1
|
Scarano A, Qorri E, Sbarbati A, Gehrke SA, Frisone A, Amuso D, Tari SR. The efficacy of hyaluronic acid fragments with amino acid in combating facial skin aging: an ultrasound and histological study. J Ultrasound 2024; 27:689-697. [PMID: 38913131 PMCID: PMC11333785 DOI: 10.1007/s40477-024-00925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Various techniques have been employed in aesthetic medicine to combat skin aging, in particular that of the facial region. Hyaluronic acid is utilized to enhance moisture levels and extracellular matrix molecules. This study aims to histologically assess the effects of low molecular weight hyaluronic acid fragments combined with amino acids (HAAM) on facial skin rejuvenation through intradermal microinjections. METHODS A total of twenty women, with an average age of 45 and ranging from 35 to 64 years old, participated in the study, including 8 in menopause and 12 in the childbearing age group. Mesotherapy was used to administer HAAM to the patients. Prior to and three months after the treatment, each patient underwent small circular punch biopsies. Ultrasound examinations were conducted using B-mode, capturing 2D images in longitudinal or transverse orientations with frequencies ranging from 5 to 13 Mega-hertz (MY LAB X8, ESAOTE, Genova, Italy). A total of 60 ultrasound examinations were taken, with 30 collected before treatment and 30 after treatment. RESULTS The histological analysis demonstrates an increase in fibroblast activity resulting in the production of Type III reticular collagen, as well as an increased number of blood vessels and epidermal thickness. However, the analysis of ultrasound data before and after treatment showed no statistical difference in skin thickness in malar area, chin and mandibular angle. CONCLUSIONS Histological assessments indicate that subcutaneous infiltration of HAAM has a substantial impact on the dermis of facial skin.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy.
| | - E Qorri
- Department of Dentistry, Faculty of Medical Sciences, Albanian University, 1001, Tirana, Albania
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - S A Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay
| | - Alessio Frisone
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| | - D Amuso
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Sergio Rexhep Tari
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Strada Marcello Mucci 38/B, 66100, Chieti, Italy
| |
Collapse
|
2
|
Gao Y, Liu C, Wang X, Zhou H, Mai K, He G. EPA and DHA promote cell proliferation and enhance activity of the Akt-TOR-S6K anabolic signaling pathway in primary muscle cells of turbot (Scophthalmus maximus L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1483-1494. [PMID: 38814520 DOI: 10.1007/s10695-024-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Fish growth and health are predominantly governed by dietary nutrient supply. Although the beneficial effects of omega-3 polyunsaturated fatty acids supplementation have been shown in a number of fish species, the underlying mechanisms are still mostly unknown. In this study, we conducted an investigation into the effects of EPA and DHA on cell proliferation, nutrient sensing signaling, and branched-chain amino acids (BCAA) transporting in primary turbot muscle cells. The findings revealed that EPA and DHA could stimulate cell proliferation, promote protein synthesis and inhibit protein degradation through activation of target of rapamycin (TOR) signaling pathway, a pivotal nutrient-sensing signaling cascade. While downregulating the expression of myogenin and myostatin, EPA and DHA increased the level of myogenic regulatory factors, such as myoD and follistatin. Furthermore, we observed a significant increase in the concentrations of intracellular BCAAs following treatment with EPA or DHA, accompanied by an upregulation of the associated amino acid transporters. Our study providing valuable insights into the mechanisms underlying the growth-promoting effects of omega-3 fatty acids in fish.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
3
|
Oh Y, Mun S, Choi YB, Jo H, Lee DG, Han K. Genome-Wide Pathway Exploration of the Epidermidibacterium keratini EPI-7 T. Microorganisms 2023; 11:870. [PMID: 37110293 PMCID: PMC10143877 DOI: 10.3390/microorganisms11040870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1'-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.
Collapse
Affiliation(s)
- Yunseok Oh
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Bong Choi
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - HyungWoo Jo
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Dong-Geol Lee
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- R&I Center, COSMAX BTI, Pangyo-ro 255, Bundang-gu, Seongnam 13486, Republic of Korea
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Yongin 16890, Republic of Korea;
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea; (S.M.); (H.J.)
