1
|
Ikushiro H, Honda T, Murai Y, Murakami T, Takahashi A, Sawai T, Goto H, Ikushiro SI, Miyahara I, Hirabayashi Y, Kamiya N, Monde K, Yano T. Racemization of the substrate and product by serine palmitoyltransferase from Sphingobacterium multivorum yields two enantiomers of the product from d-serine. J Biol Chem 2024; 300:105728. [PMID: 38325740 PMCID: PMC10912632 DOI: 10.1016/j.jbc.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Takumi Honda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan; Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Nobuo Kamiya
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
2
|
Beesley S, Kumar SS. The t-N-methyl-d-aspartate receptor: Making the case for d-Serine to be considered its inverse co-agonist. Neuropharmacology 2023:109654. [PMID: 37437688 DOI: 10.1016/j.neuropharm.2023.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
The N-methyl-d-aspartate receptor (NMDAR) is an enigmatic macromolecule that has garnered a good deal of attention on account of its involvement in the cellular processes that underlie learning and memory, following its discovery in the mid twentieth century (Baudry and Davis, 1991). Yet, despite advances in knowledge about its function, there remains much more to be uncovered regarding the receptor's biophysical properties, subunit composition, and role in CNS physiology and pathophysiology. The motivation for this review stems from the need for synthesizing new information gathered about these receptors that sheds light on their role in synaptic plasticity and their dichotomous relationship with the amino acid d-serine through which they influence the pathogenesis of neurodegenerative diseases like temporal lobe epilepsy (TLE), the most common type of adult epilepsies (Beesley et al., 2020a). This review will outline pertinent ideas relating structure and function of t-NMDARs (GluN3 subunit-containing triheteromeric NMDARs) for which d-serine might serve as an inverse co-agonist. We will explore how tracing d-serine's origins blends glutamate-receptor biology with glial biology to help provide fresh perspectives on how neurodegeneration might interlink with neuroinflammation to initiate and perpetuate the disease state. Taken together, we envisage the review to deepen our understanding of endogenous d-serine's new role in the brain while also recognizing its therapeutic potential in the treatment of TLE that is oftentimes refractory to medications.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine & Program in Neuroscience Florida State University, 1115 W. Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
3
|
Yoshimura T. Molecular basis and functional development of enzymes related to amino acid metabolism. Biosci Biotechnol Biochem 2022; 86:1161-1172. [PMID: 35751623 DOI: 10.1093/bbb/zbac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/12/2022]
Abstract
Enzymology, the study of enzyme structures and reaction mechanisms can be considered a classical discipline. However, enzymes cannot be freely designed to catalyze desired reactions yet, and enzymology is by no means a complete science. I have long studied the reaction mechanisms of enzymes related to amino acid metabolism, such as aminotransferases and racemases, which depend on pyridoxal 5'-phosphate, a coenzyme form of vitamin B6. During these studies, I have often been reminded that enzymatic reactions are extremely sophisticated processes based on chemical principles and enzyme structures, and have often been amazed at the evolutionary mechanisms that bestowed them with such structures. In this review, I described the reaction mechanism of various pyridoxal enzymes especially related to D-amino acids metabolism, whose roles in mammals have recently attracted attention. I hope to convey some of the significance and interest in enzymology through this review.
Collapse
Affiliation(s)
- Tohru Yoshimura
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
4
|
Tanaka Y, Yoshimura T, Hakamata M, Saito C, Sumitani M, Sezutsu H, Hemmi H, Ito T. Identification and characterization of a serine racemase in the silkworm Bombyx mori. J Biochem 2022; 172:17-28. [PMID: 35325141 DOI: 10.1093/jb/mvac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
The pupae of lepidopterans contain high concentrations of endogenous d-serine. In the silkworm Bombyx mori, d-serine is negligible during the larval stage but increases markedly during the pupal stage, reaching 50% of the total free serine. However, the physiological function of d-serine and the enzyme responsible for its production are unknown. Herein, we identified a new type of pyridoxal 5'-phosphate (PLP)-dependent serine racemase (SR) that catalyzes the racemization of l-serine to d-serine in B. mori. This silkworm SR (BmSR) has an N-terminal PLP-binding domain that is homologous to mammalian SR and a C-terminal putative ligand-binding regulatory-like domain (ACT-like domain) that is absent in mammalian SR. Similar to mammalian SRs, BmSR catalyzes the racemization and dehydration of both serine isomers. However, BmSR is different from mammalian SRs as evidenced by its insensitivity to Mg2+/Ca2+ and Mg-ATP-which are required for activation of mammalian SRs-and high d-serine dehydration activity. At the pupal stage, the SR activity was predominantly detected in the fat body, which was consistent with the timing and localization of BmSR expression. The results are an important first step in elucidating the physiological significance of d-serine in lepidopterans.
