1
|
Shahid, Hayat M, Raza A, Akbar S, Alghamdi W, Iqbal N, Zou Q. pACPs-DNN: Predicting anticancer peptides using novel peptide transformation into evolutionary and structure matrix-based images with self-attention deep learning model. Comput Biol Chem 2025; 117:108441. [PMID: 40168838 DOI: 10.1016/j.compbiolchem.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
Globally, cancer remains a major health challenge due to its high mortality rates. Traditional experimental approaches and therapies are resource-intensive and often cause significant side effects. Anticancer peptides (ACPs) have emerged as alternative therapeutic agents owing to their selectivity, safety, and potential to mitigate drug resistance. In this paper, we propose pACPs-DNN, a novel attention mechanism-based deep learning model developed for the accurate prediction of ACPs and non-ACPs. The pACPs-DNN model transforms input peptides into image representations using residue-wise energy contact matrix (RECM), substitution Matrix Representation (SMR), and Position Specific Scoring Matrix (PSSM) embeddings, followed by local binary pattern (LBP)-based decomposition to capture enhanced structural and local semantic features. These transformations generate novel feature sets, including RECM_LBP, LBP_SMR, and LBP_PSSM. Subsequently, a two-tier feature selection approach is employed to identify a high-ranking optimal feature set, which is then used to train an attention-based deep neural network. The proposed pACPs-DNN model achieves an impressive training accuracy of 96.91 % and an AUC of 0.98. To evaluate its generalization capability, the model was validated on independent datasets, demonstrating significant improvements of 5 % and 3.5 % in accuracy over existing models on the Ind-I and Ind-II datasets, respectively. The demonstrated efficacy and robustness of pACPs-DNN highlight its potential as a valuable tool for advancing drug discovery and academic research in cancer-related therapeutic development.
Collapse
Affiliation(s)
- Shahid
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan.
| | - Ali Raza
- Department of Computer Science, Bahria University, Islamabad 44220, Pakistan
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.
| |
Collapse
|
2
|
Akbar S, Ullah M, Raza A, Zou Q, Alghamdi W. DeepAIPs-Pred: Predicting Anti-Inflammatory Peptides Using Local Evolutionary Transformation Images and Structural Embedding-Based Optimal Descriptors with Self-Normalized BiTCNs. J Chem Inf Model 2024; 64:9609-9625. [PMID: 39625463 DOI: 10.1021/acs.jcim.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Inflammation is a biological response to harmful stimuli, playing a crucial role in facilitating tissue repair by eradicating pathogenic microorganisms. However, when inflammation becomes chronic, it leads to numerous serious disorders, particularly in autoimmune diseases. Anti-inflammatory peptides (AIPs) have emerged as promising therapeutic agents due to their high specificity, potency, and low toxicity. However, identifying AIPs using traditional in vivo methods is time-consuming and expensive. Recent advancements in computational-based intelligent models for peptides have offered a cost-effective alternative for identifying various inflammatory diseases, owing to their selectivity toward targeted cells with low side effects. In this paper, we propose a novel computational model, namely, DeepAIPs-Pred, for the accurate prediction of AIP sequences. The training samples are represented using LBP-PSSM- and LBP-SMR-based evolutionary image transformation methods. Additionally, to capture contextual semantic features, we employed attention-based ProtBERT-BFD embedding and QLC for structural features. Furthermore, differential evolution (DE)-based weighted feature integration is utilized to produce a multiview feature vector. The SMOTE-Tomek Links are introduced to address the class imbalance problem, and a two-layer feature selection technique is proposed to reduce and select the optimal features. Finally, the novel self-normalized bidirectional temporal convolutional networks (SnBiTCN) are trained using optimal features, achieving a significant predictive accuracy of 94.92% and an AUC of 0.97. The generalization of our proposed model is validated using two independent datasets, demonstrating higher performance with the improvement of ∼2 and ∼10% of accuracies than the existing state-of-the-art model using Ind-I and Ind-II, respectively. The efficacy and reliability of DeepAIPs-Pred highlight its potential as a valuable and promising tool for drug development and research academia.
Collapse
Affiliation(s)
- Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Ullah M, Akbar S, Raza A, Zou Q. DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm. Bioinformatics 2024; 40:btae305. [PMID: 38710482 PMCID: PMC11256913 DOI: 10.1093/bioinformatics/btae305] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
MOTIVATION Despite the extensive manufacturing of antiviral drugs and vaccination, viral infections continue to be a major human ailment. Antiviral peptides (AVPs) have emerged as potential candidates in the pursuit of novel antiviral drugs. These peptides show vigorous antiviral activity against a diverse range of viruses by targeting different phases of the viral life cycle. Therefore, the accurate prediction of AVPs is an essential yet challenging task. Lately, many machine learning-based approaches have developed for this purpose; however, their limited capabilities in terms of feature engineering, accuracy, and generalization make these methods restricted. RESULTS In the present study, we aim to develop an efficient machine learning-based approach for the identification of AVPs, referred to as DeepAVP-TPPred, to address the aforementioned problems. First, we extract two new transformed feature sets using our designed image-based feature extraction algorithms and integrate them with an evolutionary information-based feature. Next, these feature sets were optimized using a novel feature selection approach called binary tree growth Algorithm. Finally, the optimal feature space from the training dataset was fed to the deep neural network to build the final classification model. The proposed model DeepAVP-TPPred was tested using stringent 5-fold cross-validation and two independent dataset testing methods, which achieved the maximum performance and showed enhanced efficiency over existing predictors in terms of both accuracy and generalization capabilities. AVAILABILITY AND IMPLEMENTATION https://github.com/MateeullahKhan/DeepAVP-TPPred.