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Gasan Digital 1-ro, Geumcheon-gu, Seoul 08507, Republic of Korea
| |
Collapse
|
4
|
Spahr A, Divnic‐Resnik T. Impact of health and lifestyle food supplements on periodontal tissues and health. Periodontol 2000 2022; 90:146-175. [PMID: 35916868 PMCID: PMC9804634 DOI: 10.1111/prd.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
According to the new classification, periodontitis is defined as a chronic multifactorial inflammatory disease associated with dysbiotic biofilms and characterized by progressive destruction of the tooth-supporting apparatus. This definition, based on the current scientific evidence, clearly indicates and emphasizes, beside the microbial component dental biofilm, the importance of the inflammatory reaction in the progressive destruction of periodontal tissues. The idea to modulate this inflammatory reaction in order to decrease or even cease the progressive destruction was, therefore, a logical consequence. Attempts to achieve this goal involve various kinds of anti-inflammatory drugs or medications. However, there is also an increasing effort in using food supplements or so-called natural food ingredients to modulate patients' immune responses and maybe even improve the healing of periodontal tissues. The aim of this chapter of Periodontology 2000 is to review the evidence of various food supplements and ingredients regarding their possible effects on periodontal inflammation and wound healing. This review may help researchers and clinicians to evaluate the current evidence and to stimulate further research in this area.
Collapse
Affiliation(s)
- Axel Spahr
- Discipline of Periodontics, School of Dentistry, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Tihana Divnic‐Resnik
- Discipline of Periodontics, School of Dentistry, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
5
|
Yamane T, Kitaura Y, Iwatsuki K, Shimomura Y, Oishi Y. Branched-chain amino acids regulate hyaluronan synthesis and PPARα expression in the skin. Biosci Biotechnol Biochem 2021; 85:2292-2294. [PMID: 34529047 DOI: 10.1093/bbb/zbab160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022]
Abstract
We examined the effects of deletion of branched-chain α-keto acid dehydrogenase kinase (BDK), a key enzyme in branched-chain amino acid catabolism, on hyaluronan synthesis in mice. The skin levels of hyaluronan and the gene expression levels of hyaluronan synthase (Has)2, Has3, and peroxisome proliferator-activated receptor-α were significantly lower in the BDK-knockout group than in the wild-type group.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yoshiharu Shimomura
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Aichi, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
6
|
Scarano A, Sbarbati A, Amore R, Iorio EL, Ferraro G, Marchetti M, Amuso D. The role of hyaluronic acid and amino acid against the aging of the human skin: A clinical and histological study. J Cosmet Dermatol 2020; 20:2296-2304. [PMID: 33090687 DOI: 10.1111/jocd.13811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND In esthetic medicine, different techniques have been used against the aging of the human skin especially in the facial area. Hyaluronic acid is used for improving the quantity of water and extracellular matrix molecule. The aim of this study is a clinical and histological evaluation of the effect of low-molecular-weight hyaluronic acid fragments mixed with amino acid (HAAM) on the rejuvenation the face skin treated with intradermal microinjections. METHODS Twenty women with mean age 45 range from 35 to 64 were studied, thereof 8 in menopause and 12 of childbearing age. The patients were treated with the HAAM products by mesotherapy technique; before and after 3 months of the therapeutic procedure, each patient underwent small biopsies with a circular punch biopsy. RESULTS The clinical results of the present study showed that the administration of the dermal filler containing fragments of hyaluronic acid between 20 and 38 monomers and amino acid via dermis injection technique produces an esthetic improvement in the faces of the treated patients, while the histological evaluation shows an increased fibroblast activity with the production of type III reticular collagen and increased number of vessels and epidermis thickness. CONCLUSIONS The clinical and histological assessment showed that subcutaneous HAAM infiltration has a significant impact on the dermis and clinical aspects of the face.
Collapse
Affiliation(s)
- Antonio Scarano
- Aesthetic Medicine, Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Andrea Sbarbati
- Aesthetic Medicine and Wellness, University of Palermo, Palermo, Italy
| | - Roberto Amore
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Eugenio Luigi Iorio
- Aesthetic Medicine, Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Giueseppe Ferraro
- Department of Plastic, Reconstructive and Aesthetic Surgery, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Marco Marchetti
- School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Domenico Amuso
- Aesthetic Medicine and Wellness, University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Wada A, Sonoda C, Makino Y, Hama Y, Nagahama A, Harada D. Effects of Parenteral Amino Acid Administration on the Postoperative Nutritional Status and Wound Healing of Protein-Malnourished Rats. J Nutr Sci Vitaminol (Tokyo) 2018; 64:34-40. [PMID: 29491270 DOI: 10.3177/jnsv.64.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Japan, parenteral nutrition (PN) solutions are frequently administered to patients in the postoperative short-term period. In these cases, amino acid-containing peripheral parenteral nutrition (PPN) solutions, amino acid-free maintenance solutions or combinations of the two are used. However, consensus regarding the most beneficial solution for these patients is lacking. Here, we examined the nutritional status and wound healing outcomes in protein-malnourished rats receiving postoperative administrations of PPN solution, maintenance solution or combinations of the two solutions. Protein malnutrition was induced in Sprague-Dawley rats by feeding an AIN-93G-based low-protein diet (5% casein) for 2 wk. After laparotomy, dorsal skin incision, and placement of a jugular vein catheter, the rats were divided into 3 groups. Each group was administered 113 kcal/kg/d, with group A receiving maintenance solutions without amino acid, group B receiving PPN with 1.5% amino acid, and group C receiving PPN with 3% amino acid. After 5 d post-operative administration, we measured the tensile strength of the wound area, skeletal muscle weights, and nutritional parameters. Significantly higher plasma nutritional parameters and gastrocnemius and extensor digitorum longus (EDL) muscle weights were observed in groups B and C than in group A. Group C exhibited significantly elevated tensile strength of the wound area along with up-regulation of type I collagen mRNA expression compared to group A. These findings demonstrate the nutritional status and wound healing benefits of short-term postoperative administration of PPN solutions containing amino acids in protein-malnourished rats.
