizing conditions during the activity of the adenine nucleotide translocase and is mediated by an electroneutral symport mechanism involving the efflux in co-transport of spermine and phosphate and the exchange of exogenous ADP with endogenous ATP. The triggering of this mechanism permits an alternating cycling of spermine across the mitochondrial membrane, that is spermine is transported or released by energized mitochondria in the absence or presence of ATP synthesis, respectively. The physiological implications of this cycling of spermine are related to the induction or prevention of mitochondrial permeability transition and, consequently, on apoptosis or its prevention.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy
| | - Aida Nelly García-Argáez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy
| | - Shinji Ohkubo
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty Medicine and Dentistry, SAPIENZA University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Sabrina Manente
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Marcantonio Bragadin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Antonio Toninello
- Department of Biomedical Sciences, University of Padua, Viale U. Bassi 58 B, 35131, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131, Padua, Italy.
| | - Enzo Agostinelli
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
22
|
Bioconjugation of gold-polymer core–shell nanoparticles with bovine serum amine oxidase for biomedical applications. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Cheng J, Liu Q, Shuhendler AJ, Rauth AM, Wu XY. Optimizing the design and in vitro evaluation of bioreactive glucose oxidase-microspheres for enhanced cytotoxicity against multidrug resistant breast cancer cells. Colloids Surf B Biointerfaces 2015; 130:164-72. [PMID: 25896537 DOI: 10.1016/j.colsurfb.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/11/2023]
Abstract
Glucose oxidase (GOX) encapsulated in alginate-chitosan microspheres (GOX-MS) was shown in our previous work to produce reactive oxygen species (ROS) in situ and exhibit anticancer effects in vitro and in vivo. The purpose of present work was to optimize the design and thus enhance the efficacy of GOX-MS against multidrug resistant (MDR) cancer cells. GOX-MS with different mean diameters of 4, 20 or 140 μm were prepared using an emulsification-internal gelation-adsorption-chitosan coating method with varying compositions and conditions. The GOX loading efficiency, loading level, relative bioactivity of GOX-MS, and GOX leakage were determined and optimal chitosan concentrations in the coating solution were identified. The influence of particle size on cellular uptake, ROS generation, cytotoxicity and their underlying mechanisms was investigated. At the same GOX dose and incubation time, smaller sized GOX-MS produced larger amounts of H2O2 in cell culture medium and greater cytotoxicity toward murine breast cancer MDR (EMT6/AR1.0) and wild type (EMT6/WT) cells. Fluorescence and confocal laser scanning microscopy revealed significant uptake of small sized (4 μm) GOX-MS by both MDR and WT cells, but no cellular uptake of large (140 μm) GOX-MS. The GOX-MS were equally effective in killing both MDR cells and WT cells. The cytotoxicity of the GOX formulations was positively correlated with membrane damage and lipid peroxidation. GOX-MS induced greater membrane damage and lipid peroxidation in MDR cells than the WT cells. These results suggest that the optimized, small micron-sized GOX-MS are highly effective against MDR breast cancer cells.
Collapse
Affiliation(s)
- Ji Cheng
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Qun Liu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Adam J Shuhendler
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, 610 University Ave, Toronto, Ontario, Canada M5G 2M9
| | - Xiao Yu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
24
|
Bonaiuto E, Grancara S, Martinis P, Stringaro A, Colone M, Agostinelli E, Macone A, Stevanato R, Vianello F, Toninello A, Di Paolo ML. A novel enzyme with spermine oxidase properties in bovine liver mitochondria: identification and kinetic characterization. Free Radic Biol Med 2015; 81:88-99. [PMID: 25591967 DOI: 10.1016/j.freeradbiomed.2015.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/19/2014] [Accepted: 01/04/2015] [Indexed: 01/31/2023]
Abstract
The uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria. Western blot analysis of mitochondrial fractions and immunogold electron microscopy observations of purified mitochondria unequivocally confirmed the presence of a protein recognized by anti-spermine oxidase antibodies in the mitochondrial matrix. Preliminary kinetic characterization showed that spermine is the preferred substrate of this enzyme; lower activity was detected with spermidine and acetylated polyamines. Catalytic efficiency comparable to that of spermine was also found for 1-aminododecane. The considerable effect of ionic strength on the Vmax/KM ratio suggested the presence of more than one negatively charged zone inside the active site cavity of this mitochondrial enzyme, which is probably involved in the docking of positively charged substrates. These findings indicate that the bovine liver mitochondrial matrix contains an enzyme belonging to the spermine oxidase class. Because H2O2 is generated by spermine oxidase activity, the possible involvement of the latter as an important signaling transducer under both physiological and pathological conditions should be considered.
