1
|
Stefanatos R, Robertson F, Castejon-Vega B, Yu Y, Uribe AH, Myers K, Kataura T, Korolchuk VI, Maddocks ODK, Martins LM, Sanz A. Developmental mitochondrial complex I activity determines lifespan. EMBO Rep 2025; 26:1957-1983. [PMID: 40097814 PMCID: PMC12019323 DOI: 10.1038/s44319-025-00416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Aberrant mitochondrial function has been associated with an increasingly large number of human disease states. Observations from in vivo models where mitochondrial function is altered suggest that maladaptations to mitochondrial dysfunction may underpin disease pathology. We hypothesized that the severity of this maladaptation could be shaped by the plasticity of the system when mitochondrial dysfunction manifests. To investigate this, we have used inducible fly models of mitochondrial complex I (CI) dysfunction to reduce mitochondrial function at two stages of the fly lifecycle, from early development and adult eclosion. Here, we show that in early life (developmental) mitochondrial dysfunction results in severe reductions in survival and stress resistance in adulthood, while flies where mitochondrial function is perturbed from adulthood, are long-lived and stress resistant despite having up to a 75% reduction in CI activity. After excluding developmental defects as a cause, we went on to molecularly characterize these two populations of mitochondrially compromised flies, short- and long-lived. We find that our short-lived flies have unique transcriptomic, proteomic and metabolomic responses, which overlap significantly in discrete models of CI dysfunction. Our data demonstrate that early mitochondrial dysfunction via CI depletion elicits a maladaptive response, which severely reduces survival, while CI depletion from adulthood is insufficient to reduce survival and stress resistance.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, NE2 4HH, Newcastle upon Tyne, UK.
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| | - Fiona Robertson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Beatriz Castejon-Vega
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Alejandro Huerta Uribe
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK
| | - Kevin Myers
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Tetsushi Kataura
- Department of Neurology, Institute of Medicine, University of Tsukuba, 305-8575, Ibaraki, Japan
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, NE4 5PL, Newcastle upon Tyne, UK
| | - Oliver D K Maddocks
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, G61 1QH, Glasgow, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, CB2 1QR, Cambridge, UK
| | - Alberto Sanz
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
2
|
Halder A, Jadhav PA, Maitra A, Banerjee A, Hole A, Epari S, Shetty P, Moiyadi A, Chilkapati MK, Srivastava S. Serum Metabolomics Profiling Coupled with Machine Learning Identifies Potential Diagnostic and Prognostic Candidate Markers in Meningioma Using Raman Spectroscopy, ATR-FTIR, and LC-MS/MS. J Proteome Res 2025; 24:1180-1196. [PMID: 40000599 DOI: 10.1021/acs.jproteome.4c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Meningioma, the most prevalent brain tumor, poses significant challenges due to its unclear transition from low-grade to aggressive forms, with limited knowledge about grade-specific markers. We have utilized vibrational spectroscopic techniques such as ATR-FTIR and Raman spectroscopy, alongside LC-MS/MS-based mass spectrometry to understand the systemic cues and evaluate them for clinical practice. The acquired Raman and ATR-FTIR spectra of 46 meningioma patients (27 low-grade and 19 high-grade) and 8 healthy individuals revealed 98.15% and 83.33% accuracy based on PC-LDA. The grade classification revealed an accuracy of around 70%, implying the presence of subtypes and transition phases. The observed alterations corresponded to lipids, nucleic acids, and proteins. Further, the LC-MS/MS-based study identified different derivatives of cholines, indoles, lipids, sphingosine, tryptophan, and their respective metabolic pathways as contributors in tumorigenesis and progression. Further, PRM-based targeted validation and feature selection was carried out on 43 meningioma patients and 17 healthy controls. Glycochenodeoxycholic acid, indole-3-acetic acid, trans-3-indoleacrylic acid, glycodeoxycholic acid, 5α-dihydrotestosteroneglucornide, and glycocholic acid segregated meningioma samples with an accuracy of around 90% while features like indole-3-acetic acid, stercobilin, sphingosine-1-phosphate, deoxycholic acid, and citric acid could classify grades with around 70% accuracy. These findings suggest that further validation across larger cohorts could enhance its usage in clinical settings.