Collapse
Affiliation(s)
- Akira Wada
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Chiaki Sonoda
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Yuya Makino
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Yuki Hama
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Akihiro Nagahama
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| | - Daisuke Harada
- Naruto Research Institute, Research and Development Center, Otsuka Pharmaceutical Factory, Inc
| |
Collapse
|
8
|
Yamane T, Morioka Y, Kitaura Y, Iwatsuki K, Shimomura Y, Oishi Y. Branched-chain amino acids regulate type I tropocollagen and type III tropocollagen syntheses via modulation of mTOR in the skin. Biosci Biotechnol Biochem 2018; 82:611-615. [DOI: 10.1080/09168451.2017.1386084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Branched-chain amino acids (BCAAs) exhibit many physiological functions. However, the potential link and mechanism between BCAA and skin function are unknown. We examined the effects of deletion of branched-chain α-keto acid dehydrogenase kinase (BDK), a key enzyme in BCAA catabolism, on type I and III tropocollagen syntheses in mice. Leucine and isoleucine levels were significantly lower in the skin of BDK-KO mice compared with wild-type mice. No changes in valine concentrations were observed. The levels of type I and III tropocollagen proteins and mRNAs (COL1A1 and COL3A1) were significantly lower in the skin of BDK-KO mice compared with wild-type mice. The phosphorylation of p70 S6 kinase, which indicates mammalian target of rapamycin (mTOR) activation, was reduced in the skin of BDK-KO mice compared with wild-type mice. These findings suggest that deficiencies of leucine and isoleucine reduce type I and III tropocollagen syntheses in skin by suppressing the action of mTOR.
Collapse
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuka Morioka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yasuyuki Kitaura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoshiharu Shimomura
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
9
|
Albaugh VL, Mukherjee K, Barbul A. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing. J Nutr 2017; 147:2011-2017. [PMID: 28978679 PMCID: PMC5657141 DOI: 10.3945/jn.117.256404] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed.
Collapse
Affiliation(s)
- Vance L Albaugh
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN; and
| | - Kaushik Mukherjee
- Division of Acute Care Surgery, Loma Linda University School of Medicine, Loma Linda, CA
| | - Adrian Barbul
- Division of General Surgery, Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN; and
| |
Collapse
|
10
|
Huang L, Zhang C, Su L, Song Z. GSK3β attenuates TGF-β1 induced epithelial-mesenchymal transition and metabolic alterations in ARPE-19 cells. Biochem Biophys Res Commun 2017; 486:744-751. [PMID: 28342867 DOI: 10.1016/j.bbrc.2017.03.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 12/31/2022]
Abstract
While TGF-β1 is known to induce epithelial-mesenchymal transition (EMT), a major factor in the pathogenesis of proliferative vitreoretinopathy (PVR), in ARPE-19 cells. The molecular pathways involved in EMT formation have not yet to be fully characterized. In this study, we have found that TGF-β1-mediated induction of EMT in ARPE-19 cells varied in a dose- and time-dependent manner. Specifically, TGF-β1 inhibited GSK-3β by accelerating phosphorylation at ser9. GSK-3β inhibitor or knockdown of GSK-3β resulted in enhanced TGF-β1-mediated EMT, migration and collagen contraction in ARPE-19 cells, which were then abrogated by GSK-3β overexpression and PI3K/AKT inhibitor. Importantly, GSK-3β also mediated metabolic reprogramming in TGF-β1-treated cells. Our results indicate that GSK-3β plays a pivotal role in TGF-β1-mediated EMT in ARPE-19 cells.