Collapse
Affiliation(s)
- Emanuela Bonaiuto
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Silvia Grancara
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Pamela Martinis
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35131 Padova, Italy
| | - Annarita Stringaro
- Department of Technology and Health, Italian Institute of Health, 00161 Roma, Italy
| | - Marisa Colone
- Department of Technology and Health, Italian Institute of Health, 00161 Roma, Italy
| | - Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome and Institute of Biology and Molecular Pathology, Italian Research Council, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Macone
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli," Sapienza University of Rome and Institute of Biology and Molecular Pathology, Italian Research Council, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Roberto Stevanato
- Department of Molecular Science and Nanosystems, Università Ca' Foscari, Dorsoduro 2137, 30123 Venezia, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, Polo Agripolis, Viale dell'Università 16, University of Padova, 35020 Legnaro, Italy; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Antonio Toninello
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35131 Padova, Italy.
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, Via G. Colombo 3, 35131 Padova, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi," Viale delle medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
25
|
Grancara S, Zonta F, Ohkubo S, Brunati AM, Agostinelli E, Toninello A. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation. Amino Acids 2015; 47:869-83. [PMID: 25792113 DOI: 10.1007/s00726-015-1964-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biomedical Sciences, University of Padova, Viale U. Bassi 58B, 35131, Padua, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Park MH, Igarashi K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul) 2014; 21:1-9. [PMID: 24009852 PMCID: PMC3762300 DOI: 10.4062/biomolther.2012.097] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 01/04/2013] [Indexed: 01/31/2023] Open
Abstract
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke.
Collapse
Affiliation(s)
- Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
27
|
Obakan P, Arisan ED, Calcabrini A, Agostinelli E, Bolkent S, Palavan-Unsal N. Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines. Amino Acids 2014; 46:553-64. [PMID: 23963538 DOI: 10.1007/s00726-013-1574-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Epibrassinolide (EBR) is a biologically active compound of the brassinosteroids, steroid-derived plant growth regulator family. Generally, brassinosteroids are known for their cell expansion and cell division-promoting roles. Recently, EBR was shown as a potential apoptotic inducer in various cancer cells without affecting the non-tumor cell growth. Androgen signaling controls cell proliferation through the interaction with the androgen receptor (AR) in the prostate gland. Initially, the development of prostate cancer is driven by androgens. However, in later stages, a progress to the androgen-independent stage is observed, resulting in metastatic prostate cancer. The androgen-responsive or -irresponsive cells are responsible for tumor heterogeneity, which is an obstacle to effective anti-cancer therapy. Polyamines are amine-derived organic compounds, known for their role in abnormal cell proliferation as well as during malignant transformation. Polyamine catabolism-targeting agents are being investigated against human cancers. Many chemotherapeutic agents including polyamine analogs have been demonstrated to induce polyamine catabolism that depletes polyamine levels and causes apoptosis in tumor models. In our study, we aimed to investigate the mechanism of apoptotic cell death induced by EBR, related with polyamine biosynthetic and catabolic pathways in LNCaP (AR+), DU145 (AR-) prostate cancer cell lines and PNT1a normal prostate epithelial cell line. Induction of apoptotic cell death was observed in prostate cancer cell lines after EBR treatment. In addition, EBR induced the decrease of intracellular polyamine levels, accompanied by a significant ornithine decarboxylase (ODC) down-regulation in each prostate cancer cell and also modulated ODC antizyme and antizyme inhibitor expression levels only in LNCaP cells. Catabolic enzymes SSAT and PAO expression levels were up-regulated in both cell lines; however, the specific SSAT and PAO siRNA treatments prevented the EBR-induced apoptosis only in LNCaP (AR+) cells. In a similar way, MDL 72,527, the specific PAO and SMO inhibitor, co-treatment with EBR during 24 h, reduced the formation of cleaved fragments of PARP in LNCaP (AR+) cells.