Collapse
Affiliation(s)
- Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Priyanka A Jadhav
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Archisman Maitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arghya Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Centre, Mumbai 400012, India
| | - Aliasgar Moiyadi
- Department of Pathology, Tata Memorial Centre, Mumbai 400012, India
| | - Murali Krishna Chilkapati
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Sector-22, Kharghar, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Godlewski A, Mojsak P, Pienkowski T, Lyson T, Mariak Z, Reszec J, Kaminski K, Moniuszko M, Kretowski A, Ciborowski M. Metabolomic profiling of plasma from glioma and meningioma patients based on two complementary mass spectrometry techniques. Metabolomics 2025; 21:33. [PMID: 39987409 DOI: 10.1007/s11306-025-02231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Extracranial and intracranial tumors are a diverse group of malignant and benign neoplasms, influenced by multiple factors. Given the complex nature of these tumors and usually late or accidental diagnosis, minimally invasive, rapid, early, and accurate diagnostic methods are urgently required. Metabolomics offers promising insights into central nervous system tumors by uncovering distinctive metabolic changes linked to tumor development. OBJECTIVES This study aimed to elucidate the role of altered metabolites and the associated biological pathways implicated in the development of gliomas and meningiomas. METHODS The study was conducted on 95 patients with gliomas, 68 patients with meningiomas, and 71 subjects as a control group. The metabolic profiling of gliomas and meningiomas achieved by integrating untargeted metabolomic analysis based on GC-MS and targeted analysis performed using LC-MS/MS represents the first comprehensive study. Three comparisons (gliomas or meningiomas vs. controls as well as gliomas vs. meningiomas) were performed to reveal statistically significant metabolites. RESULTS Comparative analysis revealed 97, 56, and 27 significant metabolites for gliomas vs. controls, meningiomas vs. controls and gliomas vs. meningiomas comparison, respectively. Moreover, among above mentioned comparisons unique metabolites involved in arginine biosynthesis and metabolism, the Krebs cycle, and lysine degradation pathways were found. Notably, 2-aminoadipic acid has been identified as a metabolite that can be used in distinguishing two tumor types. CONCLUSIONS Our results provide a deeper understanding of the metabolic changes associated with brain tumor development and progression.
Collapse
Affiliation(s)
- Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Patrycja Mojsak
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Interventional Neurology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Karol Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, 15-276, Poland.
| |
Collapse
|
4
|
Zandl-Lang M, Züllig T, Holzer M, Eichmann TO, Darnhofer B, Schwerin-Nagel A, Zobel J, Haidl H, Biebl A, Köfeler H, Plecko B. Multi-omics profiling in spinal muscular atrophy (SMA): investigating lipid and metabolic alterations through longitudinal CSF analysis of Nusinersen-treated patients. J Neurol 2025; 272:183. [PMID: 39904776 PMCID: PMC11794407 DOI: 10.1007/s00415-025-12909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Spinal muscular atrophy (SMA) is a rare neuromuscular disease caused by biallelic mutations in the SMN1 gene, leading to progressive muscle weakness due to degeneration of the anterior horn cells. Since 2017, SMA patients can be treated with the anti-sense oligonucleotide Nusinersen, which promotes alternative splicing of the SMN2 gene, by regular intrathecal injections. In this prospective study, we applied metabolomic, lipidomic, and proteomic analysis to examine sequential CSF samples from 13 SMA patients and controls. This multi-omic approach identified over 800 proteins and 400 small molecules including lipids. Multivariate analysis of multi-omic data successfully discriminated between the CSF derived from SMA patients and control subjects. Lipidomic analysis revealed increased levels of cholesteryl esters and lyso-phospholipids, along with reduced levels of cholesterol and phospholipids in the CSF of SMA patients as compared to healthy controls. These data, combined with results from functional assays, led us to conclude that SMA patients exhibit altered levels and function of high-density-lipoprotein (HDL)-like particles in the CSF. Notably, Nusinersen therapy was observed to reverse disease-specific profile changes toward a physiological state, potentially explicable by restoring HDL function.