Collapse
Affiliation(s)
- Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
| |
Collapse
|
4
|
Su W, Deng S, Gu Z, Yang K, Ding H, Chen H, Zhang Z. Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition. Front Genet 2023; 14:1157021. [PMID: 36926588 PMCID: PMC10011625 DOI: 10.3389/fgene.2023.1157021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction: Apoptosis proteins play an important role in the process of cell apoptosis, which makes the rate of cell proliferation and death reach a relative balance. The function of apoptosis protein is closely related to its subcellular location, it is of great significance to study the subcellular locations of apoptosis proteins. Many efforts in bioinformatics research have been aimed at predicting their subcellular location. However, the subcellular localization of apoptotic proteins needs to be carefully studied. Methods: In this paper, based on amphiphilic pseudo amino acid composition and support vector machine algorithm, a new method was proposed for the prediction of apoptosis proteins\x{2019} subcellular location. Results and Discussion: The method achieved good performance on three data sets. The Jackknife test accuracy of the three data sets reached 90.5%, 93.9% and 84.0%, respectively. Compared with previous methods, the prediction accuracies of APACC_SVM were improved.
Collapse
Affiliation(s)
- Wenxia Su
- College of Science, Inner Mongolia Agriculture University, Hohhot, China
| | - Shuyi Deng
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhifeng Gu
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Keli Yang
- Nonlinear Research Institute, Baoji University of Arts and Sciences, Baoji, China
| | - Hui Ding
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Chen
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Zhaoyue Zhang
- School of Life Science and Technology, Center for Information Biology, University of Electronic Science and Technology of China, Chengdu, China.,School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| |
Collapse
|
5
|
Arif M, Kabir M, Ahmed S, Khan A, Ge F, Khelifi A, Yu DJ. DeepCPPred: A Deep Learning Framework for the Discrimination of Cell-Penetrating Peptides and Their Uptake Efficiencies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2749-2759. [PMID: 34347603 DOI: 10.1109/tcbb.2021.3102133] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-penetrating peptides (CPPs) are special peptides capable of carrying a variety of bioactive molecules, such as genetic materials, short interfering RNAs and nanoparticles, into cells. Recently, research on CPP has gained substantial interest from researchers, and the biological mechanisms of CPPS have been assessed in the context of safe drug delivery agents and therapeutic applications. Correct identification and synthesis of CPPs using traditional biochemical methods is an extremely slow, expensive and laborious task particularly due to the large volume of unannotated peptide sequences accumulating in the World Bank repository. Hence, a powerful bioinformatics predictor that rapidly identifies CPPs with a high recognition rate is urgently needed. To date, numerous computational methods have been developed for CPP prediction. However, the available machine-learning (ML) tools are unable to distinguish both the CPPs and their uptake efficiencies. This study aimed to develop a two-layer deep learning framework named DeepCPPred to identify both CPPs in the first phase and peptide uptake efficiency in the second phase. The DeepCPPred predictor first uses four types of descriptors that cover evolutionary, energy estimation, reduced sequence and amino-acid contact information. Then, the extracted features are optimized through the elastic net algorithm and fed into a cascade deep forest algorithm to build the final CPP model. The proposed method achieved 99.45 percent overall accuracy with the CPP924 benchmark dataset in the first layer and 95.43 percent accuracy in the second layer with the CPPSite3 dataset using a 5-fold cross-validation test. Thus, our proposed bioinformatics tool surpassed all the existing state-of-the-art sequence-based CPP approaches.
Collapse
|
6
|
Khalili E, Ramazi S, Ghanati F, Kouchaki S. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network. Brief Bioinform 2022; 23:bbac015. [PMID: 35152280 DOI: 10.1093/bib/bbac015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2023] Open
Abstract
Phosphorylation of proteins is one of the most significant post-translational modifications (PTMs) and plays a crucial role in plant functionality due to its impact on signaling, gene expression, enzyme kinetics, protein stability and interactions. Accurate prediction of plant phosphorylation sites (p-sites) is vital as abnormal regulation of phosphorylation usually leads to plant diseases. However, current experimental methods for PTM prediction suffers from high-computational cost and are error-prone. The present study develops machine learning-based prediction techniques, including a high-performance interpretable deep tabular learning network (TabNet) to improve the prediction of protein p-sites in soybean. Moreover, we use a hybrid feature set of sequential-based features, physicochemical properties and position-specific scoring matrices to predict serine (Ser/S), threonine (Thr/T) and tyrosine (Tyr/Y) p-sites in soybean for the first time. The experimentally verified p-sites data of soybean proteins are collected from the eukaryotic phosphorylation sites database and database post-translational modification. We then remove the redundant set of positive and negative samples by dropping protein sequences with >40% similarity. It is found that the developed techniques perform >70% in terms of accuracy. The results demonstrate that the TabNet model is the best performing classifier using hybrid features and with window size of 13, resulted in 78.96 and 77.24% sensitivity and specificity, respectively. The results indicate that the TabNet method has advantages in terms of high-performance and interpretability. The proposed technique can automatically analyze the data without any measurement errors and any human intervention. Furthermore, it can be used to predict putative protein p-sites in plants effectively. The collected dataset and source code are publicly deposited at https://github.com/Elham-khalili/Soybean-P-sites-Prediction.
Collapse
Affiliation(s)
- Elham Khalili
- Department of Plant Science, Faculty of Science, Tarbiat Modarres University, Tehran, Iran
| | - Shahin Ramazi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Science, Faculty of Science, Tarbiat Modarres University, Tehran, Iran
| | - Samaneh Kouchaki
- Department of Electrical and Electronic Engineering, .Faculty of Engineering and Physical Sciences, Centre for Vision, Speech, and Signal Processing, University of Surrey, Guildford, UK
| |
Collapse
|
7
|
Pan J, Li LP, You ZH, Yu CQ, Ren ZH, Guan YJ. Prediction of Protein-Protein Interactions in Arabidopsis, Maize, and Rice by Combining Deep Neural Network With Discrete Hilbert Transform. Front Genet 2021; 12:745228. [PMID: 34616437 PMCID: PMC8488469 DOI: 10.3389/fgene.2021.745228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022] Open
Abstract
Protein-protein interactions (PPIs) in plants play an essential role in the regulation of biological processes. However, traditional experimental methods are expensive, time-consuming, and need sophisticated technical equipment. These drawbacks motivated the development of novel computational approaches to predict PPIs in plants. In this article, a new deep learning framework, which combined the discrete Hilbert transform (DHT) with deep neural networks (DNN), was presented to predict PPIs in plants. To be more specific, plant protein sequences were first transformed as a position-specific scoring matrix (PSSM). Then, DHT was employed to capture features from the PSSM. To improve the prediction accuracy, we used the singular value decomposition algorithm to decrease noise and reduce the dimensions of the feature descriptors. Finally, these feature vectors were fed into DNN for training and predicting. When performing our method on three plant PPI datasets Arabidopsis thaliana, maize, and rice, we achieved good predictive performance with average area under receiver operating characteristic curve values of 0.8369, 0.9466, and 0.9440, respectively. To fully verify the predictive ability of our method, we compared it with different feature descriptors and machine learning classifiers. Moreover, to further demonstrate the generality of our approach, we also test it on the yeast and human PPI dataset. Experimental results anticipated that our method is an efficient and promising computational model for predicting potential plant-protein interacted pairs.