Collapse
Affiliation(s)
- Yui Tanaka
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Tohru Yoshimura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Maho Hakamata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Chiaki Saito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Megumi Sumitani
- Silkworm Research Group, Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba 305-8634, Japan
| | - Hideki Sezutsu
- Silkworm Research Group, Division of Silk-Producing Insect Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi, Tsukuba 305-8634, Japan
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| | - Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi, Japan
| |
Collapse
|
5
|
Ito T, Matsuoka M, Goto M, Watanabe S, Mizobuchi T, Matsushita K, Nasu R, Hemmi H, Yoshimura T. Mechanism of eukaryotic serine racemase-catalyzed serine dehydration. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140460. [PMID: 32474107 DOI: 10.1016/j.bbapap.2020.140460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Eukaryotic serine racemase (SR) is a pyridoxal 5'-phosphate enzyme belonging to the Fold-type II group, which catalyzes serine racemization and is responsible for the synthesis of D-Ser, a co-agonist of the N-methyl-d-aspartate receptor. In addition to racemization, SR catalyzes the dehydration of D- and L-Ser to pyruvate and ammonia. The bifuctionality of SR is thought to be important for D-Ser homeostasis. SR catalyzes the racemization of D- and L-Ser with almost the same efficiency. In contrast, the rate of L-Ser dehydration catalyzed by SR is much higher than that of D-Ser dehydration. This has caused the argument that SR does not catalyze the direct D-Ser dehydration and that D-Ser is first converted to L-Ser, then dehydrated. In this study, we investigated the substrate and solvent isotope effect of dehydration of D- and L-Ser catalyzed by SR from Dictyostelium discoideum (DdSR) and demonstrated that the enzyme catalyzes direct D-Ser dehydration. Kinetic studies of dehydration of four Thr isomers catalyzed by D. discoideum and mouse SRs suggest that SR discriminates the substrate configuration at C3 but not at C2. This is probably the reason for the difference in efficiency between L- and D-Ser dehydration catalyzed by SR.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Mai Matsuoka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Soichiro Watanabe
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Taichi Mizobuchi
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kazuma Matsushita
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ryoma Nasu
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan.
| |
Collapse
|
6
|
Yu J, Li J, Gao X, Zeng S, Zhang H, Liu J, Jiao Q. Dynamic Kinetic Resolution for Asymmetric Synthesis of L-Noncanonical Amino Acids from D-Ser Using Tryptophan Synthase and Alanine Racemase. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Shuiyun Zeng
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Hongjuan Zhang
- School of Pharmacy; Nanjing Medical University; 211166 Nanjing China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology; School of Life Science; Nanjing University; 210093 Nanjing P. R. China
| |
Collapse
|
7
|
Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M, Mozzarelli A. The Energy Landscape of Human Serine Racemase. Front Mol Biosci 2019; 5:112. [PMID: 30687716 PMCID: PMC6333871 DOI: 10.3389/fmolb.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
8
|
Glutamine 89 is a key residue in the allosteric modulation of human serine racemase activity by ATP. Sci Rep 2018; 8:9016. [PMID: 29899358 PMCID: PMC5998037 DOI: 10.1038/s41598-018-27227-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Serine racemase (SR) catalyses two reactions: the reversible racemisation of L-serine and the irreversible dehydration of L- and D-serine to pyruvate and ammonia. SRs are evolutionarily related to serine dehydratases (SDH) and degradative threonine deaminases (TdcB). Most SRs and TdcBs – but not SDHs – are regulated by nucleotides. SR binds ATP cooperatively and the nucleotide allosterically stimulates the serine dehydratase activity of the enzyme. A H-bond network comprising five residues (T52, N86, Q89, E283 and N316) and water molecules connects the active site with the ATP-binding site. Conservation analysis points to Q89 as a key residue for the allosteric communication, since its mutation to either Met or Ala is linked to the loss of control of activity by nucleotides. We verified this hypothesis by introducing the Q89M and Q89A point mutations in the human SR sequence. The allosteric communication between the active site and the allosteric site in both mutants is almost completely abolished. Indeed, the stimulation of the dehydratase activity by ATP is severely diminished and the binding of the nucleotide is no more cooperative. Ancestral state reconstruction suggests that the allosteric control by nucleotides established early in SR evolution and has been maintained in most eukaryotic lineages.