Collapse
Affiliation(s)
- Martina Zandl-Lang
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, 8036, Graz, Austria.
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Michael Holzer
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, 8010, Graz, Austria
| | - Thomas O Eichmann
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Barbara Darnhofer
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Annette Schwerin-Nagel
- Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| | - Joachim Zobel
- Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| | - Harald Haidl
- Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| | - Ariane Biebl
- Department of Paediatrics, University Children's Hospital Linz, 4020, Linz, Austria
| | - Harald Köfeler
- Core Facility Mass Spectrometry, ZMF, Medical University of Graz, 8036, Graz, Austria
| | - Barbara Plecko
- Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| |
Collapse
|
5
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
6
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
7
|
Rastogi S, Verma A, Trivedi R, Shukla A, Kumar D. Clinical metabolomics investigation of rheumatoid arthritis patients receiving ayurvedic whole system intervention. J Ayurveda Integr Med 2024; 15:101009. [PMID: 38972279 PMCID: PMC11264181 DOI: 10.1016/j.jaim.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Arthritis is a common clinical condition seen in Ayurveda clinics. Clinical trials have reported Ayurvedic interventions to be of benefits in many arthritic conditions including Rheumatoid Arthritis (RA). No mechanistic details however are available about how such interventions on their own or as a combination of whole system Ayurveda might be working. OBJECTIVE The study aims to evaluate simultaneously the clinical outcome of Ayurveda whole system (AWS) intervention in RA patients and identifying the serum metabolic signatures which could be useful for diagnosing the disease and monitoring treatment response. MATERIAL AND METHODS RA patients (n = 37) simultaneously diagnosed as Amavata fulfilling the specific inclusion and exclusion criteria were recruited in the study and were given Ayurveda whole system (AWS) intervention comprised of oral medicines, local therapy and dietary recommendation for 3 months. The clinical and serum metabolic changes were investigated for pre-treatment RA patients (baseline RA group, n = 37) and post-treatment RA patients (following treatment of 6-weeks (RA_F, n = 26) and three months (RA_T, n = 36). For comparative serum metabolomics analysis, 57 normal healthy control (HC) subjects were also involved and the serum metabolic profiles were measured at high-field 800 MHz NMR spectrometer. The serum metabolic profiles were compared using multivariate statistical analysis and discriminatory metabolic features were evaluated for diagnostic potential using receiver operating characteristic (ROC) curve analysis. RESULTS A significant reduction in DAS-28 ESR, AAM Score, total swollen joints, total tender joints were observed following AWS intervention. The clinical outcomes were concordant with changes in metabolic profiles of RA patients as these were also shifting towards the normal levels following the intervention. Compared to healthy control (HC) subjects, the sera of baseline RA patients were characterised by increased circulatory level of succinate, lysine, mannose, creatine, and 3-Hydroxybutyrate (3-HB) and decreased levels of alanine. The present study also evaluated the serum metabolic ratios for their discriminatory and diagnostic potential and notably, six metabolic ratios (KHR, KThR, KVR, GHR, PTR and SHR) were found significantly altered (elevated) in baseline RA patients. However, in RA patients receiving AWS treatment, these metabolic changes showed marked convergence towards the metabolic signatures of healthy controls. CONCLUSION This first of its kind study clearly shows the clinical efficacy of Ayurvedic Whole System (AWS) intervention in the management of Rheumatoid Arthritis (RA), as demonstrated by significant improvements in key clinical parameters. The intervention not only alleviated symptoms but also induced a profound metabolic shifting towards normalization; thus, underscoring the potential of AWS intervention to modulate cellular metabolism in a manner that facilitates a return to homeostasis in RA patients. However, future studies are imperative to confirm these preliminary observations and delineate the underlying mechanisms of action of intervention in cases of RA.
