1
|
Bianchi G, Mangiagalli M, Ami D, Ahmed J, Lombardi S, Longhi S, Natalello A, Tompa P, Brocca S. Condensation of the N-terminal domain of human topoisomerase 1 is driven by electrostatic interactions and tuned by its charge distribution. Int J Biol Macromol 2024; 254:127754. [PMID: 38287572 DOI: 10.1016/j.ijbiomac.2023.127754] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) is pivotal in forming biomolecular condensates, which are crucial in several biological processes. Intrinsically disordered regions (IDRs) are typically responsible for driving LLPS due to their multivalency and high content of charged residues that enable the establishment of electrostatic interactions. In our study, we examined the role of charge distribution in the condensation of the disordered N-terminal domain of human topoisomerase I (hNTD). hNTD is densely charged with oppositely charged residues evenly distributed along the sequence. Its LLPS behavior was compared with that of charge permutants exhibiting varying degrees of charge segregation. At low salt concentrations, hNTD undergoes LLPS. However, LLPS is inhibited by high concentrations of salt and RNA, disrupting electrostatic interactions. Our findings show that, in hNTD, moderate charge segregation promotes the formation of liquid condensates that are sensitive to salt and RNA, whereas marked charge segregation results in the formation of aberrant condensates. Although our study is based on a limited set of protein variants, it supports the applicability of the "stickers-and-spacers" model to biomolecular condensates involving highly charged IDRs. These results may help generate reliable models of the overall LLPS behavior of supercharged polypeptides.
Collapse
Affiliation(s)
- Greta Bianchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Junaid Ahmed
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Sonia Longhi
- Lab. Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, CNRS, 13288 Marseille, France
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, VUB, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| |
Collapse
|
2
|
Castelli S, Gonçalves MB, Katkar P, Stuchi GC, Couto RAA, Petrilli HM, da Costa Ferreira AM. Comparative studies of oxindolimine-metal complexes as inhibitors of human DNA topoisomerase IB. J Inorg Biochem 2018; 186:85-94. [PMID: 29860208 DOI: 10.1016/j.jinorgbio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Castelli
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Marcos Brown Gonçalves
- Departamento de Física, Universidade Tecnológica Federal do Paraná, 80230-901 Curitiba, PR, Brazil
| | - Prafulla Katkar
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Gabriela Cristina Stuchi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Ricardo Alexandre Alves Couto
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Helena Maria Petrilli
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP, Brazil
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Girstun A, Ishikawa T, Kowalska-Loth B, Czubaty A, Staron K. Subnuclear Localization of Human Topoisomerase I. J Cell Biochem 2016; 118:407-419. [DOI: 10.1002/jcb.25654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Agnieszka Girstun
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Takao Ishikawa
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Barbara Kowalska-Loth
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Alicja Czubaty
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Krzysztof Staron
- Department of Molecular Biology; Institute of Biochemistry; Faculty of Biology; University of Warsaw; Warsaw Poland
| |
Collapse
|
4
|
Vieira S, Castelli S, Falconi M, Takarada J, Fiorillo G, Buzzetti F, Lombardi P, Desideri A. Role of 13-(di)phenylalkyl berberine derivatives in the modulation of the activity of human topoisomerase IB. Int J Biol Macromol 2015; 77:68-75. [PMID: 25783020 DOI: 10.1016/j.ijbiomac.2015.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
Abstract
Topoisomerases IB are anticancer and antimicrobial targets whose inhibition by several natural and non-natural compounds has been documented. The inhibition effect by berberine and some 13-(di)phenylalkyl berberine derivatives has been tested towards human topoisomerase IB. Derivatives belonging to the 13-diphenylalkyl series display an efficient inhibition of the DNA relaxation and cleavage step, that increases upon pre-incubation with the enzyme. The religation step of the enzyme catalytic cycle is not affected by compounds and only slightly upon pre-incubation. The binding of the protein to the DNA substrate occurs also in the presence of the compounds, as monitored by a DNA shift assay, indicating that the compounds are not able to inhibit the formation of the enzyme-DNA complex but that they act as catalytic inhibitors.
