1
|
Ni H, Hou X, Tian S, Liu C, Zhang G, Peng Y, Chen L, Wang J, Chen Q, Xin D. Insights into the Early Steps of the Symbiotic Interaction between Soybean ( Glycine max) and Sinorhizobium fredii Symbiosis Using Transcriptome, Small RNA, and Degradome Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17084-17098. [PMID: 39013023 PMCID: PMC11299180 DOI: 10.1021/acs.jafc.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Symbiotic nitrogen fixation carried out by the soybean-rhizobia symbiosis increases soybean yield and reduces the amount of nitrogen fertilizer that has been applied. MicroRNAs (miRNAs) are crucial in plant growth and development, prompting an investigation into their role in the symbiotic interaction of soybean with partner rhizobia. Through integrated small RNA, transcriptome, and degradome sequencing analysis, 1215 known miRNAs, 314 of them conserved, and 187 novel miRNAs were identified, with 44 differentially expressed miRNAs in soybean roots inoculated with Sinorhizobium fredii HH103 and a ttsI mutant. The study unveiled that the known miRNA gma-MIR398a-p5 was downregulated in the presence of the ttsI mutation, while the target gene of gma-MIR398a-p5, Glyma.06G007500, associated with nitrogen metabolism, was upregulated. The results of this study offer insights for breeding high-efficiency nitrogen-fixing soybean varieties, enhancing crop yield and quality.
Collapse
Affiliation(s)
| | | | - Siyi Tian
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Chunyan Liu
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Guoqing Zhang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Yang Peng
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Lin Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinhui Wang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Qingshan Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Dawei Xin
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
2
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
3
|
Xu M, Gao H, Ma Z, Han J, Zheng K, Shao M, Rao Z. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids 2022; 54:1437-1450. [PMID: 36224443 DOI: 10.1007/s00726-022-03174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
2-Pyrrolidone is widely used in the textile and pharmaceutical industries. Here, we established a 2-pyrrolidone biosynthesis pathway in Corynebacterium glutamicum, by expressing glutamate decarboxylase (Gad) mutant and β-alanine CoA transferase (Act) which activates spontaneous dehydration cyclization of GABA to form 2-pyrrolidone. Also, the 5' untranslated regions (UTR) strategy was used to increase the expression of protein. Furthermore, considering the importance of acetyl-CoA in the 2-pyrrolidone synthesis pathway, the acetyl-CoA synthetase (acsA) gene was introduced to convert acetate into acetyl-CoA thus achieving the recyclability of the economy. Finally, the fed-batch fermentation of the final strain in a 5 L bioreactor produced 10.5 g/L 2-pyrrolidone within 78 h, which increased by 42.5% by altering the level of gene expression. This is the first time to build the basic chemical 2-pyrrolidone from glucose in one step in C. glutamicum.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhenfeng Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jin Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Keyi Zheng
- Meihua Biotechnology Group Co, Wujiaqu, 831300, China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Yang F, Xu J, Zhu Y, Wang Y, Xu M, Rao Z. High-level production of the agmatine in engineered Corynebacterium crenatum with the inhibition-releasing arginine decarboxylase. Microb Cell Fact 2022; 21:16. [PMID: 35101042 PMCID: PMC8805389 DOI: 10.1186/s12934-022-01742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023] Open
Abstract
Abstract
Background
Agmatine is a member of biogenic amines and is an important medicine which is widely used to regulate body balance and neuroprotective effects. At present, the industrial production of agmatine mainly depends on the chemical method, but it is often accompanied by problems including cumbersome processes, harsh reaction conditions, toxic substances production and heavy environmental pollution. Therefore, to tackle the above issues, arginine decarboxylase was overexpressed heterologously and rationally designed in Corynebacterium crenatum to produce agmatine from glucose by one-step fermentation.