Collapse
Affiliation(s)
- Sanjeev Rastogi
- Ayurveda -Arthritis Treatment and Advanced Research Center (A-ATARC), Department of Kaya Chikitsa, State Ayurvedibc College and Hospital, Lucknow University, Lucknow, 226003, India.
| | - Ankita Verma
- Ayurveda -Arthritis Treatment and Advanced Research Center (A-ATARC), Department of Kaya Chikitsa, State Ayurvedibc College and Hospital, Lucknow University, Lucknow, 226003, India
| | - Rimjhim Trivedi
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anuj Shukla
- Ayurveda -Arthritis Treatment and Advanced Research Center (A-ATARC), Department of Kaya Chikitsa, State Ayurvedibc College and Hospital, Lucknow University, Lucknow, 226003, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, 226014, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
8
|
Meeks KR, Bogner AN, Tanner JJ. Screening a knowledge-based library of low molecular weight compounds against the proline biosynthetic enzyme 1-pyrroline-5-carboxylate 1 (PYCR1). Protein Sci 2024; 33:e5072. [PMID: 39133178 PMCID: PMC11193152 DOI: 10.1002/pro.5072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 08/13/2024]
Abstract
Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 μM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 μM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.
Collapse
Affiliation(s)
- Kaylen R. Meeks
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
| | - Alexandra N. Bogner
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Present address:
Lilly Biotechnology CenterEli Lilly and CompanySan DiegoCaliforniaUSA
| | - John J. Tanner
- Department of BiochemistryUniversity of MissouriColumbiaMissouriUSA
- Department of ChemistryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
9
|
Ahrens AP, Hyötyläinen T, Petrone JR, Igelström K, George CD, Garrett TJ, Orešič M, Triplett EW, Ludvigsson J. Infant microbes and metabolites point to childhood neurodevelopmental disorders. Cell 2024; 187:1853-1873.e15. [PMID: 38574728 DOI: 10.1016/j.cell.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.
Collapse
Affiliation(s)
- Angelica P Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Örebro 702 81, Sweden
| | - Joseph R Petrone
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Kajsa Igelström
- Department of Biomedical and Clinical Sciences, Division of Neurobiology, Linköping University, Linköping 58185, Sweden
| | - Christian D George
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 702 81, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland; Department of Life Technologies, University of Turku, Turku 20014, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32603, USA.
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| |
Collapse
|
10
|
Yan J, Wu J, Xu M, Wang M, Guo W. Disrupted de novo pyrimidine biosynthesis impairs adult hippocampal neurogenesis and cognition in pyridoxine-dependent epilepsy. SCIENCE ADVANCES 2024; 10:eadl2764. [PMID: 38579001 PMCID: PMC10997211 DOI: 10.1126/sciadv.adl2764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Despite seizure control by early high-dose pyridoxine (vitamin B6) treatment, at least 75% of pyridoxine-dependent epilepsy (PDE) patients with ALDH7A1 mutation still suffer from intellectual disability. It points to a need for additional therapeutic interventions for PDE beyond pyridoxine treatment, which provokes us to investigate the mechanisms underlying the impairment of brain hemostasis by ALDH7A1 deficiency. In this study, we show that ALDH7A1-deficient mice with seizure control exhibit altered adult hippocampal neurogenesis and impaired cognitive functions. Mechanistically, ALDH7A1 deficiency leads to the accumulation of toxic lysine catabolism intermediates, α-aminoadipic-δ-semialdehyde and its cyclic form, δ-1-piperideine-6-carboxylate, which in turn impair de novo pyrimidine biosynthesis and inhibit NSC proliferation and differentiation. Notably, supplementation of pyrimidines rescues abnormal neurogenesis and cognitive impairment in ALDH7A1-deficient adult mice. Therefore, our findings not only define the important role of ALDH7A1 in the regulation of adult hippocampal neurogenesis but also provide a potential therapeutic intervention to ameliorate the defective mental capacities in PDE patients with seizure control.
Collapse
Affiliation(s)
- Jianfei Yan
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Junjie Wu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
11
|
Kelley CM, Maloney B, Beck JS, Ginsberg SD, Liang W, Lahiri DK, Mufson EJ, Counts SE. Micro-RNA profiles of pathology and resilience in posterior cingulate cortex of cognitively intact elders. Brain Commun 2024; 6:fcae082. [PMID: 38572270 PMCID: PMC10988646 DOI: 10.1093/braincomms/fcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.
