1
|
Zhang N, Li T, Pan H, Wang Y, Li Q, Luan J, He X, Shi W, Li Y, Wang C, Zhang F, Hu W. Genetic components of Escherichia coli involved in its complex prey-predator interaction with Myxococcus xanthus. Front Microbiol 2023; 14:1304874. [PMID: 38116529 PMCID: PMC10728724 DOI: 10.3389/fmicb.2023.1304874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Myxococcus xanthus and Escherichia coli represent a well-studied microbial predator-prey pair frequently examined in laboratory settings. While significant progress has been made in comprehending the mechanisms governing M. xanthus predation, various aspects of the response and defensive mechanisms of E. coli as prey remain elusive. In this study, the E. coli MG1655 large-scale chromosome deletion library was screened, and a mutant designated as ME5012 was identified to possess significantly reduced susceptibility to predation by M. xanthus. Within the deleted region of ME5012 encompassing seven genes, the significance of dusB and fis genes in driving the observed phenotype became apparent. Specifically, the deletion of fis resulted in a notable reduction in flagellum production in E. coli, contributing to a certain level of resistance against predation by M. xanthus. Meanwhile, the removal of dusB in E. coli led to diminished inducibility of myxovirescin A production by M. xanthus, accompanied by a slight decrease in susceptibility to myxovirescin A. These findings shed light on the molecular mechanisms underlying the complex interaction between M. xanthus and E. coli in a predatory context.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Tingyi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yipeng Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Qi Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Jia Luan
- Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenyuan Shi
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, United States
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Dashevsky D, Baumann K, Undheim EAB, Nouwens A, Ikonomopoulou MP, Schmidt JO, Ge L, Kwok HF, Rodriguez J, Fry BG. Functional and Proteomic Insights into Aculeata Venoms. Toxins (Basel) 2023; 15:toxins15030224. [PMID: 36977115 PMCID: PMC10053895 DOI: 10.3390/toxins15030224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Aculeate hymenopterans use their venom for a variety of different purposes. The venom of solitary aculeates paralyze and preserve prey without killing it, whereas social aculeates utilize their venom in defence of their colony. These distinct applications of venom suggest that its components and their functions are also likely to differ. This study investigates a range of solitary and social species across Aculeata. We combined electrophoretic, mass spectrometric, and transcriptomic techniques to characterize the compositions of venoms from an incredibly diverse taxon. In addition, in vitro assays shed light on their biological activities. Although there were many common components identified in the venoms of species with different social behavior, there were also significant variations in the presence and activity of enzymes such as phospholipase A2s and serine proteases and the cytotoxicity of the venoms. Social aculeate venom showed higher presence of peptides that cause damage and pain in victims. The venom-gland transcriptome from the European honeybee (Apis mellifera) contained highly conserved toxins which match those identified by previous investigations. In contrast, venoms from less-studied taxa returned limited results from our proteomic databases, suggesting that they contain unique toxins.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
- Correspondence: (D.D.); (B.G.F.)
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Eivind A. B. Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, N-0316 Oslo, Norway
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, 4075 Madrid, Spain
| | - Justin O. Schmidt
- Southwestern Biological Institute, 1961 W. Brichta Dr., Tucson, AZ 85745, USA
| | - Lilin Ge
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210046, China
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Institute of Translational Medicine, Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Juanita Rodriguez
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (D.D.); (B.G.F.)