Collapse
|
9
|
Ito T, Hamauchi N, Hagi T, Morohashi N, Hemmi H, Sato YG, Saito T, Yoshimura T. D-Serine Metabolism and Its Importance in Development of Dictyostelium discoideum. Front Microbiol 2018; 9:784. [PMID: 29740415 PMCID: PMC5928759 DOI: 10.3389/fmicb.2018.00784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
In mammals, D-Ser is synthesized by serine racemase (SR) and degraded by D-amino acid oxidase (DAO). D-Ser acts as an endogenous ligand for N-methyl-D-aspartate (NMDA)- and δ2 glutamate receptors, and is involved in brain functions such as learning and memory. Although SR homologs are highly conserved in eukaryotes, little is known about the significance of D-Ser in non-mammals. In contrast to mammals, the slime mold Dictyostelium discoideum genome encodes SR, DAO, and additionally D-Ser specific degradation enzyme D-Ser dehydratase (DSD), but not NMDA- and δ2 glutamate receptors. Here, we studied the significances of D-Ser and DSD in D. discoideum. Enzymatic assays demonstrated that DSD is 460- and 1,700-fold more active than DAO and SR, respectively, in degrading D-Ser. Moreover, in dsd-null cells D-Ser degradation activity is completely abolished. In fact, while in wild-type D. discoideum intracellular D-Ser levels were considerably low, dsd-null cells accumulated D-Ser. These results indicated that DSD but not DAO is the primary enzyme responsible for D-Ser decomposition in D. discoideum. We found that dsd-null cells exhibit delay in development and arrest at the early culmination stage. The efficiency of spore formation was considerably reduced in the mutant cells. These phenotypes were further pronounced by exogenous D-Ser but rescued by plasmid-borne expression of dsd. qRT-PCR analysis demonstrated that mRNA expression of key genes in the cAMP signaling relay is perturbed in the dsd knockout. Our data indicate novel roles for D-Ser and/or DSD in the regulation of cAMP signaling in the development processes of D. discoideum.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Natsuki Hamauchi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Taisuke Hagi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoya Morohashi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yukie G Sato
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Mizobuchi T, Nonaka R, Yoshimura M, Abe K, Takahashi S, Kera Y, Goto M. Crystal structure of a pyridoxal 5'-phosphate-dependent aspartate racemase derived from the bivalve mollusc Scapharca broughtonii. Acta Crystallogr F Struct Biol Commun 2017; 73:651-656. [PMID: 29199985 PMCID: PMC5713669 DOI: 10.1107/s2053230x17015813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/30/2017] [Indexed: 11/10/2022] Open
Abstract
Aspartate racemase (AspR) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is responsible for D-aspartate biosynthesis in vivo. To the best of our knowledge, this is the first study to report an X-ray crystal structure of a PLP-dependent AspR, which was resolved at 1.90 Å resolution. The AspR derived from the bivalve mollusc Scapharca broughtonii (SbAspR) is a type II PLP-dependent enzyme that is similar to serine racemase (SR) in that SbAspR catalyzes both racemization and dehydration. Structural comparison of SbAspR and SR shows a similar arrangement of the active-site residues and nucleotide-binding site, but a different orientation of the metal-binding site. Superposition of the structures of SbAspR and of rat SR bound to the inhibitor malonate reveals that Arg140 recognizes the β-carboxyl group of the substrate aspartate in SbAspR. It is hypothesized that the aromatic proline interaction between the domains, which favours the closed form of SbAspR, influences the arrangement of Arg140 at the active site.