Collapse
Affiliation(s)
- Jie Pan
- School of Information Engineering, Xijing University, Xi’an, China
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
| | | | | | | | | |
Collapse
|
8
|
Prediction of High-Risk Types of Human Papillomaviruses Using Reduced Amino Acid Modes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2020:5325304. [PMID: 32655680 PMCID: PMC7320279 DOI: 10.1155/2020/5325304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023]
Abstract
A human papillomavirus type plays an important role in the early diagnosis of cervical cancer. Most of the prediction methods use protein sequence and structure information, but the reduced amino acid modes have not been used until now. In this paper, we introduced the modes of reduced amino acids to predict high-risk HPV. We first reduced 20 amino acids into several nonoverlapping groups and calculated their structure and physicochemical modes for high-risk HPV prediction, which was tested and compared with the existing methods on 68 samples of known HPV types. The experiment result indicates that the proposed method achieved better performance with an accuracy of 96.49%, indicating that the reduced amino acid modes might be used to improve the prediction of high-risk HPV types.
Collapse
|
9
|
Nanni L, Brahnam S. Robust ensemble of handcrafted and learned approaches for DNA-binding proteins. APPLIED COMPUTING AND INFORMATICS 2021. [DOI: 10.1108/aci-03-2021-0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Automatic DNA-binding protein (DNA-BP) classification is now an essential proteomic technology. Unfortunately, many systems reported in the literature are tested on only one or two datasets/tasks. The purpose of this study is to create the most optimal and universal system for DNA-BP classification, one that performs competitively across several DNA-BP classification tasks.
Design/methodology/approach
Efficient DNA-BP classifier systems require the discovery of powerful protein representations and feature extraction methods. Experiments were performed that combined and compared descriptors extracted from state-of-the-art matrix/image protein representations. These descriptors were trained on separate support vector machines (SVMs) and evaluated. Convolutional neural networks with different parameter settings were fine-tuned on two matrix representations of proteins. Decisions were fused with the SVMs using the weighted sum rule and evaluated to experimentally derive the most powerful general-purpose DNA-BP classifier system.
Findings
The best ensemble proposed here produced comparable, if not superior, classification results on a broad and fair comparison with the literature across four different datasets representing a variety of DNA-BP classification tasks, thereby demonstrating both the power and generalizability of the proposed system.
Originality/value
Most DNA-BP methods proposed in the literature are only validated on one (rarely two) datasets/tasks. In this work, the authors report the performance of our general-purpose DNA-BP system on four datasets representing different DNA-BP classification tasks. The excellent results of the proposed best classifier system demonstrate the power of the proposed approach. These results can now be used for baseline comparisons by other researchers in the field.
Collapse
|
10
|
Xu H, Xu D, Zhang N, Zhang Y, Gao R. Protein-Protein Interaction Prediction Based on Spectral Radius and General Regression Neural Network. J Proteome Res 2021; 20:1657-1665. [PMID: 33555893 DOI: 10.1021/acs.jproteome.0c00871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-protein interaction (PPI) not only plays a critical role in cell life activities, but also plays an important role in discovering the mechanism of biological activity, protein function, and disease states. Developing computational methods is of great significance for PPIs prediction since experimental methods are time-consuming and laborious. In this paper, we proposed a PPI prediction algorithm called GRNN-PPI only using the amino acid sequence information based on general regression neural network and two feature extraction methods. Specifically, we designed a new feature extraction method named Mutation Spectral Radius (MSR) to extract evolutionary information by the BLOSUM62 matrix. Meanwhile, we integrated another feature extraction method, autocorrelation description, which can completely extract information on physicochemical properties and protein sequences. The principal component analysis was applied to eliminate noise, and the general regression neural network was adopted as a classifier. The prediction accuracy of the yeast, human, and Helicobacter pylori1 (H. pylori1) data sets were 97.47%, 99.63%, and 99.97%, respectively. In addition, we also conducted experiments on two important PPI networks and six independent data sets. All results were significantly higher than some state-of-the-art methods used for comparison, showing that our method is feasible and robust.
Collapse
Affiliation(s)
- Hanxiao Xu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Da Xu
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 264209, China
| | - Rui Gao
- School of Control Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
11
|
Wang Z, Li Y, You ZH, Li LP, Zhan XK, Pan J. Prediction of Protein-Protein Interactions from Protein Sequences by Combining MatPCA Feature Extraction Algorithms and Weighted Sparse Representation Models. MATHEMATICAL PROBLEMS IN ENGINEERING 2020; 2020:1-11. [DOI: 10.1155/2020/5764060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Identifying protein-protein interactions (PPIs) plays a vital role in a number of biological activities such as signal transduction, transcriptional regulation, and apoptosis. Although advances in high-throughput technologies have generated large amounts of PPI data for different species, they only cover a small part of the entire PPI network. Furthermore, traditional experimental methods are generally expensive, time-consuming, tedious, and prone to high false-positive rates. Therefore, to overcome this problem, it is necessary to develop a novel computational method for predicting PPIs. In this article, we propose an efficient computational method to detect protein-protein interactions using only protein sequence information, which integrates the MatPCA feature extraction algorithm and the weighted sparse representation classifier. As a result, when predicting PPIs on yeast, human, and H. pylori datasets, the proposed method achieves superior prediction performance with an average accuracy of 94.55%, 97.48%, and 83.64%, respectively. These experimental results further illustrate that the proposed method is reliable and robust in predicting PPIs, which can be regarded as a useful complement to the experimental method.