| |
Collapse
|
3
|
Sharma D, Bisht GS. Recent Updates on Antifungal Peptides. Mini Rev Med Chem 2020; 20:260-268. [PMID: 31556857 DOI: 10.2174/1389557519666190926112423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/17/2018] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The current trend of increment in the frequency of antifungal resistance has brought research into an era where new antifungal compounds with novel mechanisms of action are required. Natural antimicrobial peptides, which are ubiquitous components of innate immunity, represent their candidature for novel antifungal peptides. Various antifungal peptides have been isolated from different species ranging from small marine organisms to insects and from various other living species. Based on these peptides, various mimetics of antifungal peptides have also been synthesized using non-natural amino acids. Utilization of these antifungal peptides is somehow limited due to their toxic and unstable nature. This review discusses recent updates and future directions of antifungal peptides, for taking them to the shelf from the bench.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Gopal Singh Bisht
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| |
Collapse
|
4
|
Lamiyan AK, Dalal R, Kumar NR. Venom peptides in association with standard drugs: a novel strategy for combating antibiotic resistance - an overview. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200001. [PMID: 32843888 PMCID: PMC7416788 DOI: 10.1590/1678-9199-jvatitd-2020-0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/08/2020] [Indexed: 01/03/2023] Open
Abstract
Development of antibiotic resistance that leads to resurgence of bacterial infections poses a threat to disease-free existence for humankind and is a challenge for the welfare of the society at large. Despite research efforts directed towards treatment of pathogens, antibiotics within new improved classes have not emerged for years, a fact largely attributable to the pharmacological necessities compelling drug development. Recent reversion to the use of natural products alone or in combination with standard drugs has opened up new vistas for alternative therapeutics. The success of this strategy is evident in the sudden interest in plant extracts as additives/synergists for treatment of maladies caused by drug-resistant bacterial strains. Animal venoms have long fascinated scientists as sources of pharmacologically active components that can be exploited for the treatment of specific ailments and should be promoted further to clinical trials. In the present review, we outline the scope and possible methods for the applications of animal venoms in combination with commercial antibiotics to offer a better treatment approach against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Ramkesh Dalal
- Department of Zoology, Panjab University, Chandigarh, India
| | | |
Collapse
|
5
|
Amini A, Raheem S, Steiner A, Deeba F, Ahmad Z. Insect venom peptides as potent inhibitors of Escherichia coli ATP synthase. Int J Biol Macromol 2020; 150:23-30. [DOI: 10.1016/j.ijbiomac.2020.02.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
|
6
|
Peptidomic analysis of the venom of the solitary bee Xylocopa appendiculata circumvolans. J Venom Anim Toxins Incl Trop Dis 2017; 23:40. [PMID: 28855917 PMCID: PMC5575948 DOI: 10.1186/s40409-017-0130-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023] Open
Abstract
Background Among the hymenopteran insect venoms, those from social wasps and bees – such as honeybee, hornets and paper wasps – have been well documented. Their venoms are composed of a number of peptides and proteins and used for defending their nests and themselves from predators. In contrast, the venoms of solitary wasps and bees have not been the object of further research. In case of solitary bees, only major peptide components in a few venoms have been addressed. Therefore, the aim of the present study was to explore the peptide component profile of the venom from the solitary bee Xylocopa appendiculata circumvolans by peptidomic analysis with using LC-MS. Methods A reverse-phase HPLC connected to ESI-OrbiTrap MS was used for LC-MS. On-line mass fingerprinting was made from TIC, and data-dependent tandem mass spectrometry gave MSMS spectra. A major peptide component was isolated by reverse-phase HPLC by conventional way, and its sequence was determined by Edman degradation, which was finally corroborated by solid phase synthesis. Using the synthetic specimen, biological activities (antimicrobial activity, mast cell devaluation, hemolysis, leishmanicidal activity) and pore formation in artificial lipid bilayer were evaluated. Results On-line mass fingerprinting revealed that the crude venom contained 124 components. MS/MS analysis gave 75 full sequences of the peptide components. Most of these are related to the major and novel peptide, xylopin. Its sequence, GFVALLKKLPLILKHLH-NH2, has characteristic features of linear cationic α-helical peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, it can be predicted to adopt an amphipathic α-helix secondary structure. In biological evaluation, xylopin exhibited broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity. Additionally, the peptide was able to incorporate pores in artificial lipid bilayers of azolectin, confirming the mechanism of the cytolytic activity by pore formation in biological membranes. Conclusions LC-ESI-MS and MS/MS analysis of the crude venom extract from a solitary bee Xylocopa appendiculata circumvolans revealed that the component profile of this venom mostly consisted of small peptides. The major peptide components, xylopin and xylopinin, were purified and characterized in a conventional manner. Their chemical and biological characteristics, belonging to linear cationic α-helical peptides, are similar to the known solitary bee venom peptides, melectin and osmin. Pore formation in artificial lipid bilayers was demonstrated for the first time with a solitary bee peptide.