Results
In this study, we report the development in the Generally Regarded as Safe (GRAS) l-arginine-overproducing C. crenatum for high-titer agmatine biosynthesis through overexpressing arginine decarboxylase based on metabolic engineering. Then, arginine decarboxylase was mutated to release feedback inhibition and improve catalytic activity. Subsequently, the specific enzyme activity and half-inhibitory concentration of I534D mutant were increased 35.7% and 48.1%, respectively. The agmatine production of the whole-cell bioconversion with AGM3 was increased by 19.3% than the AGM2. Finally, 45.26 g/L agmatine with the yield of 0.31 g/g glucose was achieved by one-step fermentation of the engineered C. crenatum with overexpression of speAI534D.
Conclusions
The engineered C. crenatum strain AGM3 in this work was proved as an efficient microbial cell factory for the industrial fermentative production of agmatine. Based on the insights from this work, further producing other valuable biochemicals derived from l-arginine by Corynebacterium crenatum is feasible.
Collapse
|
5
|
Jiang Y, Sheng Q, Wu XY, Ye BC, Zhang B. l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 2020; 41:172-185. [PMID: 33153325 DOI: 10.1080/07388551.2020.1844625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an important semi-essential amino acid, l-arginine is extensively used in the food and pharmaceutical fields. At present, l-arginine production depends on cost-effective, green, and sustainable microbial fermentation by using a renewable carbon source. To enhance its fermentative production, various metabolic engineering strategies have been employed, which provide valid paths for reducing the cost of l-arginine production. This review summarizes recent advances in molecular biology strategies for the optimization of l-arginine-producing strains, including manipulating the principal metabolic pathway, modulating the carbon metabolic pathway, improving the intracellular biosynthesis of cofactors and energy usage, manipulating the assimilation of ammonia, improving the transportation and membrane permeability, and performing biosensor-assisted high throughput screening, providing useful insight into the current state of l-arginine production.
Collapse
Affiliation(s)
- Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
6
|
Wu XY, Guo XY, Zhang B, Jiang Y, Ye BC. Recent Advances of L-ornithine Biosynthesis in Metabolically Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 2020; 7:440. [PMID: 31998705 PMCID: PMC6962107 DOI: 10.3389/fbioe.2019.00440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
L-ornithine, a valuable non-protein amino acid, has a wide range of applications in the pharmaceutical and food industries. Currently, microbial fermentation is a promising, sustainable, and environment-friendly method to produce L-ornithine. However, the industrial production capacity of L-ornithine by microbial fermentation is low and rarely meets the market demands. Various strategies have been employed to improve the L-ornithine production titers in the model strain, Corynebacterium glutamicum, which serves as a major indicator for improving the cost-effectiveness of L-ornithine production by microbial fermentation. This review focuses on the development of high L-ornithine-producing strains by metabolic engineering and reviews the recent advances in breeding strategies, such as reducing by-product formation, improving the supplementation of precursor glutamate, releasing negative regulation and negative feedback inhibition, increasing the supply of intracellular cofactors, modulating the central metabolic pathway, enhancing the transport system, and adaptive evolution for improving L-ornithine production.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yan Guo
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Zhang X, Han R, Bao T, Zhao X, Li X, Zhu M, Yang T, Xu M, Shao M, Zhao Y, Rao Z. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Microb Cell Fact 2019; 18:128. [PMID: 31387595 PMCID: PMC6683508 DOI: 10.1186/s12934-019-1183-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetoin (AC) and 2,3-butanediol (2,3-BD) as highly promising bio-based platform chemicals have received more attentions due to their wide range of applications. However, the non-efficient substrate conversion and mutually transition between AC and 2,3-BD in their natural producing strains not only led to a low selectivity but also increase the difficulty of downstream purification. Therefore, synthetic engineering of more suitable strains should be a reliable strategy to selectively produce AC and 2,3-BD, respectively. RESULTS In this study, the respective AC (alsS and alsD) and 2,3-BD biosynthesis pathway genes (alsS, alsD, and bdhA) derived from Bacillus subtilis 168 were successfully expressed in non-natural AC and 2,3-BD producing Corynebacterium crenatum, and generated recombinant strains, C. crenatum SD and C. crenatum SDA, were proved to produce 9.86 g L-1 of AC and 17.08 g L-1 of 2,3-BD, respectively. To further increase AC and 2,3-BD selectivity, the AC reducing gene (butA) and lactic acid dehydrogenase gene (ldh) in C. crenatum were then deleted. Finally, C. crenatumΔbutAΔldh SD produced 76.93 g L-1 AC in one-step biocatalysis with the yield of 0.67 mol mol-1. Meanwhile, after eliminating the lactic acid production and enhancing 2,3-butanediol dehydrogenase activity, C. crenatumΔldh SDA synthesized 88.83 g L-1 of 2,3-BD with the yield of 0.80 mol mol-1. CONCLUSIONS The synthetically engineered C. crenatumΔbutAΔldh SD and C. crenatumΔldh SDA in this study were proved as an efficient microbial cell factory for selective AC and 2,3-BD production. Based on the insights from this study, further synthetic engineering of C. crenatum for AC and 2,3-BD production is suggested.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Rumeng Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
| | - Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Manchi Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Youxi Zhao
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemical Engineering, Beijing Union University, Beijing, 10023 People’s Republic of China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
8
|
Xu M, Li J, Shu Q, Tang M, Zhang X, Yang T, Xu Z, Rao Z. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. J Ind Microbiol Biotechnol 2019; 46:1155-1166. [PMID: 31203489 DOI: 10.1007/s10295-019-02204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
L-Arginine is an important amino acid with extensive application in the food and pharmaceutical industries. The efficiency of nitrogen uptake and assimilation by organisms is extremely important for L-arginine production. In this study, a strain engineering strategy focusing on upregulate intracellular nitrogen metabolism in Corynebacterium crenatum for L-arginine production was conducted. Firstly, the nitrogen metabolism global transcriptional regulator AmtR was deleted, which has demonstrated the beneficial effect on L-arginine production. Subsequently, this strain was engineered by overexpressing the ammonium transporter AmtB to increase the uptake of NH4+ and L-arginine production. To overcome the drawbacks of using a plasmid to express amtB, Ptac, a strong promoter with amtB gene fragment, was integrated into the amtR region on the chromosome in the Corynebacterium crenatum/ΔamtR. The final strain results in L-arginine production at a titer of 60.9 g/L, which was 35.14% higher than that produced by C. crenatum SYPA5-5.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, Jiangsu, China.
| | - Jing Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunfeng Shu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mi Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
9
|
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front Microbiol 2017; 8:1937. [PMID: 29075239 PMCID: PMC5643470 DOI: 10.3389/fmicb.2017.01937] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022] Open
Abstract
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.
Collapse
Affiliation(s)
- Alberto Oliveira
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leticia C Oliveira
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Aburjaile
- Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Leandro Benevides
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Syed B Jamal
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Arthur Silva
- Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Henrique C P Figueiredo
- Aquacen, National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computational Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Ricardo W Portela
- Laboratory of Immunology and Molecular Bióloga, Health Sciences Institute, Federal University of Bahiaa, Salvador, Brazil
| | - Vasco A De Carvalho Azevedo
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alice R Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of l -norvaline from dl -norvaline. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Yang X. Conformational dynamics play important roles upon the function of N-acetylglutamate kinase. Appl Microbiol Biotechnol 2017; 101:3485-3492. [PMID: 28341883 DOI: 10.1007/s00253-017-8237-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022]
Abstract
N-acetylglutamate kinase (NAGK) catalyzes the phosphorylation of N-acetylglutamate. In many bacteria, NAGK catalysis is the rate controlling step in the L-arginine biosynthesis pathway from glutamate to L-arginine and is allosterically inhibited by L-arginine. Many data show that conformational dynamics of NAGKs are essential for their function. The demonstration of the conformational mechanism provides a potential way to improve the yield of arginine. Due to the lack of NAGK catalysis step in arginine synthesis route of mammals, the elucidation of the dynamic mechanism can also provide a way to design a new antivirus drug. This paper reviews how the dynamics affect the activity of NAGKs and are controlled by the effectors. X-ray crystallography and modeling data have shown that in NAGKs, the structural elements required for inhibitor and substrate binding, catalysis and product release, are highly mobile. It is possible to eliminate the inhibition of the arginine and/or block the synthesis of arginine by disturbing the flexibility of the NAGKs. Amino acid kinase family is thought to share some common dynamic features; the flexible structural elements of NAGKs have been identified, but the details of the dynamics and the signal transfer pathways are yet to be elucidated.