Collapse
Affiliation(s)
- Zheng Wang
- School of Information Engineering, Xijing University, Xi’an 710123, China
| | - Yang Li
- School of Information Engineering, Xijing University, Xi’an 710123, China
| | - Zhu-Hong You
- School of Information Engineering, Xijing University, Xi’an 710123, China
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an 710123, China
| | - Xin-Ke Zhan
- School of Information Engineering, Xijing University, Xi’an 710123, China
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi’an 710123, China
| |
Collapse
|
12
|
Singh D, Sisodia DS, Singh P. Multiobjective evolutionary-based multi-kernel learner for realizing transfer learning in the prediction of HIV-1 protease cleavage sites. Soft comput 2020. [DOI: 10.1007/s00500-019-04487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
14
|
Singh D, Sisodia DS, Singh P. Compositional framework for multitask learning in the identification of cleavage sites of HIV-1 protease. J Biomed Inform 2020; 102:103376. [PMID: 31935461 DOI: 10.1016/j.jbi.2020.103376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022]
Abstract
Inadequate patient samples and costly annotated data generations result into the smaller dataset in the biomedical domain. Due to which the predictions with a trained model that usually reveal a single small dataset association are fail to derive robust insights. To cope with the data sparsity, a promising strategy of combining data from the different related tasks is exercised in various application. Motivated by, successful work in the various bioinformatics application, we propose a multitask learning model based on multi-kernel that exploits the dependencies among various related tasks. This work aims to combine the knowledge from experimental studies of the different dataset to build stronger predictive models for HIV-1 protease cleavage sites prediction. In this study, a set of peptide data from one source is referred as 'task' and to integrate interactions from multiple tasks; our method exploits the common features and parameters sharing across the data source. The proposed framework uses feature integration, feature selection, multi-kernel and multifactorial evolutionary algorithm to model multitask learning. The framework considered seven different feature descriptors and four different kernel variants of support vector machines to form the optimal multi-kernel learning model. To validate the effectiveness of the model, the performance parameters such as average accuracy, and area under curve have been evaluated on the suggested model. We also carried out Friedman and post hoc statistical test to substantiate the significant improvement achieved by the proposed framework. The result obtained following the extensive experiment confirms the belief that multitask learning in cleavage site identification can improve the performance.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, C.G, India.
| | - Dilip Singh Sisodia
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, C.G, India.
| | - Pradeep Singh
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, C.G, India.
| |
Collapse
|
15
|
Singh D, Singh P, Singh Sisodia D. Compositional model based on factorial evolution for realizing multi-task learning in bacterial virulent protein prediction. Artif Intell Med 2019; 101:101757. [PMID: 31813491 DOI: 10.1016/j.artmed.2019.101757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The ability of multitask learning promulgated its sovereignty in the machine learning field with the diversified application including but not limited to bioinformatics and pattern recognition. Bioinformatics provides a wide range of applications for Multitask Learning (MTL) methods. Identification of Bacterial virulent protein is one such application that helps in understanding the virulence mechanism for the design of drug and vaccine. However, the limiting factor in a reliable prediction model is the scarcity of the experimentally verified training data. To deal with, casting the problem in a Multitask Learning scenario, could be beneficial. Reusability of auxiliary data from related multiple domains in the prediction of target domain with limited labeled data is the primary objective of multitask learning model. Due to the amalgamation of multiple related data, it is possible that the probability distribution between the features tends to vary. Therefore, to deal with change amongst the feature distribution, this paper proposes a composite model for multitask learning framework which is based on two principles: discovering the shared parameters for identifying the relationships between tasks and common underlying representation of features amongst the related tasks. Through multi-kernel and factorial evolution, the proposed framework able to discover the shared kernel parameters and latent feature representation that is common amongst the tasks. To examine the benefits of the proposed model, an extensive experiment is performed on the freely available dataset at VirulentPred web server. Based on the results, we found that multitask learning model performs better than the conventional single task model. Additionally, our findings state that if the distribution between the tasks is high, then training the multiple models yield slightly better prediction. However, if the data distribution difference is low, multitask learning significantly outperforms the individual learning.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, C.G., India.
| | - Pradeep Singh
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, C.G., India.
| | - Dilip Singh Sisodia
- Department of Computer Science and Engineering, National Institute of Technology, Raipur, C.G., India.
| |
Collapse
|
16
|
Ruan X, Zhou D, Nie R, Hou R, Cao Z. Prediction of apoptosis protein subcellular location based on position-specific scoring matrix and isometric mapping algorithm. Med Biol Eng Comput 2019; 57:2553-2565. [PMID: 31621050 DOI: 10.1007/s11517-019-02045-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/04/2019] [Indexed: 01/04/2023]
Abstract
Apoptosis proteins are related to many diseases. Obtaining the subcellular localization information of apoptosis proteins is helpful to understand the mechanism of diseases and to develop new drugs. At present, the researchers mainly focus on the primary protein sequences, so there is still room for improvement in the prediction accuracy of the subcellular localization of apoptosis proteins. In this paper, a new method named ERT-ECT-PSSM-IS is proposed to predict apoptosis proteins based on the position-specific scoring matrix (PSSM). First, the local and global features of different directions are extracted by evolutionary row transformation (ERT) and cross-covariance of evolutionary column transformation (ECT) based on PSSM (ERT-ECT-PSSM). Second, an improved isometric mapping algorithm (I-SMA) is used to eliminate redundant features. Finally, we adopt a support vector machine (SVM) to classify our results, and the prediction accuracy is evaluated by jackknife cross-validation tests. The experimental results show that the proposed method not only extracts more abundant feature expression but also has better predictive performance and robustness for the subcellular localization of apoptosis proteins in ZD98, ZW225, and CL317 databases. Graphical abstract Framework of the proposed prediction model.