Collapse
Affiliation(s)
- Pinar Obakan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus, Bakirkoy, 34156, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Agostinelli E. Polyamines and transglutaminases: biological, clinical, and biotechnological perspectives. Amino Acids 2014; 46:475-85. [PMID: 24553826 DOI: 10.1007/s00726-014-1688-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/27/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy,
| |
Collapse
|
29
|
Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, Fortes AM. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:141-55. [PMID: 24296250 DOI: 10.1016/j.plaphy.2013.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Campo Grande 1749-016 Lisboa, Portugal.
| | - Kashif Ali
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Young H Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Lisete Sousa
- Department of Statistics and Operational Research, CEAUL, FCUL, 1749-016 Lisboa, Portugal.
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Antonio F Tiburcio
- University of Barcelona, Pharmacy Faculty, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Ana M Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Campo Grande 1749-016 Lisboa, Portugal.
| |
Collapse
|
30
|
Rudolphi-Skórska E, Zembala M, Filek M. Mechanical and electrokinetic effects of polyamines/phospholipid interactions in model membranes. J Membr Biol 2014; 247:81-92. [PMID: 24337467 PMCID: PMC3889835 DOI: 10.1007/s00232-013-9614-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/08/2013] [Indexed: 10/25/2022]
Abstract
The mechanical and electrical properties of phospholipids layers influenced by interaction with polyamines were determined by measuring surface pressure and compression modulus of monolayers and zeta potential of liposomes. The saturated derivative of phosphatidic acid (DPPA) formed layers of the organization varying with compression degree. Contact of DPPA layers with polyamines present in the subphase resulted in changing their mechanical properties and the conditions in which the layer reorganization appears. The parameters corresponding to the layer reorganization depended on the size and charge of polyamines' molecules. The values of: area per DPPA molecule, surface pressure at the point of layer structure reorganization, and surface pressure at the point of collapse characterizing of DPPA layers in the studied systems were determined. It was found that polyamines influenced to a much lesser extent the mechanical properties of monolayers formed from unsaturated derivative of phosphatidic acid slightly increasing its mechanical resistance in the range of higher molecular packing. The results of electrokinetic measurements revealed that surface charge of phosphatidic acid liposomes was effectively neutralized in the presence of polyamines. A similar effect was observed for phosphatidyl glycerol and for negatively charged polystyrene latex particles used as a reference. The influence of polyamines on the mechanical properties of DPPA layers was interpreted assuming a possibility of penetration of the lipid layer by polyamines' molecules. Comparison of action of putrescine and calcium ions and effects of polyamines on phosphatidyl glycerol provided additional justification for the proposed interpretation of the observed effects.
Collapse
|
31
|
Capone C, Cervelli M, Angelucci E, Colasanti M, Macone A, Mariottini P, Persichini T. A role for spermine oxidase as a mediator of reactive oxygen species production in HIV-Tat-induced neuronal toxicity. Free Radic Biol Med 2013; 63:99-107. [PMID: 23665428 DOI: 10.1016/j.freeradbiomed.2013.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 03/05/2013] [Accepted: 05/02/2013] [Indexed: 01/20/2023]
Abstract
Chronic oxidative stress, which occurs in brain tissues of HIV-infected patients, is involved in the pathogenesis of HIV-associated dementia. Oxidative stress can be induced by HIV-1-secreted proteins, either directly or indirectly through the release of cytotoxic factors. In particular, HIV-1 Tat is able to induce neuronal death by interacting with and activating the polyamine-sensitive subtype of the NMDA receptor (NMDAR). Here, we focused on the role of polyamine catabolism in Tat-induced oxidative stress in human neuroblastoma (SH-SY5Y) cells. First, Tat was found to induce reactive oxygen species production and to affect cell viability in SH-SY5Y cells, these effects being mediated by spermine oxidase (SMO). Second, Tat was observed to increase SMO activity as well as decreasing the intracellular spermine levels. Third, Tat-induced SMO activation was completely prevented by the NMDAR antagonist MK-801, clearly indicating an involvement of NMDAR stimulation. Finally, pretreatment of cells with N-acetylcysteine, a scavenger of H₂O₂, and with MK-801 was able to completely inhibit reactive oxygen species formation and to restore cell viability. Altogether, these data strongly suggest a role for polyamine catabolism-derived H₂O₂ in neurotoxicity as elicited by Tat-stimulated NMDAR.
