1
|
Lin H, Xing J, Wang H, Wang S, Fang R, Li X, Li Z, Song N. Roles of Lipolytic enzymes in Mycobacterium tuberculosis pathogenesis. Front Microbiol 2024; 15:1329715. [PMID: 38357346 PMCID: PMC10865251 DOI: 10.3389/fmicb.2024.1329715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that can endure for long periods in an infected patient, without causing disease. There are a number of virulence factors that increase its ability to invade the host. One of these factors is lipolytic enzymes, which play an important role in the pathogenic mechanism of Mtb. Bacterial lipolytic enzymes hydrolyze lipids in host cells, thereby releasing free fatty acids that are used as energy sources and building blocks for the synthesis of cell envelopes, in addition to regulating host immune responses. This review summarizes the relevant recent studies that used in vitro and in vivo models of infection, with particular emphasis on the virulence profile of lipolytic enzymes in Mtb. A better understanding of these enzymes will aid the development of new treatment strategies for TB. The recent work done that explored mycobacterial lipolytic enzymes and their involvement in virulence and pathogenicity was highlighted in this study. Lipolytic enzymes are expected to control Mtb and other intracellular pathogenic bacteria by targeting lipid metabolism. They are also potential candidates for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hong Lin
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Shur KV, Bekker OB, Zaichikova MV, Maslov DA, Akimova NI, Zakharevich NV, Chekalina MS, Danilenko VN. Genetic Aspects of Drug Resistance and Virulence in Mycobacterium tuberculosis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Díaz DP, Ocampo M, Pabón L, Herrera C, Patarroyo MA, Munoz M, Patarroyo ME. Mycobacterium tuberculosis PE9 protein has high activity binding peptides which inhibit target cell invasion. Int J Biol Macromol 2016; 86:646-55. [DOI: 10.1016/j.ijbiomac.2015.12.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/03/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
|
4
|
Verma D, Das L, Gambhir V, Dikshit KL, Varshney GC. Heterogeneity among Homologs of Cutinase-Like Protein Cut5 in Mycobacteria. PLoS One 2015; 10:e0133186. [PMID: 26177502 PMCID: PMC4503659 DOI: 10.1371/journal.pone.0133186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022] Open
Abstract
The study of genomic variability within various pathogenic and non-pathogenic strains of mycobacteria provides insight into their evolution and pathogenesis. The mycobacterial genome encodes seven cutinase-like proteins and each one of these exhibit distinct characteristics. We describe the presence of Cut5, a member of the cutinase family, in mycobacteria and the existence of a unique genomic arrangement in the cut5 gene of M. tuberculosis (Mtb) strains. A single nucleotide (T) insertion is observed in the cut5 gene, which is specific for Mtb strains. Using in silico analysis and RT-PCR, we demonstrate the transcription of Rv3724/cut5 as Rv3724a/cut5a and Rv3724b/cut5b in Mtb H37Rv and as full length cut5 in M. bovis. Cut5b protein of Mtb H37Rv (MtbCut5b) was found to be antigenically similar to its homologs in M. bovis and M. smegmatis, without any observed cross-reactivity with other Mtb cutinases. Also, the presence of Cut5b in Mtb and its homologs in M. bovis and M. smegmatis were confirmed by western blotting using antibodies raised against recombinant Cut5b. In Mtb H37Rv, Cut5b was found to be localized in the cell wall, cytosol and membrane fractions. We also report the vast prevalence of Cut5 homologs in pathogenic and non pathogenic species of mycobacteria. In silico analysis revealed that this protein has three possible organizations in mycobacteria. Also, a single nucleotide (T) insertion in Mtb strains and varied genomic arrangements within mycobacterial species make Rv3724/Cut5 a potential candidate that can be exploited as a biomarker in Mtb infection.
Collapse
Affiliation(s)
- Deepshikha Verma
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Lahari Das
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Vandana Gambhir
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Kanak Lata Dikshit
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
| | - Grish C. Varshney
- Cell biology and Immunology Division, CSIR-Institute of Microbial Technology, Chandigarh-, India
- * E-mail:
| |
Collapse
|
5
|
Li W, Fan X, Long Q, Xie L, Xie J. Mycobacterium tuberculosis effectors involved in host-pathogen interaction revealed by a multiple scales integrative pipeline. INFECTION GENETICS AND EVOLUTION 2015; 32:1-11. [PMID: 25709069 DOI: 10.1016/j.meegid.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter host immunity. Proteins are one important player in the host-pathogen interaction. A comprehensive list of such proteins will benefit our understanding of pathogenesis of Mtb. METHODS A genome-scale dataset was created from different sources of published data: global gene expression studies in disease models; genome-wide insertional mutagenesis defining gene essentiality under different conditions; genes lost in clinical isolates; subcellular localization analysis and non-homology analysis. Using data mining and meta-analysis, expressed proteins critical for intracellular survival of Mtb are first identified, followed by subcellular localization analysis, finally filtering a series of subtractive channel of analysis to find out promising drug target candidates. RESULTS The analysis found 54 potential candidates essential for the intracellular survival of the pathogen and non-homologous to host or gut flora, and might be promising drug targets. CONCLUSION Based on our meta-analysis and bioinformatics analysis, 54 hits were found from Mtb around 4000 open reading frames. These hits can be good candidates for further experimental investigation.