Collapse
Affiliation(s)
- Sara Vieira
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Silvia Castelli
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Mattia Falconi
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Jéssica Takarada
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | - Gaetano Fiorillo
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, Italy
| | - Franco Buzzetti
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio, 70, 20026 Novate Milanese, Italy
| | - Alessandro Desideri
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
5
|
Siu FM, Pommier Y. Sequence selectivity of the cleavage sites induced by topoisomerase I inhibitors: a molecular dynamics study. Nucleic Acids Res 2013; 41:10010-9. [PMID: 24021629 PMCID: PMC3905861 DOI: 10.1093/nar/gkt791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Topoisomerase IB (Top1) inhibitors, such as camptothecin (CPT), stabilize the Top1-DNA cleavage complex in a DNA sequence-dependent manner. The sequence selectivity of Top1 inhibitors is important for targeting specific genomic sequences of therapeutic value. However, the molecular mechanisms underlying this selectivity remain largely unknown. We performed molecular dynamics simulations to delineate structural, dynamic and energetic features that contribute to the differential sequence selectivity of the Top1 inhibitors. We found the sequence selectivity of CPT to be highly correlated with the drug binding energies, dynamic and structural properties of the linker domain. Chemical insights, gained by per-residue binding energy analysis revealed that the non-polar interaction between CPT and nucleotide at the +1 position of the cleavage site was the major (favorable) contributor to the total binding energy. Mechanistic insights gained by a potential of mean force analysis implicated that the drug dissociation step was associated with the sequence selectivity. Pharmaceutical insights gained by our molecular dynamics analyses explained why LMP-776, an indenoisoquinoline derivative under clinical development at the National Institutes of Health, displays different sequence selectivity when compared with camptothecin and its clinical derivatives.
Collapse
Affiliation(s)
- Fung-Ming Siu
- Center for High Performance Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili Nanshan, Shenzhen 518055, China, Department of Chemistry and Institutes of Molecular Technology for Drug Discovery and Synthesis, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Castelli S, Vieira S, D'Annessa I, Katkar P, Musso L, Dallavalle S, Desideri A. A derivative of the natural compound kakuol affects DNA relaxation of topoisomerase IB inhibiting the cleavage reaction. Arch Biochem Biophys 2012; 530:7-12. [PMID: 23262316 DOI: 10.1016/j.abb.2012.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 11/28/2022]
Abstract
Topoisomerases IB are anticancer and antimicrobial targets whose inhibition by several natural and synthetic compounds has been documented over the last three decades. Here we show that kakuol, a natural compound isolated from the rhizomes of Asarum sieboldii, and a derivative analogue are able to inhibit the DNA relaxation mediated by the human enzyme. The analogue is the most efficient one and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of the different steps of the catalytic cycle indicates that the inhibition occurs at the cleavage level and does not prevent DNA binding. Molecular docking shows that the compound preferentially binds near the active site at the bottom of the catalytic residue Tyr723, providing an atomistic explanation for its inhibitory activity.
Collapse
Affiliation(s)
- Silvia Castelli
- University of Rome Tor Vergata, Department of Biology, Via Della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Ishikawa T, Krzysko KA, Kowalska-Loth B, Skrajna AM, Czubaty A, Girstun A, Cieplak MK, Lesyng B, Staron K. Activities of topoisomerase I in its complex with SRSF1. Biochemistry 2012; 51:1803-16. [PMID: 22320324 DOI: 10.1021/bi300043t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human DNA topoisomerase I (topo I) catalyzes DNA relaxation and phosphorylates SRSF1. Whereas the structure of topo I complexed with DNA has been resolved, the structure of topo I in the complex with SRSF1 and structural determinants of topo I activities in this complex are not known. The main obstacle to resolving the structure is a contribution of unfolded domains of topo I and SRSF1 in formation of the complex. To overcome this difficulty, we employed a three-step strategy: identifying the interaction regions, modeling the complex, and validating the model with biochemical methods. The binding sites in both topo I and SRSF1 are localized in the structured regions as well as in the unfolded domains. One observes cooperation between the binding sites in topo I but not in SRSF1. Our results indicate two features of the unfolded RS domain of SRSF1 containing phosphorylated residues that are critical for the kinase activity of topo I: its spatial arrangement relative to topo I and the organization of its sequence. The efficiency of phosphorylation of SRSF1 depends on the length and flexibility of the spacer between the two RRM domains that uniquely determine an arrangement of the RS domain relative to topo I. The spacer also influences inhibition of DNA nicking, a prerequisite for DNA relaxation. To be phosphorylated, the RS domain has to include a short sequence recognized by topo I. A lack of this sequence in the mutants of SRSF1 or its spatial inaccessibility in SRSF9 makes them inadequate as topo I/kinase substrates.
Collapse
Affiliation(s)
- Takao Ishikawa
- Institute of Biochemistry, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|