Collapse
Affiliation(s)
- Caterina Capone
- Department of Science, University Roma Tre, 00146 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Grancara S, Martinis P, Manente S, García-Argáez AN, Tempera G, Bragadin M, Dalla Via L, Agostinelli E, Toninello A. Bidirectional fluxes of spermine across the mitochondrial membrane. Amino Acids 2013; 46:671-9. [PMID: 24043461 DOI: 10.1007/s00726-013-1591-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/04/2013] [Indexed: 02/08/2023]
Abstract
The polyamine spermine is transported into the mitochondrial matrix by an electrophoretic mechanism having as driving force the negative electrical membrane potential (ΔΨ). The presence of phosphate increases spermine uptake by reducing ΔpH and enhancing ΔΨ. The transport system is a specific uniporter constituted by a protein channel exhibiting two asymmetric energy barriers with the spermine binding site located in the energy well between the two barriers. Although spermine transport is electrophoretic in origin, its accumulation does not follow the Nernst equation for the presence of an efflux pathway. Spermine efflux may be induced by different agents, such as FCCP, antimycin A and mersalyl, able to completely or partially reduce the ΔΨ value and, consequently, suppress or weaken the force necessary to maintain spermine in the matrix. However this efflux may also take place in normal conditions when the electrophoretic accumulation of the polycationic polyamine induces a sufficient drop in ΔΨ able to trigger the efflux pathway. The release of the polyamine is most probably electroneutral in origin and can take place in exchange with protons or in symport with phosphate anion. The activity of both the uptake and efflux pathways induces a continuous cycling of spermine across the mitochondrial membrane, the rate of which may be prominent in imposing the concentrations of spermine in the inner and outer compartment. Thus, this event has a significant role on mitochondrial permeability transition modulation and consequently on the triggering of intrinsic apoptosis.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biomedical Sciences, University of Padua, Viale U. Bassi 58 B, 35131, Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hayes CS, DeFeo-Mattox K, Woster PM, Gilmour SK. Elevated ornithine decarboxylase activity promotes skin tumorigenesis by stimulating the recruitment of bulge stem cells but not via toxic polyamine catabolic metabolites. Amino Acids 2013; 46:543-52. [PMID: 23884694 DOI: 10.1007/s00726-013-1559-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022]
Abstract
Elevated expression of ornithine decarboxylase (ODC), the regulatory enzyme in polyamine biosynthesis, targeted to the epidermis is sufficient to promote skin tumor development following a single subthreshold dose of dimethylbenz(a)anthracene (DMBA). Since skin tumor promotion involves recruitment of hair follicle bulge stem cells harboring genetic lesions, we assessed the effect of increased epidermal ODC on recruitment of bulge stem cells in ODC-ER transgenic mice in which ODC activity is induced de novo in adult skin with 4-hydroxytamoxifen (4OHT). Bromodeoxyuridine-pulse labeling and use of K15.CrePR1;R26R;ODC-ER triple transgenic mice demonstrated that induction of ODC activity is sufficient to recruit bulge stem cells in quiescent skin. Because increased ODC activity not only stimulates proliferation but also increases reactive oxygen species (ROS) generation via subsequent induction of polyamine catabolic oxidases, we used an inhibitor of polyamine catabolic oxidase activity, MDL72527, to investigate whether ROS generation by polyamine catabolic oxidases contributes to skin tumorigenesis in DMBA-initiated ODC-ER transgenic skin. Newborn ODC-ER transgenic mice and their normal littermates were initiated with a single topical dose of DMBA. To assess tumor development originating from dormant bulge stem cells that possess DMBA-initiated mutations, epidermal ODC activity was induced in ODC-ER mice with 4OHT 5 weeks after DMBA initiation followed by MDL72527 treatment. MDL72527 treatment resulted in a shorter tumor latency time, increased tumor burden, increased conversion to carcinomas, and lower tumor levels of p53. Thus, elevated epidermal ODC activity promotes tumorigenesis by stimulating the recruitment of bulge stem cells but not via ROS generation by polyamine catabolic oxidases.