Collapse
Affiliation(s)
- Wu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Shandong 250022, China
| | - Quanxin Long
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases of the Ministry of Education, Chongqing Medical University, 1 Medical Road, Yuzhong District, Chongqing 400016, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Rodríguez DC, Ocampo M, Varela Y, Curtidor H, Patarroyo MA, Patarroyo ME. Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathog Dis 2014; 73:ftu020. [DOI: 10.1093/femspd/ftu020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
7
|
Vir P, Gupta D, Agarwal R, Verma I. Interaction of alveolar epithelial cells with CFP21, a mycobacterial cutinase-like enzyme. Mol Cell Biochem 2014; 396:187-99. [PMID: 25091806 DOI: 10.1007/s11010-014-2154-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis (M. tb), an intracellular pathogen, has the ability to infect alveolar epithelial cells (AEC) also in addition to alveolar macrophages. The virulence of M. tb is attributed to proteins encoded by genomic regions of deletion (RD) and till date 16 such regions (RD1-RD16) have been identified. Culture filtrate protein 21 (CFP21), a RD2 secretory protein, is a cutinase-like enzyme that possesses esterase and lipolytic activity. It is hypothesized that CFP21 could be playing a role in M. tb virulence by disrupting the host cell integrity. In this study, recombinant CFP21 was expressed and purified. The in vitro exposure of type I (WI26) and type II (A549) AEC to CFP21 resulted in a significant decline in their cellular viability by inducing cell apoptosis. However, the cytotoxic effects were more pronounced in WI26 cells than in A549 cells. The analysis of immune responses in CFP21-treated AEC exhibited significant production of reactive oxygen species and anti-inflammatory cytokine TGF-β which indicated oxidative stress-mediated cell death. These results show that CFP21 could play an important role in M. tb pathogenesis by disrupting the host alveolar barrier and thereby facilitating mycobacterial dissemination.
Collapse
Affiliation(s)
- Pooja Vir
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India
| | | | | | | |
Collapse
|
8
|
Ocampo M, Rodríguez DC, Rodríguez J, Bermúdez M, Muñoz CM, Patarroyo MA, Patarroyo ME. Rv1268c protein peptide inhibiting Mycobacterium tuberculosis H37Rv entry to target cells. Bioorg Med Chem 2013; 21:6650-6. [PMID: 23993672 DOI: 10.1016/j.bmc.2013.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
Abstract
Tuberculosis (TB) remains one of the most worrying infectious diseases affecting public health around the world; 8.7 million new TB cases were reported in 2011. The search for an Mycobacterium tuberculosis H37Rv protein sequence which is functionally important in host-pathogen interaction has been proposed for developing a new vaccine which will allow efficient and safe control of the spread of this disease. The present study thus reports the results obtained for the Rv1268c protein described in the M. tuberculosis H37Rv genome as a hypothetical unknown, probably secreted, protein based on a highly robust, specific, sensitive and functional approach to the search for potential epitopes to be included in an anti-tuberculosis vaccine. Rv1268c presence was determined by immunoblotting after obtaining polyclonal sera against mycobacterial total sonicate or subcellular fractions. Such sera were used in electron immunomicroscopy (EIM) for confirming protein localisation on the M. tuberculosis envelop by recognising colloidal gold-labelled immunoglobulin. Screening assays revealed the presence of two sequences having high binding activity: one binding A549 alveolar epithelial cells ((141)TGMAALEQYLGSGHAVIVSI(160)) and other binding U937 monocyte-derived macrophages ((21)AVALGLASPADAAAGTMYGD(40)). Such sequences' ability to inhibit mycobacterial entry during in vitro assays was analysed. The structure of synthetic peptides binding to target cells was also determined, bearing in mind the structure-function relationship. These results, together with those obtained for other proteins, have been involved in selecting peptides which might be included in a subunit-based anti-tuberculosis vaccine.
Collapse
Affiliation(s)
- Marisol Ocampo
- Fundacion Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia; Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Wang H, Dong D, Tang S, Chen X, Gao Q. PPE38 of Mycobacterium marinum triggers the cross-talk of multiple pathways involved in the host response, as revealed by subcellular quantitative proteomics. J Proteome Res 2013; 12:2055-66. [PMID: 23514422 PMCID: PMC3646403 DOI: 10.1021/pr301017e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
PE/PPE family of proteins which are in high abundance in pathogenic
species such as Mycobacterium tuberculosis and M. marinum, play the critical
role in generating antigenic variation and evasion of host immune
responses. However, little is known about their functional roles in
mycobacterial pathogenesis. Previously, we found that PPE38 is associated
with the virulence of mycobacteria, presumably by modulating the host
immune response. To clarify the link between PPE38 and host response,
we employed a subcellular, amino acid-coded mass tagging (AACT)/SILAC-based
quantitative proteomic approach to determine the proteome changes
during host response to M. marinum PPE38.
As a result, 291 or 290 proteins were found respectively to be up-
or down-regulated in the nucleus. Meanwhile, 576 upregulated and 272
downregulated proteins were respectively detected in the cytosol.
The data of quantitative proteomic changes and concurrent biological
validations revealed that M. marinum PPE38 could trigger extensive inflammatory responses in macrophages,
probably through interacting with toll-like receptor 2 (TLR2). We
also found that PPE38 may arrest MHC-1 processing and presentation
in infected macrophages. Using bioinformatics tools to analyze global
changes in the host proteome, we obtained a PPE38-respondor network involved in various transcriptional factors (TFs) and TF-associated
proteins. The results of our systems investigation now indicate that there is cross-talk involving a broad range of diverse biological pathways/processes that coordinate the host response to M. marinum PPE38.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|