Collapse
Affiliation(s)
- Christy M Kelley
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Bryan Maloney
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John S Beck
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Winnie Liang
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Scott E Counts
- Departments of Translational Neuroscience and Family Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI 49503, USA
| |
Collapse
|
12
|
Tan Y, Chrysopoulou M, Rinschen MM. Integrative physiology of lysine metabolites. Physiol Genomics 2023; 55:579-586. [PMID: 37781739 DOI: 10.1152/physiolgenomics.00061.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Lysine is an essential amino acid that serves as a building block in protein synthesis. Beside this, the metabolic activity of lysine has only recently been unraveled. Lysine metabolism is tissue specific and is linked to several renal, cardiovascular, and endocrinological diseases through human metabolomics datasets. As a free molecule, lysine takes part in the antioxidant response and engages in protein modifications, and its chemistry shapes both proteome and metabolome. In the proteome, it is an acceptor for a plethora of posttranslational modifications. In the metabolome, it can be modified, conjugated, and degraded. Here, we provide an update on integrative physiology of mammalian lysine metabolites such as α-aminoadipic acid, saccharopine, pipecolic acid, and lysine conjugates such as acetyl-lysine, and sugar-lysine conjugates such as advanced glycation end products. We also comment on their emerging associative and mechanistic links to renal disease, hypertension, diabetes, and cancer.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Chardin D, Jing L, Chazal-Ngo-Mai M, Guigonis JM, Rigau V, Goze C, Duffau H, Virolle T, Pourcher T, Burel-Vandenbos F. Identification of Metabolomic Markers in Frozen or Formalin-Fixed and Paraffin-Embedded Samples of Diffuse Glioma from Adults. Int J Mol Sci 2023; 24:16697. [PMID: 38069019 PMCID: PMC10705927 DOI: 10.3390/ijms242316697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of this study was to identify metabolomic signatures associated with the gliomagenesis pathway (IDH-mutant or IDH-wt) and tumor grade of diffuse gliomas (DGs) according to the 2021 WHO classification on frozen samples and to evaluate the diagnostic performances of these signatures in tumor samples that are formalin-fixed and paraffin-embedded (FFPE). An untargeted metabolomic study was performed using liquid chromatography/mass spectrometry on a cohort of 213 DG samples. Logistic regression with LASSO penalization was used on the frozen samples to build classification models in order to identify IDH-mutant vs. IDH-wildtype DG and high-grade vs low-grade DG samples. 2-Hydroxyglutarate (2HG) was a metabolite of interest to predict IDH mutational status and aminoadipic acid (AAA) and guanidinoacetic acid (GAA) were significantly associated with grade. The diagnostic performances of the models were 82.6% AUC, 70.6% sensitivity and 80.4% specificity for 2HG to predict IDH status and 84.7% AUC, 78.1% sensitivity and 73.4% specificity for AAA and GAA to predict grade from FFPE samples. Thus, this study showed that AAA and GAA are two novel metabolites of interest in DG and that metabolomic data can be useful in the classification of DG, both in frozen and FFPE samples.
Collapse
Affiliation(s)
- David Chardin
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA), Université Cote d’Azur (UCA), 06000 Nice, France; (D.C.); (L.J.); (J.-M.G.); (T.P.)
- Service de Médecine Nucléaire, Centre Antoine Lacassagne, Université Cote d’Azur, 06000 Nice, France
| | - Lun Jing
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA), Université Cote d’Azur (UCA), 06000 Nice, France; (D.C.); (L.J.); (J.-M.G.); (T.P.)
| | | | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA), Université Cote d’Azur (UCA), 06000 Nice, France; (D.C.); (L.J.); (J.-M.G.); (T.P.)