Collapse
Affiliation(s)
- Candace S Hayes
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | | | | |
Collapse
|
34
|
Vijayanathan V, Agostinelli E, Thomas T, Thomas TJ. Innovative approaches to the use of polyamines for DNA nanoparticle preparation for gene therapy. Amino Acids 2013; 46:499-509. [DOI: 10.1007/s00726-013-1549-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
|
35
|
Lien YC, Ou TY, Lin YT, Kuo PC, Lin HJ. Duplication and diversification of the spermidine/spermine N1-acetyltransferase 1 genes in zebrafish. PLoS One 2013; 8:e54017. [PMID: 23326562 PMCID: PMC3543422 DOI: 10.1371/journal.pone.0054017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022] Open
Abstract
Spermidine/spermine N(1)-acetyltransferase 1 (Ssat1) is a key enzyme in the polyamine interconversion pathway, which maintains polyamine homeostasis. In addition, mammalian Ssat1 is also involved in many physiological and pathological events such as hypoxia, cell migration, and carcinogenesis. Using cross-genomic bioinformatic analysis in 10 deuterostomes, we found that ssat1 only exists in vertebrates. Comparing with mammalian, zebrafish, an evolutionarily distant vertebrate, contains 3 homologous ssat1 genes, named ssat1a, ssat1b, and ssat1c. All zebrafish homologues could be transcribed and produce active enzymes. Despite the long history since their evolutionary diversification, some features of human SSAT1 are conserved and subfunctionalized in the zebrafish family of Ssat1 proteins. The polyamine-dependent protein synthesis was only found in Ssat1b and Ssat1c, not in Ssat1a. Further study indicated that both 5' and 3' sequences of ssat1b mediate such kind of translational regulation inside the open reading frame (ORF). The polyamine-dependent protein stabilization was only observed in Ssat1b. The last 70 residues of Ssat1b were crucial for its rapid degradation and polyamine-induced stabilization. It is worth noting that only Ssat1b and Ssat1c, but not the polyamine-insensitive Ssat1a, were able to interact with integrin α9 and Hif-1α. Thus, Ssat1b and Ssat1c might not only be a polyamine metabolic enzyme but also simultaneously respond to polyamine levels and engage in cross-talk with other signaling pathways. Our data revealed some correlations between the sequences and functions of the zebrafish family of Ssat1 proteins, which may provide valuable information for studies of their translational regulatory mechanism, protein stability, and physiological functions.
Collapse
Affiliation(s)
- Yi-Chin Lien
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ting-Yu Ou
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Tzu Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Po-Chih Kuo
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Jia Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
36
|
Taher AT, Khalil NA, Ahmed EM, Ragab YM. Synthesis of Certain 2-Substituted-1 H-benzimidazole Derivatives as Antimicrobial and Cytotoxic Agents. Chem Pharm Bull (Tokyo) 2012; 60:778-84. [DOI: 10.1248/cpb.60.778] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Azza Taher Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University
| | - Nadia Abdalla Khalil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University
| | - Eman Mohamed Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University
| | - Yasser Mohamed Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University
| |
Collapse
|
37
|
Role of polyamines, their analogs and transglutaminases in biological and clinical perspectives. Amino Acids 2011; 42:397-409. [DOI: 10.1007/s00726-011-1129-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/26/2011] [Indexed: 01/07/2023]
|
38
|
Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 2011; 42:411-26. [DOI: 10.1007/s00726-011-1012-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/28/2011] [Indexed: 12/27/2022]
|
39
|
Nayvelt I, John S, Hsu HC, Yang P, Liu W, Das G, Hyvönen MT, Alhonen L, Keinänen TA, Shirahata A, Patel R, Thomas T, Thomas TJ. A potential estrogen mimetic effect of a bis(ethyl)polyamine analogue on estrogen receptor positive MCF-7 breast cancer cells. Amino Acids 2011; 42:899-911. [PMID: 21830120 DOI: 10.1007/s00726-011-1005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/15/2011] [Indexed: 11/28/2022]
Abstract