Collapse
Affiliation(s)
- Xiaoli Ruan
- Information College, Yunnan University, Kunming, 650504, China
| | - Dongming Zhou
- Information College, Yunnan University, Kunming, 650504, China.
| | - Rencan Nie
- Information College, Yunnan University, Kunming, 650504, China
| | - Ruichao Hou
- Information College, Yunnan University, Kunming, 650504, China
| | - Zicheng Cao
- School of Public Health, Sun Yat-sen University, Shenzhen, 510080, China
| |
Collapse
|
17
|
Rifaioglu AS, Atas H, Martin MJ, Cetin-Atalay R, Atalay V, Doğan T. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 2019; 20:1878-1912. [PMID: 30084866 PMCID: PMC6917215 DOI: 10.1093/bib/bby061] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/25/2018] [Indexed: 01/16/2023] Open
Abstract
The identification of interactions between drugs/compounds and their targets is crucial for the development of new drugs. In vitro screening experiments (i.e. bioassays) are frequently used for this purpose; however, experimental approaches are insufficient to explore novel drug-target interactions, mainly because of feasibility problems, as they are labour intensive, costly and time consuming. A computational field known as 'virtual screening' (VS) has emerged in the past decades to aid experimental drug discovery studies by statistically estimating unknown bio-interactions between compounds and biological targets. These methods use the physico-chemical and structural properties of compounds and/or target proteins along with the experimentally verified bio-interaction information to generate predictive models. Lately, sophisticated machine learning techniques are applied in VS to elevate the predictive performance. The objective of this study is to examine and discuss the recent applications of machine learning techniques in VS, including deep learning, which became highly popular after giving rise to epochal developments in the fields of computer vision and natural language processing. The past 3 years have witnessed an unprecedented amount of research studies considering the application of deep learning in biomedicine, including computational drug discovery. In this review, we first describe the main instruments of VS methods, including compound and protein features (i.e. representations and descriptors), frequently used libraries and toolkits for VS, bioactivity databases and gold-standard data sets for system training and benchmarking. We subsequently review recent VS studies with a strong emphasis on deep learning applications. Finally, we discuss the present state of the field, including the current challenges and suggest future directions. We believe that this survey will provide insight to the researchers working in the field of computational drug discovery in terms of comprehending and developing novel bio-prediction methods.
Collapse
Affiliation(s)
- Ahmet Sureyya Rifaioglu
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
- Department of Computer Engineering, İskenderun Technical University, Hatay, Turkey
| | - Heval Atas
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Maria Jesus Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| | - Rengul Cetin-Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Volkan Atalay
- Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
| | - Tunca Doğan
- Cancer System Biology Laboratory (CanSyL), Graduate School of Informatics, Middle East Technical University, Ankara, Turkey and European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL–EBI), Cambridge, Hinxton, UK
| |
Collapse
|
18
|
Chou KC. Proposing Pseudo Amino Acid Components is an Important Milestone for Proteome and Genome Analyses. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09910-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Xi B, Tao J, Liu X, Xu X, He P, Dai Q. RaaMLab: A MATLAB toolbox that generates amino acid groups and reduced amino acid modes. Biosystems 2019; 180:38-45. [PMID: 30904554 DOI: 10.1016/j.biosystems.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/25/2018] [Accepted: 03/06/2019] [Indexed: 01/31/2023]
Abstract
Amino acid (AA) classification and its different biophysical and chemical characteristics have been widely applied to analyze and predict the structural, functional, expression and interaction profiles of proteins and peptides. We present RaaMLab, a free and open-source MATLAB toolbox, to facilitate studies on proteins and peptides, to generate AA groups and to extract the structural and physicochemical features of reduced AAs (RedAA). This toolbox offers 4 kinds of databases, including the physicochemical properties of AAs and their groupings, 49 AA classification methods and 5 types of biophysicochemical features of RedAAs. These factors can be easily computed based on user-defined alphabet size and AA properties of AA groupings. RaaMLab is an open source freely available at https://github.com/bioinfo0706/RaaMLab. This website also contains a tutorial, extensive documentation and examples.
Collapse
Affiliation(s)
- Baohang Xi
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jin Tao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoqing Liu
- College of Sciences, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Xinnan Xu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Pingan He
- College of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qi Dai
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
20
|
Predicting Apoptosis Protein Subcellular Locations based on the Protein Overlapping Property Matrix and Tri-Gram Encoding. Int J Mol Sci 2019; 20:ijms20092344. [PMID: 31083553 PMCID: PMC6539631 DOI: 10.3390/ijms20092344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.
Collapse
|
21
|
Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 2019; 93:103159. [PMID: 30926470 DOI: 10.1016/j.jbi.2019.103159] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
Drug target interaction is a prominent research area in the field of drug discovery. It refers to the recognition of interactions between chemical compounds and the protein targets in the human body. Wet lab experiments to identify these interactions are expensive as well as time consuming. The computational methods of interaction prediction help limit the search space for these experiments. These computational methods can be divided into ligand based approaches, docking approaches and chemogenomic approaches. In this review, we aim to describe the various feature based chemogenomic methods for drug target interaction prediction. It provides a comprehensive overview of the various techniques, datasets, tools and metrics. The feature based methods have been categorized, explained and compared. A novel framework for drug target interaction prediction has also been proposed that aims to improve the performance of existing methods. To the best of our knowledge, this is the first comprehensive review focusing only on feature based methods of drug target interaction.
Collapse
Affiliation(s)
- Kanica Sachdev
- Computer Science and Engineering Department, SMVDU, J&K, India.
| | | |
Collapse
|
22
|
Yu B, Li S, Qiu W, Wang M, Du J, Zhang Y, Chen X. Prediction of subcellular location of apoptosis proteins by incorporating PsePSSM and DCCA coefficient based on LFDA dimensionality reduction. BMC Genomics 2018; 19:478. [PMID: 29914358 PMCID: PMC6006758 DOI: 10.1186/s12864-018-4849-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Apoptosis is associated with some human diseases, including cancer, autoimmune disease, neurodegenerative disease and ischemic damage, etc. Apoptosis proteins subcellular localization information is very important for understanding the mechanism of programmed cell death and the development of drugs. Therefore, the prediction of subcellular localization of apoptosis protein is still a challenging task. RESULTS In this paper, we propose a novel method for predicting apoptosis protein subcellular localization, called PsePSSM-DCCA-LFDA. Firstly, the protein sequences are extracted by combining pseudo-position specific scoring matrix (PsePSSM) and detrended cross-correlation analysis coefficient (DCCA coefficient), then the extracted feature information is reduced dimensionality by LFDA (local Fisher discriminant analysis). Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of the apoptosis proteins. The overall prediction accuracy of 99.7, 99.6 and 100% are achieved respectively on the three benchmark datasets by the most rigorous jackknife test, which is better than other state-of-the-art methods. CONCLUSION The experimental results indicate that our method can significantly improve the prediction accuracy of subcellular localization of apoptosis proteins, which is quite high to be able to become a promising tool for further proteomics studies. The source code and all datasets are available at https://github.com/QUST-BSBRC/PsePSSM-DCCA-LFDA/ .