Collapse
Affiliation(s)
- Taichi Mizobuchi
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Risako Nonaka
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Motoki Yoshimura
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Katsumasa Abe
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Shouji Takahashi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yoshio Kera
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
11
|
Ito T, Hayashida M, Kobayashi S, Muto N, Hayashi A, Yoshimura T, Mori H. Serine racemase is involved in d-aspartate biosynthesis. J Biochem 2016; 160:345-353. [DOI: 10.1093/jb/mvw043] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/08/2016] [Indexed: 02/02/2023] Open
|
12
|
Kubota T, Shimamura S, Kobayashi T, Nunoura T, Deguchi S. Distribution of eukaryotic serine racemases in the bacterial domain and characterization of a representative protein in Roseobacter litoralis Och 149. MICROBIOLOGY-SGM 2015; 162:53-61. [PMID: 26475231 DOI: 10.1099/mic.0.000200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two distinct bacterial and eukaryotic serine racemases (SRs) have been identified based on phylogenetic and biochemical characteristics. Although some reports have suggested that marine heterotrophic bacteria have the potential to produce d-serine, the gene encoding bacterial SRs is not found in those bacterial genomes. In this study, using in-depth genomic analysis, we found that eukaryotic SR homologues were distributed widely in various bacterial genomes. Additionally, we selected a eukaryotic SR homologue from a marine heterotrophic bacterium, Roseobacter litoralis Och 149 (RiSR), and constructed an RiSR gene expression system in Escherichia coli for studying the properties of the enzyme. Among the tested amino acids, the recombinant RiSR exhibited both racemization and dehydration activities only towards serine, similar to many eukaryotic SRs. Mg2+ and MgATP enhanced both activities of RiSR, whereas EDTA abolished these enzymatic activities. The enzymatic properties and domain structure of RiSR were similar to those of eukaryotic SRs, particularly mammalian SRs. However, RiSR showed lower catalytic efficiency for L-serine dehydration (kcat/Km=0.094 min(-1) mM(-1)) than those of eukaryotic SRs reported to date (kcat/Km=0.6-21 min(-1) mM(-1)). In contrast, the catalytic efficiency for L-serine racemization of RiSR (kcat/Km=3.14 min(-1) mM(-1)) was 34-fold higher than that of l-serine dehydration. These data suggested that RiSR primarily catalysed serine racemization rather than dehydration.
Collapse
Affiliation(s)
- Takaaki Kubota
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Shigeru Shimamura
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Tohru Kobayashi
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Shigeru Deguchi
- Research and Development Center for Marine Biosciences, Marine Functional Biology Group, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
13
|
Distribution and evolution of the serine/aspartate racemase family in invertebrates. Amino Acids 2015; 48:387-402. [DOI: 10.1007/s00726-015-2092-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/28/2015] [Indexed: 02/02/2023]
|
14
|
Okuda K, Ito T, Goto M, Takenaka T, Hemmi H, Yoshimura T. Domain characterization of Bacillus subtilis GabR, a pyridoxal 5'-phosphate-dependent transcriptional regulator. J Biochem 2015; 158:225-34. [PMID: 25911692 DOI: 10.1093/jb/mvv040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/15/2015] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis GabR is a transcriptional regulator consisting of a helix-turn-helix N-terminal DNA-binding domain, a pyridoxal 5'-phosphate (PLP)-binding C-terminal domain that has a structure homologous to aminotransferases, and a linker of 29 amino acid residues. In the presence of γ-aminobutyrate (GABA), GabR activates the transcription of gabT and gabD, which encode GABA aminotransferase and succinate semialdehyde dehydrogenase, respectively. We expressed N-terminal and C-terminal domain fragments (named N'-GabR and C'-GabR) in Escherichia coli cells, and obtained N'-GabR as a soluble monomer and C'-GabR as a soluble dimer. Spectroscopic studies suggested that C'-GabR contains PLP and binds to d-Ala, β-Ala, d-Asn and d-Gln, as well as GABA, although the intact GabR binds only to GABA. N'-GabR does not bind to the DNA fragment containing the GabR-binding sequence regardless of the presence or absence of C'-GabR. A fusion protein consisting of N'-GabR and 2-aminoadipate aminotransferase of Thermus thermophilus bound to the DNA fragment. These results suggested that each domain of GabR could be an independent folding unit. The C-terminal domain provides the N-terminal domain with DNA-binding ability via dimerization. The N-terminal domain controls the ligand specificity of the C-terminal domain. Connection by the linker is indispensable for the mutual interaction of the domains.