Collapse
Affiliation(s)
- Li Huang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Cheng Zhang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Li Su
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China.
| | - Zhengyu Song
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; Shanghai Xinshijie Eye Hospital, Shanghai 200071, China.
| |
Collapse
|
11
|
Yamane T, Inoue Y, Kobayashi-Hattori K, Oishi Y. Effects of an Amino acid Deficiency on Hyaluronan Synthesis in Human Dermal Fibroblasts. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Yoshiki Inoue
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture
| |
Collapse
|
12
|
Shayakhmetova GM, Bondarenko LB, Matvienko AV, Kovalenko VM. Chronic alcoholism-mediated metabolic disorders in albino rat testes. Interdiscip Toxicol 2014; 7:165-72. [PMID: 26109895 PMCID: PMC4434111 DOI: 10.2478/intox-2014-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/13/2014] [Accepted: 09/14/2014] [Indexed: 12/17/2022] Open
Abstract
There is good evidence for impairment of spermatogenesis and reductions in sperm counts and testosterone levels in chronic alcoholics. The mechanisms for these effects have not yet been studied in detail. The consequences of chronic alcohol consumption on the structure and/or metabolism of testis cell macromolecules require to be intensively investigated. The present work reports the effects of chronic alcoholism on contents of free amino acids, levels of cytochrome P450 3A2 (CYP3A2) mRNA expression and DNA fragmentation, as well as on contents of different cholesterol fractions and protein thiol groups in rat testes. Wistar albino male rats were divided into two groups: I - control (intact animals), II - chronic alcoholism (15% ethanol self-administration during 150 days). Following 150 days of alcohol consumption, testicular free amino acid content was found to be significantly changed as compared with control. The most profound changes were registered for contents of lysine (-53%) and methionine (+133%). The intensity of DNA fragmentation in alcohol-treated rat testes was considerably increased, on the contrary CYP3A2 mRNA expression in testis cells was inhibited, testicular contents of total and etherified cholesterol increased by 25% and 45% respectively, and protein SH-groups decreased by 13%. Multidirectional changes of the activities of testicular dehydrogenases were detected. We thus obtained complex assessment of chronic alcoholism effects in male gonads, affecting especially amino acid, protein, ATP and NADPH metabolism. Our results demonstrated profound changes in testes on the level of proteome and genome. We suggest that the revealed metabolic disorders can have negative implication on cellular regulation of spermatogenesis under long-term ethanol exposure.
Collapse
Affiliation(s)
- Ganna M Shayakhmetova
- General Toxicology Department, SI "Institute of Pharmacology & Toxicology", National Academy of Medical Sciences of Ukraine, Kyiv, 03680, Ukraine
| | - Larysa B Bondarenko
- General Toxicology Department, SI "Institute of Pharmacology & Toxicology", National Academy of Medical Sciences of Ukraine, Kyiv, 03680, Ukraine
| | - Anatoliy V Matvienko
- General Toxicology Department, SI "Institute of Pharmacology & Toxicology", National Academy of Medical Sciences of Ukraine, Kyiv, 03680, Ukraine
| | - Valentina M Kovalenko
- General Toxicology Department, SI "Institute of Pharmacology & Toxicology", National Academy of Medical Sciences of Ukraine, Kyiv, 03680, Ukraine
| |
Collapse
|
13
|
Shayakhmetova GM, Bondarenko LB, Kovalenko VM, Kharchenko OI, Bohun LI, Omelchenko YO. Multiparameter rodent chronic model for complex evaluation of alcoholism-mediated metabolic violations. J Basic Clin Physiol Pharmacol 2014; 26:43-51. [PMID: 24825097 DOI: 10.1515/jbcpp-2013-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/06/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Despite of the wide spectrum of alcoholism experimental models, the majority of them are very specialized on the short list of investigated parameters and could not provide reproduction of complex metabolic changes in the rats. The aim of the present study was to estimate whether rats selected by high alcohol preference, allowed free access to 15% alcohol for 150 days, develop simultaneous multilevel disturbances of cell macromolecules structure, metabolism and oxidative/nitrosative stress. METHODS Wistar albino male rats were divided into groups: I - rats selected by preferences to alcohol were used for chronic alcoholism modeling by replacing water with 15% ethanol (150 days), II - control. Contents of amino acids in serum, liver mRNA CYP2E1 and CYP3A2 expression, DNA fragmentation and lipid peroxidation levels, the reduced glutathione content, superoxide dismutase, catalase, iNOS and cNOS activities were evaluated. RESULTS In serum of ethanol-treated rats contents of aspartic acid, serine, glycine, alanine and valine were decreased whereas contents of histidine, methionine and phenylalanine were increased. Liver CYP2E1, CYP3A2 mRNA expression, DNA fragmentation levels significantly elevated. Level of cNOS in ethanol-treated rat's hepatocytes was within the normal limits, whereas iNOS activity was raised 1.6 times. Liver pro- and anti-oxidant system alterations were shown. CONCLUSIONS Rats' chronic 15% alcohol consumption (150 days) led solely to complex metabolomic changes at different levels, which simultaneously characterized cell macromolecules structure, metabolism, and oxidative/nitrosative stress. Rodent model of chronic alcoholism in the proposed modification could be an adequate and reasonably priced tool for further preclinical development and testing of pharmacotherapeutic agents.
Collapse
|