Collapse
Affiliation(s)
- Bin Yu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China. .,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China. .,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Shan Li
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Wenying Qiu
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Minghui Wang
- College of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.,Artificial Intelligence and Biomedical Big Data Research Center, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Junwei Du
- College of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, 266061, China
| | - Yusen Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, 264209, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 21116, China
| |
Collapse
|
23
|
Lei H, Wen Y, You Z, Elazab A, Tan EL, Zhao Y, Lei B. Protein-Protein Interactions Prediction via Multimodal Deep Polynomial Network and Regularized Extreme Learning Machine. IEEE J Biomed Health Inform 2018; 23:1290-1303. [PMID: 29994278 DOI: 10.1109/jbhi.2018.2845866] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the protein-protein interactions (PPIs) has played an important role in many applications. Hence, a novel computational method for PPIs prediction is highly desirable. PPIs endow with protein amino acid mutation rate and two physicochemical properties of protein (e.g., hydrophobicity and hydrophilicity). Deep polynomial network (DPN) is well-suited to integrate these modalities since it can represent any function on a finite sample dataset via the supervised deep learning algorithm. We propose a multimodal DPN (MDPN) algorithm to effectively integrate these modalities to enhance prediction performance. MDPN consists of a two-stage DPN, the first stage feeds multiple protein features into DPN encoding to obtain high-level feature representation while the second stage fuses and learns features by cascading three types of high-level features in the DPN encoding. We employ a regularized extreme learning machine to predict PPIs. The proposed method is tested on the public dataset of H. pylori, Human, and Yeast and achieves average accuracies of 97.87%, 99.90%, and 98.11%, respectively. The proposed method also achieves good accuracies on other datasets. Furthermore, we test our method on three kinds of PPI networks and obtain superior prediction results.
Collapse
|
24
|
Tang Y, Xie L, Chen L. iAPSL-IF: Identification of Apoptosis Protein Subcellular Location Using Integrative Features Captured from Amino Acid Sequences. Int J Mol Sci 2018; 19:ijms19041190. [PMID: 29652843 PMCID: PMC5979326 DOI: 10.3390/ijms19041190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/24/2022] Open
Abstract
Apoptosis proteins (APs) control normal tissue homeostasis by regulating the balance between cell proliferation and death. The function of APs is strongly related to their subcellular location. To date, computational methods have been reported that reliably identify the subcellular location of APs, however, there is still room for improvement of the prediction accuracy. In this study, we developed a novel method named iAPSL-IF (identification of apoptosis protein subcellular location—integrative features), which is based on integrative features captured from Markov chains, physicochemical property matrices, and position-specific score matrices (PSSMs) of amino acid sequences. The matrices with different lengths were transformed into fixed-length feature vectors using an auto cross-covariance (ACC) method. An optimal subset of the features was chosen using a recursive feature elimination (RFE) algorithm method, and the sequences with these features were trained by a support vector machine (SVM) classifier. Based on three datasets ZD98, CL317, and ZW225, the iAPSL-IF was examined using a jackknife cross-validation test. The resulting data showed that the iAPSL-IF outperformed the known predictors reported in the literature: its overall accuracy on the three datasets was 98.98% (ZD98), 94.95% (CL317), and 97.33% (ZW225), respectively; the Matthews correlation coefficient, sensitivity, and specificity for several classes of subcellular location proteins (e.g., membrane proteins, cytoplasmic proteins, endoplasmic reticulum proteins, nuclear proteins, and secreted proteins) in the datasets were 0.92–1.0, 94.23–100%, and 97.07–100%, respectively. Overall, the results of this study provide a high throughput and sequence-based method for better identification of the subcellular location of APs, and facilitates further understanding of programmed cell death in organisms.
Collapse
Affiliation(s)
- Yadong Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
25
|
Accurate prediction of subcellular location of apoptosis proteins combining Chou's PseAAC and PsePSSM based on wavelet denoising. Oncotarget 2017; 8:107640-107665. [PMID: 29296195 PMCID: PMC5746097 DOI: 10.18632/oncotarget.22585] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.
Collapse
|
26
|
MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2017; 2017:9183796. [PMID: 28744305 PMCID: PMC5514333 DOI: 10.1155/2017/9183796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/05/2023]
Abstract
Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.
Collapse
|
27
|
Liu B, Wu H, Chou KC. Pse-in-One 2.0: An Improved Package of Web Servers for Generating Various Modes of Pseudo Components of DNA, RNA, and Protein Sequences. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ns.2017.94007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Huang YA, You ZH, Li X, Chen X, Hu P, Li S, Luo X. Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Identification of Protein-Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information. Int J Mol Sci 2016; 17:ijms17101623. [PMID: 27669239 PMCID: PMC5085656 DOI: 10.3390/ijms17101623] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
Identification of protein–protein interactions (PPIs) is a difficult and important problem in biology. Since experimental methods for predicting PPIs are both expensive and time-consuming, many computational methods have been developed to predict PPIs and interaction networks, which can be used to complement experimental approaches. However, these methods have limitations to overcome. They need a large number of homology proteins or literature to be applied in their method. In this paper, we propose a novel matrix-based protein sequence representation approach to predict PPIs, using an ensemble learning method for classification. We construct the matrix of Amino Acid Contact (AAC), based on the statistical analysis of residue-pairing frequencies in a database of 6323 protein–protein complexes. We first represent the protein sequence as a Substitution Matrix Representation (SMR) matrix. Then, the feature vector is extracted by applying algorithms of Histogram of Oriented Gradient (HOG) and Singular Value Decomposition (SVD) on the SMR matrix. Finally, we feed the feature vector into a Random Forest (RF) for judging interaction pairs and non-interaction pairs. Our method is applied to several PPI datasets to evaluate its performance. On the S.cerevisiae dataset, our method achieves 94.83% accuracy and 92.40% sensitivity. Compared with existing methods, and the accuracy of our method is increased by 0.11 percentage points. On the H.pylori dataset, our method achieves 89.06% accuracy and 88.15% sensitivity, the accuracy of our method is increased by 0.76%. On the Human PPI dataset, our method achieves 97.60% accuracy and 96.37% sensitivity, and the accuracy of our method is increased by 1.30%. In addition, we test our method on a very important PPI network, and it achieves 92.71% accuracy. In the Wnt-related network, the accuracy of our method is increased by 16.67%. The source code and all datasets are available at https://figshare.com/s/580c11dce13e63cb9a53.