Collapse
|
7
|
Insects, arachnids and centipedes venom: A powerful weapon against bacteria. A literature review. Toxicon 2017; 130:91-103. [PMID: 28242227 DOI: 10.1016/j.toxicon.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/02/2023]
Abstract
Currently, new antimicrobial molecules extracted or obtained by natural sources, could be a valide alternative to traditional antibiotics. Most of these molecules are represented by antimicrobial peptides (AMPs), which are essential compounds of insect, arachnids and centipedes venom. AMPs, due to their strong effectiveness, low resistance rates and peculiar mode of action, seem to have all the suitable features to be a powerful weapon against several bacteria, especially considering the increasing antibiotic-resistance phenomena. The present literature review focuses on the antibacterial activity of bee, wasp, ant, scorpion, spider and scolopendra crude venom and of their main biological active compounds. After a brief overview of each animal and venom use in folkloristic medicine, this review reports, in a comprehensive table, the results obtained by the most relevant and recent researches carried out on the antibacterial activity of different venom and their AMPs. For each considered study, the table summarizes data concerning minimal inhibitory concentration values, minimal bactericidal concentration values, the methods employed, scientific name and common names and provenience of animal species from which the crude venom and its respective compounds were obtained.
Collapse
|
8
|
Kocourková L, Novotná P, Čujová S, Čeřovský V, Urbanová M, Setnička V. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 170:247-255. [PMID: 27450123 DOI: 10.1016/j.saa.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.
Collapse
Affiliation(s)
- Lucie Kocourková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavlína Novotná
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Sabína Čujová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
9
|
Nešuta O, Hexnerová R, Buděšínský M, Slaninová J, Bednárová L, Hadravová R, Straka J, Veverka V, Čeřovský V. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics. JOURNAL OF NATURAL PRODUCTS 2016; 79:1073-1083. [PMID: 26998557 DOI: 10.1021/acs.jnatprod.5b01129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL.
Collapse
Affiliation(s)
- Ondřej Nešuta
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague , Technická 5, 166 28 Prague 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University in Prague , Viničná 7, 12843 Prague 2, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
10
|
Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015; 72:4501-22. [PMID: 26286896 PMCID: PMC11113828 DOI: 10.1007/s00018-015-2016-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Arthropod venoms feature the presence of cytolytic peptides believed to act synergetically with neurotoxins to paralyze prey or deter aggressors. Many of them are linear, i.e., lack disulfide bonds. When isolated from the venom, or obtained by other means, these peptides exhibit common properties. They are cationic; being mostly disordered in aqueous solution, assume amphiphilic α-helical structure in contact with lipid membranes; and exhibit general cytotoxicity, including antifungal, antimicrobial, hemolytic, and anticancer activities. To suit the pharmacological needs, the activity spectrum of these peptides should be modified by rational engineering. As an example, we provide a detailed review on latarcins (Ltc), linear cytolytic peptides from Lachesana tarabaevi spider venom. Diverse experimental and computational techniques were used to investigate the spatial structure of Ltc in membrane-mimicking environments and their effects on model lipid bilayers. The antibacterial activity of Ltc was studied against a panel of Gram-negative and Gram-positive bacteria. In addition, the action of Ltc on erythrocytes and cancer cells was investigated in detail with confocal laser scanning microscopy. In the present review, we give a critical account of the progress in the research of Ltc. We explore the relationship between Ltc structure and their biological activity and derive molecular characteristics, which can be used for optimization of other linear peptides. Current applications of Ltc and prospective use of similar membrane-active peptides are outlined.