Collapse
Affiliation(s)
- Xiaorong Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
12
|
Reengineering of the feedback-inhibition enzyme N-acetyl-l-glutamate kinase to enhance l-arginine production in Corynebacterium crenatum. ACTA ACUST UNITED AC 2017; 44:271-283. [DOI: 10.1007/s10295-016-1885-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 10/20/2022]
Abstract
Abstract
N-acetyl-l-glutamate kinase (NAGK) catalyzes the second step of l-arginine biosynthesis and is inhibited by l-arginine in Corynebacterium crenatum. To ascertain the basis for the arginine sensitivity of CcNAGK, residue E19 which located at the entrance of the Arginine-ring was subjected to site-saturated mutagenesis and we successfully illustrated the inhibition-resistant mechanism. Typically, the E19Y mutant displayed the greatest deregulation of l-arginine feedback inhibition. An equally important strategy is to improve the catalytic activity and thermostability of CcNAGK. For further strain improvement, we used site-directed mutagenesis to identify mutations that improve CcNAGK. Results identified variants I74V, F91H and K234T display higher specific activity and thermostability. The l-arginine yield and productivity of the recombinant strain C. crenatum SYPA-EH3 (which possesses a combination of all four mutant sites, E19Y/I74V/F91H/K234T) reached 61.2 and 0.638 g/L/h, respectively, after 96 h in 5 L bioreactor fermentation, an increase of approximately 41.8% compared with the initial strain.
Collapse
|
13
|
Guo J, Man Z, Rao Z, Xu M, Yang T, Zhang X, Xu Z. Improvement of the ammonia assimilation for enhancing L-arginine production of Corynebacterium crenatum. J Ind Microbiol Biotechnol 2017; 44:443-451. [PMID: 28120129 DOI: 10.1007/s10295-017-1900-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022]
Abstract
There are four nitrogen atoms in L-arginine molecule and the nitrogen content is 32.1%. By now, metabolic engineering for L-arginine production strain improvement was focused on carbon flux optimization. In previous work, we obtained an L-arginine-producing Corynebacterium crenatum SDNN403 (ARG) through screening and mutation breeding. In this paper, a strain engineering strategy focusing on nitrogen supply and ammonium assimilation for L-arginine production was performed. Firstly, the effects of nitrogen atom donor (L-glutamate, L-glutamine and L-aspartate) addition on L-arginine production of ARG were studied, and the addition of L-glutamine and L-aspartate was beneficial for L-arginine production. Then, the glutamine synthetase gene glnA and aspartase gene aspA from E. coli were overexpressed in ARG for increasing the L-glutamine and L-aspartate synthesis, and the L-arginine production was effectively increased. In addition, the L-glutamate supply re-emerged as a limiting factor for L-arginine biosynthesis. Finally, the glutamate dehydrogenase gene gdh was co-overexpressed for further enhancement of L-arginine production. The final strain could produce 53.2 g l-1 of L-arginine, which was increased by 41.5% compared to ARG in fed-batch fermentation.
Collapse
Affiliation(s)
- Jing Guo
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zaiwei Man
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhenghong Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Metabolic engineering of Corynebacterium crenatium for enhancing production of higher alcohols. Sci Rep 2016; 6:39543. [PMID: 27996038 PMCID: PMC5172369 DOI: 10.1038/srep39543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Biosynthesis approaches for the production of higher alcohols as a source of alternative fossil fuels have garnered increasing interest recently. However, there is little information available in the literature about using undirected whole-cell mutagenesis (UWCM) in vivo to improve higher alcohols production. In this study, for the first time, we approached this question from two aspects: first preferentially improving the capacity of expression host, and subsequently optimizing metabolic pathways using multiple genetic mutations to shift metabolic flux toward the biosynthetic pathway of target products to convert intermediate 2-keto acid compounds into diversified C4~C5 higher alcohols using UWCM in vivo, with the aim of improving the production. The results demonstrated the production of higher alcohols including isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol from glucose and duckweed under simultaneous saccharification and fermentation (SSF) scheme were higher based on the two aspects compared with only the use of wild-type stain as expression host. These findings showed that the improvement via UWCM in vivo in the two aspects for expression host and metabolic flux can facilitate the increase of higher alcohols production before using gene editing technology. Our work demonstrates that a multi-faceted approach for the engineering of novel synthetic pathways in microorganisms for improving biofuel production is feasible.