Collapse
|
30
|
Wang X, Li H, Zhang Q, Wang R. Predicting Subcellular Localization of Apoptosis Proteins Combining GO Features of Homologous Proteins and Distance Weighted KNN Classifier. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1793272. [PMID: 27213149 PMCID: PMC4860209 DOI: 10.1155/2016/1793272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 02/06/2023]
Abstract
Apoptosis proteins play a key role in maintaining the stability of organism; the functions of apoptosis proteins are related to their subcellular locations which are used to understand the mechanism of programmed cell death. In this paper, we utilize GO annotation information of apoptosis proteins and their homologous proteins retrieved from GOA database to formulate feature vectors and then combine the distance weighted KNN classification algorithm with them to solve the data imbalance problem existing in CL317 data set to predict subcellular locations of apoptosis proteins. It is found that the number of homologous proteins can affect the overall prediction accuracy. Under the optimal number of homologous proteins, the overall prediction accuracy of our method on CL317 data set reaches 96.8% by Jackknife test. Compared with other existing methods, it shows that our proposed method is very effective and better than others for predicting subcellular localization of apoptosis proteins.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Li
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Qiuwen Zhang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Rong Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
31
|
Huang YA, You ZH, Gao X, Wong L, Wang L. Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from Protein Sequence. BIOMED RESEARCH INTERNATIONAL 2015; 2015:902198. [PMID: 26634213 PMCID: PMC4641304 DOI: 10.1155/2015/902198] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023]
Abstract
Increasing demand for the knowledge about protein-protein interactions (PPIs) is promoting the development of methods for predicting protein interaction network. Although high-throughput technologies have generated considerable PPIs data for various organisms, it has inevitable drawbacks such as high cost, time consumption, and inherently high false positive rate. For this reason, computational methods are drawing more and more attention for predicting PPIs. In this study, we report a computational method for predicting PPIs using the information of protein sequences. The main improvements come from adopting a novel protein sequence representation by using discrete cosine transform (DCT) on substitution matrix representation (SMR) and from using weighted sparse representation based classifier (WSRC). When performing on the PPIs dataset of Yeast, Human, and H. pylori, we got excellent results with average accuracies as high as 96.28%, 96.30%, and 86.74%, respectively, significantly better than previous methods. Promising results obtained have proven that the proposed method is feasible, robust, and powerful. To further evaluate the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier. Extensive experiments were also performed in which we used Yeast PPIs samples as training set to predict PPIs of other five species datasets.
Collapse
Affiliation(s)
- Yu-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Xin Gao
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Suzhou, Jiangsu 215163, China
| | - Leon Wong
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lirong Wang
- School of Electronic and Information Engineering, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
32
|
Mandal M, Mukhopadhyay A, Maulik U. Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou’s PseAAC. Med Biol Eng Comput 2015; 53:331-44. [DOI: 10.1007/s11517-014-1238-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 12/22/2014] [Indexed: 01/01/2023]
|
33
|
Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. MOLECULAR BIOSYSTEMS 2015; 11:2620-34. [DOI: 10.1039/c5mb00155b] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the avalanche of DNA/RNA sequences generated in the post-genomic age, it is urgent to develop automated methods for analyzing the relationship between the sequences and their functions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics
- School of Sciences
- and Center for Genomics and Computational Biology
- Hebei United University
- Tangshan 063000
| | - Hao Lin
- Gordon Life Science Institute
- Boston
- USA
- Key Laboratory for Neuro-Information of Ministry of Education
- Center of Bioinformatics
| | - Kuo-Chen Chou
- Department of Physics
- School of Sciences
- and Center for Genomics and Computational Biology
- Hebei United University
- Tangshan 063000
| |
Collapse
|
34
|
Liu T, Tao P, Li X, Qin Y, Wang C. Prediction of subcellular location of apoptosis proteins combining tri-gram encoding based on PSSM and recursive feature elimination. J Theor Biol 2014; 366:8-12. [PMID: 25463695 DOI: 10.1016/j.jtbi.2014.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/23/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Abstract
Knowledge of apoptosis proteins plays an important role in understanding the mechanism of programmed cell death. Obtaining information on subcellular location of apoptosis proteins is very helpful to reveal the apoptosis mechanism and understand the function of apoptosis proteins. Because of the cost in time and labor associated with large-scale wet-bench experiments, computational prediction of apoptosis proteins subcellular location becomes very important and many computational tools have been developed in the recent decades. Existing methods differ in the protein sequence representation techniques and classification algorithms adopted. In this study, we firstly introduce a sequence encoding scheme based on tri-grams computed directly from position-specific score matrices, which incorporates evolution information represented in the PSI-BLAST profile and sequence-order information. Then SVM-RFE algorithm is applied for feature selection and reduced vectors are input to a support vector machine classifier to predict subcellular location of apoptosis proteins. Jackknife tests on three widely used datasets show that our method provides the state-of-the-art performance in comparison with other existing methods.
Collapse
Affiliation(s)
- Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiying Tao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaowei Li
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yufang Qin
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chunhua Wang
- College of Information Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
35
|
Mousavian Z, Masoudi-Nejad A. Drug-target interaction prediction via chemogenomic space: learning-based methods. Expert Opin Drug Metab Toxicol 2014; 10:1273-87. [PMID: 25112457 DOI: 10.1517/17425255.2014.950222] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Identification of the interaction between drugs and target proteins is a crucial task in genomic drug discovery. The in silico prediction is an appropriate alternative for the laborious and costly experimental process of drug-target interaction prediction. Developing a variety of computational methods opens a new direction in analyzing and detecting new drug-target pairs. AREAS COVERED In this review, we will focus on chemogenomic methods which have established a learning framework for predicting drug-target interactions. Learning-based methods are classified into supervised and semi-supervised, and the supervised learning methods are studied as two separate parts including similarity-based methods and feature-based methods. EXPERT OPINION In spite of many improvements for pharmacology applications by learning-based methods, there are many over simplification settings in construction of predictive models that may lead to over-optimistic results on drug-target interaction prediction.