BE-3-3-3-3 (1,15-(ethylamino)4,8,12-triazapentadecane) is a bis(ethyl)polyamine analogue under investigation as a therapeutic agent for breast cancer. Since estradiol (E(2)) is a critical regulatory molecule in the growth of breast cancer, we examined the effect of BE-3-3-3-3 on estrogen receptor α (ERα) positive MCF-7 cells in the presence and absence of E(2). In the presence of E(2), a concentration-dependent decrease in DNA synthesis was observed using [(3)H]-thymidine incorporation assay. In the absence of E(2), low concentrations (2.5-10 μM) of BE-3-3-3-3 increased [(3)H]-thymidine incorporation at 24 and 48 h. BE-3-3-3-3 induced the expression of early response genes, c-myc and c-fos, in the absence of E(2), but not in its presence, as determined by real-time quantitative polymerase chain reaction (qPCR). BE-3-3-3-3 had no significant effect on these genes in an ERα-negative cell line, MDA-MB-231. Chromatin immunoprecipitation assay demonstrated enhanced promoter occupation by either E(2) or BE-3-3-3-3 of an estrogen-responsive gene pS2/Tff1 by ERα and its co-activator, steroid receptor co-activator 3 (SRC-3). Confocal microscopy of BE-3-3-3-3-treated cells revealed membrane localization of ERα, similar to that induced by E(2). The failure of BE-3-3-3-3 to inhibit cell proliferation was associated with autophagic vacuole formation, and the induction of Beclin 1 and MAP LC3 II. These results indicate a differential effect of BE-3-3-3-3 on MCF-7 cells in the absence and presence of E(2), and suggest that pre-clinical and clinical development of polyamine analogues might require special precautions and selection of sensitive subpopulation of patients.
Collapse
Affiliation(s)
- Irina Nayvelt
- Department of Medicine and Cancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Correa-Fiz F, Reyes-Palomares A, Fajardo I, Melgarejo E, Gutiérrez A, García-Ranea JA, Medina MA, Sánchez-Jiménez F. Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 2011; 42:577-95. [PMID: 21818563 DOI: 10.1007/s00726-011-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.
Collapse
Affiliation(s)
- F Correa-Fiz
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Arısan ED, Coker A, Palavan-Ünsal N. Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells. Amino Acids 2011; 42:655-65. [PMID: 21809075 DOI: 10.1007/s00726-011-1040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/24/2011] [Indexed: 12/15/2022]
Abstract
Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. In this study, we explored the potential role of polyamines in roscovitine-induced apoptosis in HCT116 colon cancer cells. Roscovitine induced apoptosis by activating mitochondrial pathway caspases and modulating the expression of Bcl-2 family members. Depletion of polyamines by treatment with difluoromethylornithine (DFMO) increased roscovitine-induced apoptosis. Transient silencing of ornithine decarboxylase, polyamine biosynthesis enzyme and special target of DFMO also increased roscovitine-induced apoptosis in HCT116 cells. Interestingly, additional putrescine treatment was found pro-apoptotic due to the presence of non-functional ornithine decarboxylase (ODC). Finally, roscovitine altered polyamine catabolic pathway and led to decrease in putrescine and spermidine levels. Therefore, the metabolic regulation of polyamines may dictate the power of roscovitine induced apoptotic responses in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Elif Damla Arısan
- Molecular Biology and Genetics Department, Istanbul Kultur University, Science and Literature Faculty, Atakoy Campus, 34156, Istanbul, Turkey
| | | | | |
Collapse
|
42
|
Do mammalian amine oxidases and the mitochondrial polyamine transporter have similar protein structures? Amino Acids 2011; 42:725-31. [DOI: 10.1007/s00726-011-0988-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/05/2011] [Indexed: 10/17/2022]
|
43
|
Schuster I, Bernhardt R. Interactions of natural polyamines with mammalian proteins. Biomol Concepts 2011; 2:79-94. [DOI: 10.1515/bmc.2011.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractThe ubiquitously expressed natural polyamines putrescine, spermidine, and spermine are small, flexible cationic compounds that exert pleiotropic actions on various regulatory systems and, accordingly, are essentially involved in diverse life functions. These roles of polyamines result from their capability to interact with negatively charged regions of all major classes of biomolecules, which might act in response by changing their structures and functions. The present review deals with polyamine-protein interactions, thereby focusing on mammalian proteins. We discuss the various modes in which polyamines can interact with proteins, describe major types of affected functions illustrated by representative examples of involved proteins, and support information with respective structural evidence from elucidated three-dimensional structures. A specific focus is put on polyamine interactions at protein surfaces that can modulate the aggregation of proteins to organized structural networks as well as to toxic aggregates and, moreover, can play a role in important transient protein-protein interactions.