Collapse
|
15
|
Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H 2O 2-forming flavin reductases and optimization of ATP supply. Metab Eng 2016; 38:310-321. [PMID: 27474351 DOI: 10.1016/j.ymben.2016.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/12/2016] [Accepted: 07/25/2016] [Indexed: 02/05/2023]
Abstract
l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H2O2-forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H2O2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3g/L and 0.326g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H2O2 synthesis and increasing the ATP supply.
Collapse
|
16
|
Man Z, Xu M, Rao Z, Guo J, Yang T, Zhang X, Xu Z. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Sci Rep 2016; 6:28629. [PMID: 27338253 PMCID: PMC4919616 DOI: 10.1038/srep28629] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023] Open
Abstract
L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L(-1) L-arginine with yield up to 0.431 g L-arginine g(-1) glucose in fed-batch fermentation.
Collapse
Affiliation(s)
- Zaiwei Man
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Xu M, Qin J, Rao Z, You H, Zhang X, Yang T, Wang X, Xu Z. Effect of Polyhydroxybutyrate (PHB) storage on L-arginine production in recombinant Corynebacterium crenatum using coenzyme regulation. Microb Cell Fact 2016; 15:15. [PMID: 26785743 PMCID: PMC4719700 DOI: 10.1186/s12934-016-0414-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/08/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Corynebacterium crenatum SYPA 5 is the industrial strain for L-arginine production. Poly-β-hydroxybutyrate (PHB) is a kind of biopolymer stored as bacterial reserve materials for carbon and energy. The introduction of the PHB synthesis pathway into several strains can regulate the global metabolic pathway. In addition, both the pathways of PHB and L-arginine biosynthesis in the cells are NADPH-dependent. NAD kinase could upregulate the NADPH concentration in the bacteria. Thus, it is interesting to investigate how both PHB and NAD kinase affect the L-arginine biosynthesis in C. crenatum SYPA 5. RESULTS C. crenatum P1 containing PHB synthesis pathway was constructed and cultivated in batch fermentation for 96 h. The enzyme activities of the key enzymes were enhanced comparing to the control strain C. crenatum SYPA 5. More PHB was found in C. crenatum P1, up to 12.7 % of the dry cell weight. Higher growth level and enhanced glucose consumptions were also observed in C. crenatum P1. With respect to the yield of L-arginine, it was 38.54 ± 0.81 g/L, increasing by 20.6 %, comparing to the control under the influence of PHB accumulation. For more NADPH supply, C. crenatum P2 was constructed with overexpression of NAD kinase based on C. crenatum P1. The NADPH concentration was increased in C. crenatum P2 comparing to the control. PHB content reached 15.7 % and 41.11 ± 1.21 g/L L-arginine was obtained in C. crenatum P2, increased by 28.6 %. The transcription levels of key L-arginine synthesis genes, argB, argC, argD and argJ in recombinant C. crenatum increased 1.9-3.0 times compared with the parent strain. CONCLUSIONS Accumulation of PHB by introducing PHB synthesis pathway, together with up-regulation of coenzyme level by overexpressing NAD kinase, enables the recombinant C. crenatum to serve as high-efficiency cell factories in the long-time L-arginine fermentation. Furthermore, batch cultivation of the engineered C. crenatum revealed that it could accumulate both extracellular L-arginine and intracellular PHB simultaneously. All of these have a potential biotechnological application as a strategy for high-yield L-arginine.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Jingru Qin
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Hengyi You
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Xiaoyuan Wang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Gu P, Su T, Qi Q. Novel technologies provide more engineering strategies for amino acid-producing microorganisms. Appl Microbiol Biotechnol 2016; 100:2097-105. [PMID: 26754821 DOI: 10.1007/s00253-015-7276-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Traditionally, amino acid-producing strains were obtained by random mutagenesis and subsequent selection. With the development of genetic and metabolic engineering techniques, various microorganisms with high amino acid production yields are now constructed by rational design of targeted biosynthetic pathways. Recently, novel technologies derived from systems and synthetic biology have emerged and open a new promising avenue towards the engineering of amino acid production microorganisms. In this review, these approaches, including rational engineering of rate-limiting enzymes, real-time sensing of end-products, pathway optimization on the chromosome, transcription factor-mediated strain improvement, and metabolic modeling and flux analysis, were summarized with regard to their application in microbial amino acid production.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