Collapse
Affiliation(s)
- Zaynab Mousavian
- University of Tehran, Institute of Biochemistry and Biophysics, Laboratory of Systems Biology and Bioinformatics (LBB) , Tehran , Iran +98 21 6695 9256 ; +98 21 6640 4680 ;
| | | |
Collapse
|
36
|
Nanni L, Lumini A, Brahnam S. An empirical study of different approaches for protein classification. ScientificWorldJournal 2014; 2014:236717. [PMID: 25028675 PMCID: PMC4084589 DOI: 10.1155/2014/236717] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/05/2014] [Accepted: 05/07/2014] [Indexed: 01/05/2023] Open
Abstract
Many domains would benefit from reliable and efficient systems for automatic protein classification. An area of particular interest in recent studies on automatic protein classification is the exploration of new methods for extracting features from a protein that work well for specific problems. These methods, however, are not generalizable and have proven useful in only a few domains. Our goal is to evaluate several feature extraction approaches for representing proteins by testing them across multiple datasets. Different types of protein representations are evaluated: those starting from the position specific scoring matrix of the proteins (PSSM), those derived from the amino-acid sequence, two matrix representations, and features taken from the 3D tertiary structure of the protein. We also test new variants of proteins descriptors. We develop our system experimentally by comparing and combining different descriptors taken from the protein representations. Each descriptor is used to train a separate support vector machine (SVM), and the results are combined by sum rule. Some stand-alone descriptors work well on some datasets but not on others. Through fusion, the different descriptors provide a performance that works well across all tested datasets, in some cases performing better than the state-of-the-art.
Collapse
Affiliation(s)
- Loris Nanni
- Dipartimento di Ingegneria dell'Informazione, Via Gradenigo 6/A, 35131 Padova, Italy
| | | | - Sheryl Brahnam
- Computer Information Systems, Missouri State University, 901 South National, Springfield, MO 65804, USA
| |
Collapse
|
37
|
APSLAP: an adaptive boosting technique for predicting subcellular localization of apoptosis protein. Acta Biotheor 2013; 61:481-97. [PMID: 23982307 DOI: 10.1007/s10441-013-9197-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/16/2013] [Indexed: 01/09/2023]
Abstract
Apoptotic proteins play key roles in understanding the mechanism of programmed cell death. Knowledge about the subcellular localization of apoptotic protein is constructive in understanding the mechanism of programmed cell death, determining the functional characterization of the protein, screening candidates in drug design, and selecting protein for relevant studies. It is also proclaimed that the information required for determining the subcellular localization of protein resides in their corresponding amino acid sequence. In this work, a new biological feature, class pattern frequency of physiochemical descriptor, was effectively used in accordance with the amino acid composition, protein similarity measure, CTD (composition, translation, and distribution) of physiochemical descriptors, and sequence similarity to predict the subcellular localization of apoptosis protein. AdaBoost with the weak learner as Random-Forest was designed for the five modules and prediction is made based on the weighted voting system. Bench mark dataset of 317 apoptosis proteins were subjected to prediction by our system and the accuracy was found to be 100.0 and 92.4 %, and 90.1 % for self-consistency test, jack-knife test, and tenfold cross validation test respectively, which is 0.9 % higher than that of other existing methods. Beside this, the independent data (N151 and ZW98) set prediction resulted in the accuracy of 90.7 and 87.7 %, respectively. These results show that the protein feature represented by a combined feature vector along with AdaBoost algorithm holds well in effective prediction of subcellular localization of apoptosis proteins. The user friendly web interface "APSLAP" has been constructed, which is freely available at http://apslap.bicpu.edu.in and it is anticipated that this tool will play a significant role in determining the specific role of apoptosis proteins with reliability.
Collapse
|
38
|
An empirical study on the matrix-based protein representations and their combination with sequence-based approaches. Amino Acids 2012; 44:887-901. [PMID: 23108592 DOI: 10.1007/s00726-012-1416-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Many domains have a stake in the development of reliable systems for automatic protein classification. Of particular interest in recent studies of automatic protein classification is the exploration of new methods for extracting features from a protein that enhance classification for specific problems. These methods have proven very useful in one or two domains, but they have failed to generalize well across several domains (i.e. classification problems). In this paper, we evaluate several feature extraction approaches for representing proteins with the aim of sequence-based protein classification. Several protein representations are evaluated, those starting from: the position specific scoring matrix (PSSM) of the proteins; the amino-acid sequence; a matrix representation of the protein, of dimension (length of the protein) ×20, obtained using the substitution matrices for representing each amino-acid as a vector. A valuable result is that a texture descriptor can be extracted from the PSSM protein representation which improves the performance of standard descriptors based on the PSSM representation. Experimentally, we develop our systems by comparing several protein descriptors on nine different datasets. Each descriptor is used to train a support vector machine (SVM) or an ensemble of SVM. Although different stand-alone descriptors work well on some datasets (but not on others), we have discovered that fusion among classifiers trained using different descriptors obtains a good performance across all the tested datasets. Matlab code/Datasets used in the proposed paper are available at http://www.bias.csr.unibo.it\nanni\PSSM.rar.
Collapse
|
39
|
Li L, Zhang Y, Zou L, Li C, Yu B, Zheng X, Zhou Y. An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity. PLoS One 2012; 7:e31057. [PMID: 22303481 PMCID: PMC3268814 DOI: 10.1371/journal.pone.0031057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/31/2011] [Indexed: 02/05/2023] Open
Abstract
With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.
Collapse
Affiliation(s)
- Liqi Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lingyun Zou
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Yu
- Department of Orthopedics, Yichun People's Hospital, Yichun, China
| | - Xiaoqi Zheng
- Department of Mathematics, Shanghai Normal University, Shanghai, China
- Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|