Collapse
Affiliation(s)
- Keita Okuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Masaru Goto
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Takenaka
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Hisashi Hemmi
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| | - Tohru Yoshimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-Chou, Chikusa, Nagoya, Aichi 464-8601, Japan and
| |
Collapse
|
15
|
Conserved pyridoxal protein that regulates Ile and Val metabolism. J Bacteriol 2013; 195:5439-49. [PMID: 24097949 DOI: 10.1128/jb.00593-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli YggS is a member of the highly conserved uncharacterized protein family that binds pyridoxal 5'-phosphate (PLP). To assist with the functional assignment of the YggS family, in vivo and in vitro analyses were performed using a yggS-deficient E. coli strain (ΔyggS) and a purified form of YggS, respectively. In the stationary phase, the ΔyggS strain exhibited a completely different intracellular pool of amino acids and produced a significant amount of l-Val in the culture medium. The log-phase ΔyggS strain accumulated 2-ketobutyrate, its aminated compound 2-aminobutyrate, and, to a lesser extent, l-Val. It also exhibited a 1.3- to 2.6-fold increase in the levels of Ile and Val metabolic enzymes. The fact that similar phenotypes were induced in wild-type E. coli by the exogenous addition of 2-ketobutyrate and 2-aminobutyrate indicates that the 2 compounds contribute to the ΔyggS phenotypes. We showed that the initial cause of the keto acid imbalance was the reduced availability of coenzyme A (CoA); supplementation with pantothenate, which is a CoA precursor, fully reversed phenotypes conferred by the yggS mutation. The plasmid-borne expression of YggS and orthologs from Bacillus subtilis, Saccharomyces cerevisiae, and humans fully rescued the ΔyggS phenotypes. Expression of a mutant YggS lacking PLP-binding ability, however, did not reverse the ΔyggS phenotypes. These results demonstrate for the first time that YggS controls Ile and Val metabolism by modulating 2-ketobutyrate and CoA availability. Its function depends on PLP, and it is highly conserved in a wide range species, from bacteria to humans.
Collapse
|
16
|
Ito T, Maekawa M, Hayashi S, Goto M, Hemmi H, Yoshimura T. Catalytic mechanism of serine racemase from Dictyostelium discoideum. Amino Acids 2012; 44:1073-84. [PMID: 23269477 DOI: 10.1007/s00726-012-1442-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 11/30/2012] [Indexed: 01/22/2023]
Abstract
The eukaryotic serine racemase from Dictyostelium discoideum is a fold-type II pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes racemization and dehydration of both isomers of serine. In the present study, the catalytic mechanism and role of the active site residues of the enzyme were examined by site-directed mutagenesis. Mutation of the PLP-binding lysine (K56) to alanine abolished both serine racemase and dehydrase activities. Incubation of D- and L-serine with the resultant mutant enzyme, K56A, resulted in the accumulation of PLP-serine external aldimine, while less amounts of pyruvate, α-aminoacrylate, antipodal serine and quinonoid intermediate were formed. An alanine mutation of Ser81 (S81) located on the opposite side of K56 against the PLP plane converted the enzyme from serine racemase to L-serine dehydrase; S81A showed no racemase activity and had significantly reduced D-serine dehydrase activity, but it completely retained its L-serine dehydrase activity. Water molecule(s) at the active site of the S81A mutant enzyme probably drove D-serine dehydration by abstracting the α-hydrogen in D-serine. Our data suggest that the abstraction and addition of α-hydrogen to L- and D-serine are conducted by K56 and S81 at the si- and re-sides, respectively, of PLP.
Collapse
Affiliation(s)
- Tomokazu Ito
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Frou-chou, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | | | | | | | | |
Collapse
|