19
|
Controlling the transcription levels of argGH redistributed l-arginine metabolic flux in N-acetylglutamate kinase and ArgR-deregulated Corynebacterium crenatum. ACTA ACUST UNITED AC 2016; 43:55-66. [DOI: 10.1007/s10295-015-1692-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Abstract
Corynebacterium crenatum SYPA5-5, an l-arginine high-producer obtained through multiple mutation-screening steps, had been deregulated by the repression of ArgR that inhibits l-arginine biosynthesis at genetic level. Further study indicated that feedback inhibition of SYPA5-5 N-acetylglutamate kinase (CcNAGK) by l-arginine, as another rate-limiting step, could be deregulated by introducing point mutations. Here, we introduced two of the positive mutations (H268N or R209A) of CcNAGK into the chromosome of SYPA5-5, however, resulting in accumulation of large amounts of the intermediates (l-citrulline and l-ornithine) and decreased production of l-arginine. Genetic and enzymatic levels analysis involved in l-arginine biosynthetic pathway of recombinants SYPA5-5-NAGKH268N (H-7) and SYPA5-5-NAGKR209A (R-8) showed that the transcription levels of argGH decreased accompanied with the reduction of argininosuccinate synthase and argininosuccinase activities, respectively, which led to the metabolic obstacle from l-citrulline to l-arginine. Co-expression of argGH with exogenous plasmid in H-7 and R-8 removed this bottleneck and increased l-arginine productivity remarkably. Compared with SYPA5-5, fermentation period of H-7/pDXW-10-argGH (H-7-GH) reduced to 16 h; meanwhile, the l-arginine productivity improved about 63.6 %. Fed-batch fermentation of H-7-GH in 10 L bioreactor produced 389.9 mM l-arginine with the productivity of 5.42 mM h−1. These results indicated that controlling the transcription of argGH was a key factor for regulating the metabolic flux toward l-arginine biosynthesis after deregulating the repression of ArgR and feedback inhibition of CcNAGK, and therefore functioned as another regulatory mode for l-arginine production. Thus, deregulating all these three regulatory modes was a powerful strategy to construct l-arginine high-producing C. crenatum.
Collapse
|
20
|
Cheng G, Xu J, Xia X, Guo Y, Xu K, Su C, Zhang W. Breeding L-arginine-producing strains by a novel mutagenesis method: Atmospheric and room temperature plasma (ARTP). Prep Biochem Biotechnol 2015; 46:509-16. [DOI: 10.1080/10826068.2015.1084634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Jensen JVK, Eberhardt D, Wendisch VF. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 2015; 214:85-94. [PMID: 26393954 DOI: 10.1016/j.jbiotec.2015.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022]
Abstract
The glutamate-derived bioproducts ornithine, citrulline, proline, putrescine, and arginine have applications in the food and feed, cosmetic, pharmaceutical, and chemical industries. Corynebacterium glutamicum is not only an excellent producer of glutamate but also of glutamate-derived products. Here, engineering targets beneficial for ornithine production were identified and the advantage of rationally constructing a platform strain for the production of the amino acids citrulline, proline, and arginine, and the diamine putrescine was demonstrated. Feedback alleviation of N-acetylglutamate kinase, tuning of the promoter of glutamate dehydrogenase gene gdh, lowering expression of phosphoglucoisomerase gene pgi, along with the introduction of a second copy of the arginine biosynthesis operon argCJB(A49V,M54V)D into the chromosome resulted in a C. glutamicum strain producing ornithine with a yield of 0.52 g ornithine per g glucose, an increase of 71% as compared to the parental ΔargFRG strain. Strains capable of producing 0.41 g citrulline per g glucose, 0.29 g proline per g glucose, 0.30 g arginine per g glucose, and 0.17 g putrescine per g glucose were derived from the ornithine-producing platform strain by plasmid-based overexpression of appropriate pathway modules with one to three genes.