Collapse
Affiliation(s)
- Inge Schuster
- 1Institute for Theoretical Chemistry, University Vienna, A-1090 Vienna, Austria
| | - Rita Bernhardt
- 2Institute of Biochemistry, Saarland University, Campus B2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
44
|
Largeron M. Amine oxidases of the quinoproteins family: Their implication in the metabolic oxidation of xenobiotics. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:53-61. [DOI: 10.1016/j.pharma.2010.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 12/11/2022]
|
45
|
Batista-de-Carvalho A, Tempera G, Viceconte N, Saccoccio S, Bidollari E, Nalli M, Morera E, Ortar G, Agostinelli E. Cytotoxic effect induced by combination of polyamines metabolites and endocannabinoid, anandamide, on human cancer cells: a new anticancer strategy. BMC Proc 2010. [DOI: 10.1186/1753-6561-4-s2-p31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Kucherenko YV, Lang F. Inhibition of cation channels in human erythrocytes by spermine. J Membr Biol 2010; 237:93-106. [PMID: 21063869 DOI: 10.1007/s00232-010-9310-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 10/20/2010] [Indexed: 11/30/2022]
Abstract
In erythrocytes, spermine concentration decreases gradually with age, which is paralleled by increases of cytosolic Ca²+ concentration, with subsequent cell shrinkage and cell membrane scrambling. Cytosolic Ca²+ was estimated from fluo-3 fluorescence, cell volume from forward scatter, cell membrane scrambling from annexin V binding and cation channel activity with whole-cell patch-clamp in human erythrocytes. Extracellular spermine exerted a dual effect on erythrocyte survival. At 200 μM spermine blunted the increase of intracellular Ca²+, cell shrinkage and annexin V binding following 48 h exposure of cells at +37 °C. In contrast, short exposure (10-30 min) of cells to 2 mM spermine was accompanied by increased cytosolic Ca²+ and annexin binding. Intracellular addition of spermine at subphysiological concentration (0.2 μM) significantly decreased the conductance of monovalent cations (Na+, K+, NMDG+) and of Ca²+. Moreover, spermine (0.2 μM) blunted the stimulation of voltage-independent cation channels by Cl⁻ removal. Spermine (0.2 and 200 μM) added to the extracellular bath solution similarly inhibited the cation conductance in Cl⁻-containing bath solution. The effect of 0.2 μM spermine, but not the effect of 200 μM, was rapidly reversible. Acute addition (250 μM) of a naphthyl acetyl derivative of spermine (200 μM) again significantly decreased basal cation conductance in NaCl bath solution and inhibited voltage-independent cation channels. Spermine is a powerful regulator of erythrocyte cation channel cytosolic Ca²+ activity and, thus, cell survival.
Collapse
Affiliation(s)
- Yuliya V Kucherenko
- Department of Physiology Institute I, Eberhard-Karls Universität Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
47
|
Preliminary kinetic characterization of a copper amine oxidase from rat liver mitochondria matrix. Amino Acids 2010; 40:713-20. [DOI: 10.1007/s00726-010-0708-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022]
|
48
|
Largeron M, Fleury MB, Strolin Benedetti M. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines. Org Biomol Chem 2010; 8:3796-800. [DOI: 10.1039/c004501b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|