| | - Valérie Rigau
- Department of Pathology and Oncobiology, Institute for Neurosciences of Montpellier, INSERM U1051, University Hospital of Montpellier, 34000 Montpellier, France;
| | - Catherine Goze
- Laboratory of Solid Tumors Biology, Institute for Neurosciences of Montpellier, INSERM U1051, University Hospital of Montpellier, 34000 Montpellier, France;
| | - Hugues Duffau
- Neurosurgery Department, Institute for Neurosciences of Montpellier, INSERM U1051, University Hospital of Montpellier, 34000 Montpellier, France;
| | - Thierry Virolle
- Team INSERM “Cancer Stem Cell Plasticity and Functional Intra-Tumor Heterogeneity”, Institut de Biologie Valrose, Université Côte D’Azur, CNRS, INSERM, 06000 Nice, France;
| | - Thierry Pourcher
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Frederic Joliot, Commissariat a l’Energie Atomique et aux Energies Alternatives (CEA), Université Cote d’Azur (UCA), 06000 Nice, France; (D.C.); (L.J.); (J.-M.G.); (T.P.)
| | - Fanny Burel-Vandenbos
- Department of Pathology, University Hospital of Nice, 06000 Nice, France;
- Laboratory “Cancer Stem Cell Plasticity and Functional Intra-Tumor Heterogeneity”, UMR CNRS 7277-UMR INSERM 1091, Institute of Biology Valrose, University Côte d’Azur, 06000 Nice, France
| |
Collapse
|
14
|
Kuuskmäe C, Philips MA, Kilk K, Haring L, Kangro R, Seppo I, Zilmer M, Vasar E. Kynurenine pathway dynamics in patients with schizophrenia spectrum disorders across the disease trajectory. Psychiatry Res 2023; 328:115423. [PMID: 37639988 DOI: 10.1016/j.psychres.2023.115423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The aim of this study was to evaluate how schizophrenia spectrum disorders (SSD) and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum levels of tryptophan (Trp) metabolites. A total of 112 adults (54 first-episode psychosis [FEP] patients and 58 control subjects [CSs]) participated in the study. The investigated changes in the metabolite levels appeared against a background of persistent increase in BMI and waist circumference among the patients. Regarding the kynurenine (KYN) pathway, the strongest changes were seen in AP-naïve FEP patients. Trp, KYN, kynurenic acid (KYNA), and anthranilic acid (ANT) levels were significantly reduced in blood samples from patients in the early stage of the disease. Furthermore, 3-OH-kynurenine (3-HK) and quinolinic acid (QUIN) levels were somewhat lower in these patients. Most of these changes in the KYN pathway became weaker with AP treatment. The levels of serotonin and its metabolite 5-HIAA tended to be higher at 5.1 years in patients showing the relation of elevated serotonin turnover to increased BMI and waist circumference. The similar trend was evident for the ratio between xanthurenic acid (XA) and KYNA with strong link to the elevated BMI. Altogether, the present study supports the role of Trp-metabolites in the development of obesity and metabolic syndrome in SSD patients.
Collapse
Affiliation(s)
- Carolin Kuuskmäe
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia.
| | - Mari-Anne Philips
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Kalle Kilk
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, Estonia; Psychiatry Clinic of Tartu University Hospital, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, Estonia
| | - Indrek Seppo
- School of Economics and Business Administration, University of Tartu, Estonia
| | - Mihkel Zilmer
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Estonia
| |
Collapse
|
15
|
Chang FM. Update current understanding of neurometabolic disorders related to lysine metabolism. Epilepsy Behav 2023; 146:109363. [PMID: 37499576 DOI: 10.1016/j.yebeh.2023.109363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Lysine, as an essential amino acid, predominantly undergoes metabolic processes through the saccharopine pathway, whereas a smaller fraction follows the pipecolic acid pathway. Although the liver is considered the primary organ for lysine metabolism, it is worth noting that lysine catabolism also takes place in other tissues and organs throughout the body, including the brain. Enzyme deficiency caused by pathogenic variants in its metabolic pathway may lead to a series of neurometabolic diseases, among which glutaric aciduria type 1 and pyridoxine-dependent epilepsy have the most significant clinical manifestations. At present, through research, we have a deeper understanding of the multiple pathophysiological mechanisms related to these diseases, including intracerebral accumulation of neurotoxic metabolites, imbalance between GABAergic and glutamatergic neurotransmission, energy deprivation due to metabolites, and the dysfunction of antiquitin. Because of the complexity of these diseases, their clinical manifestations are also diverse. The early implementation of lysine-restricted diets and supplementation with arginine and carnitine has reported positive impacts on the neurodevelopmental outcomes of patients. Presently, there is more robust evidence supporting the effectiveness of these treatments in glutaric aciduria type 1 compared with pyridoxine-dependent epilepsy.