Collapse
Affiliation(s)
- Jaide V K Jensen
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | - Dorit Eberhardt
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| |
Collapse
|
22
|
Chen M, Chen X, Wan F, Zhang B, Chen J, Xiong Y. Effect of Tween 40 and DtsR1 on L-arginine overproduction in Corynebacterium crenatum. Microb Cell Fact 2015; 14:119. [PMID: 26264811 PMCID: PMC4534012 DOI: 10.1186/s12934-015-0310-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/04/2015] [Indexed: 01/26/2023] Open
Abstract
Background l-Glutamate is an important precursor in the l-arginine (l-Arg) biosynthetic pathway. Various methods, including polyoxyethylene sorbitan monopalmitate (Tween 40) addition and dtsR1 disruption, have been widely used to induce l-glutamate overproduction in Corynebacterium glutamicum. In this study, a novel strategy for l-Arg overproduction through Tween 40 trigger and ΔdtsR1 mutant were proposed in Corynebacterium crenatum. Results Corynebacterium crenatum mutant (CCM01) was selected as a host strain, whose argR was lethal via mutagenesis screening, the proB gene was knocked out, and argB was replaced by argB M4 (E19R, H26E, D311R, and D312R) to release l-Arg feedback resistance. After Tween 40 trigger in the logarithmic period, l-Arg production increased from 15.22 to 17.73 g/L in CCM01 strain. When NCgl1221 and dtsR1 disruption (CCM03), l-Arg production drastically increased to 27.45 g/L and then further to 29.97 g/L after Tween 40 trigger. Moreover, the specific activity of α-oxoglutarate dehydrogenase complex (ODHC) decreased, whereas the regeneration of NADP+/NADPH significantly increased after dtsR1 disruption and Tween 40 trigger. Results of real-time PCR showed that the transcriptional levels of odhA, sucB, and lpdA (encoding three subunits of the ODHC complex) were downregulated after Tween 40 trigger or dtsR1 disruption. By contrast, zwf transcription (encoding glucose-6-phosphate dehydrogenase) showed no significant difference among CCM01, CCM02 (ΔNCgl1221), and CCM03 (ΔNCgl1221ΔdtsR1) strains without Tween 40 trigger but evidently increased by 5.50 folds after Tween 40 trigger. Conclusion A novel strategy for l-Arg overproduction by dtsR1 disruption and Tween 40 trigger in C. crenatum was reported. Tween 40 addition exhibited a bifunctional mechanism for l-Arg overproduction, including reduced ODHC activity and enhanced NADPH pools accumulation by downregulated dtsR1 expression and upregulated zwf expression, respectively.
Collapse
Affiliation(s)
- Minliang Chen
- College of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Xuelan Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, People's Republic of China.
| | - Fang Wan
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, People's Republic of China.
| | - Bin Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, People's Republic of China.
| | - Jincong Chen
- College of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Yonghua Xiong
- College of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
23
|
Hernández VM, Girard L, Hernández-Lucas I, Vázquez A, Ortíz-Ortíz C, Díaz R, Dunn MF. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021. Microbiology (Reading) 2015; 161:1671-1682. [DOI: 10.1099/mic.0.000122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Victor M. Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Lourdes Girard
- Programa de Dinámica Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Alejandra Vázquez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Catalina Ortíz-Ortíz
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Rafael Díaz
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| | - Michael F. Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, Mexico
| |
Collapse
|
24
|
Huang Y, Zhang H, Tian H, Li C, Han S, Lin Y, Zheng S. Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum. Appl Microbiol Biotechnol 2015; 99:7527-37. [DOI: 10.1007/s00253-015-6469-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 11/24/2022]
|