Collapse
Affiliation(s)
- Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexey V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
- Higher School of Economics, 20 Myasnitskaya, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
11
|
Čujová S, Bednárová L, Slaninová J, Straka J, Čeřovský V. Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells. J Pept Sci 2014; 20:885-95. [PMID: 25123582 DOI: 10.1002/psc.2681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 07/11/2014] [Indexed: 11/07/2022]
Abstract
The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α-helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane-mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan-containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N-phenyl-1-naphthylamine and detecting cytoplasmic β-galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells.
Collapse
Affiliation(s)
- Sabína Čujová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic; Faculty of Science, Department of Biochemistry, Charles University in Prague, Hlavova 8, 12843, Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
12
|
Lima D, Torres A, Mello C, de Menezes R, Sampaio T, Canuto J, da Silva J, Freire V, Quinet Y, Havt A, Monteiro H, Nogueira N, Martins A. Antimicrobial effect of Dinoponera quadriceps
(Hymenoptera: Formicidae) venom against Staphylococcus aureus
strains. J Appl Microbiol 2014; 117:390-6. [DOI: 10.1111/jam.12548] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/17/2014] [Accepted: 05/17/2014] [Indexed: 11/27/2022]
Affiliation(s)
- D.B. Lima
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - A.F.C. Torres
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - C.P. Mello
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - R.R.P.P.B. de Menezes
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - T.L. Sampaio
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - J.A. Canuto
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - J.J.A. da Silva
- Federal Rural University of the Semi-Arid; Natal Rio Grande do Norte Brazil
| | - V.N. Freire
- Department of Physics; Science Center; Federal University of Ceara; Fortaleza Ceara Brazil
| | - Y.P. Quinet
- Institute of Biomedical Sciences; State University of Ceara; Fortaleza Ceara Brazil
| | - A. Havt
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - H.S.A. Monteiro
- Department of Physiology and Pharmacology; Faculty of Medicine; Federal University of Ceara; Fortaleza Ceara Brazil
| | - N.A.P. Nogueira
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| | - A.M.C. Martins
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy; Federal University of Ceara; Fortaleza Ceara Brazil
| |
Collapse
|
13
|
Monincová L, Veverka V, Slaninová J, Buděšínský M, Fučík V, Bednárová L, Straka J, Čeřovský V. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes
(Hymenoptera: Melittidae). J Pept Sci 2014; 20:375-84. [DOI: 10.1002/psc.2625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Vladimír Fučík
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Jakub Straka
- Faculty of Science, Department of Zoology; Charles University in Prague; Viničná 7 12844 Prague 2 Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
14
|
Monincová L, Buděšínský M, Čujová S, Čeřovský V, Veverka V. Structural basis for antimicrobial activity of lasiocepsin. Chembiochem 2013; 15:301-8. [PMID: 24339323 DOI: 10.1002/cbic.201300509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Indexed: 11/06/2022]
Abstract
Lasiocepsin is a unique 27-residue antimicrobial peptide, isolated from Lasioglossum laticeps (wild bee) venom, with substantial antibacterial and antifungal activity. It adopts a well-defined structure consisting of two α-helices linked by a structured loop. Its basic residues form two distinct positively charged regions on the surface whereas aliphatic side chains contribute to solvent-accessible hydrophobic areas, thus emphasising the amphipathic character of the molecule. Lasiocepsin structurally belongs to the ShK family and shows a strong preference for anionic phospholipids; this is further augmented by increasing concentrations of cardiolipin, such as those found at the poles of bacterial cells. The membrane-permeabilising activity of the peptide is not limited to outer membranes of Gram-negative bacteria. The peptide interacts with phospholipids initially through its N terminus, and its degree of penetration is strongly dependent on the presence of cardiolipin.
Collapse
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)
| | | | | | | | | |
Collapse
|