Collapse
Affiliation(s)
- Fu-Man Chang
- Department of Pediatrics, Taitung MacKay Memorial Hospital, Taitung, Taiwan.
| |
Collapse
|
16
|
Wilhelmi P, Giri V, Zickgraf FM, Haake V, Henkes S, Driemert P, Michaelis P, Busch W, Scholz S, Flick B, Barenys M, Birk B, Kamp H, Landsiedel R, Funk-Weyer D. A metabolomics approach to reveal the mechanism of developmental toxicity in zebrafish embryos exposed to 6-propyl-2-thiouracil. Chem Biol Interact 2023; 382:110565. [PMID: 37236578 DOI: 10.1016/j.cbi.2023.110565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
A crucial component of a substance registration and regulation is the evaluation of human prenatal developmental toxicity. Current toxicological tests are based on mammalian models, but these are costly, time consuming and may pose ethical concerns. The zebrafish embryo has evolved as a promising alternative model to study developmental toxicity. However, the implementation of the zebrafish embryotoxicity test is challenged by lacking information on the relevance of observed morphological alterations in fish for human developmental toxicity. Elucidating the mechanism of toxicity could help to overcome this limitation. Through LC-MS/MS and GC-MS metabolomics, we investigated whether changes to the endogenous metabolites can indicate pathways associated with developmental toxicity. To this aim, zebrafish embryos were exposed to different concentrations of 6-propyl-2-thiouracil (PTU), a compound known to induce developmental toxicity. The reproducibility and the concentration-dependence of the metabolome response and its association with morphological alterations were studied. Major morphological findings were reduced eye size, and other craniofacial anomalies; major metabolic changes included increased tyrosine, pipecolic acid and lysophosphatidylcholine levels, decreased methionine levels, and disturbance of the 'Phenylalanine, tyrosine and tryptophan biosynthesis' pathway. This pathway, and the changes in tyrosine and pipecolic acid levels could be linked to the mode of action of PTU, i.e., inhibition of thyroid peroxidase (TPO). The other findings suggested neurodevelopmental impairments. This proof-of-concept study demonstrated that metabolite changes in zebrafish embryos are robust and provide mechanistic information associated with the mode of action of PTU.
Collapse
Affiliation(s)
- Pia Wilhelmi
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany; University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain.
| | - Varun Giri
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany.
| | | | - Volker Haake
- BASF Metabolome Solutions, 10589, Berlin, Germany
| | | | | | - Paul Michaelis
- Helmholtz Centre for Environmental Research-UFZ, Department of Bioanalytical Ecotoxicology, 04318, Leipzig, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Department of Bioanalytical Ecotoxicology, 04318, Leipzig, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research-UFZ, Department of Bioanalytical Ecotoxicology, 04318, Leipzig, Germany
| | - Burkhard Flick
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| | - Marta Barenys
- University of Barcelona, Research Group in Toxicology-GRET, 08028, Barcelona, Spain; German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Barbara Birk
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| | | | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany; Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, 14195, Berlin, Germany
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
17
|
Gao W, Yang Y, Shi L. Seasonal dietary shifts alter the gut microbiota of a frugivorous lizard Teratoscincus roborowskii (Squamata, Sphaerodactylidae). Ecol Evol 2023; 13:e10363. [PMID: 37546566 PMCID: PMC10396791 DOI: 10.1002/ece3.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Seasonal dietary shifts in animals are important strategies for ecological adaptation. An increasing number of studies have shown that seasonal dietary shifts can influence or even determine the composition of gut microbiota. The Turpan wonder gecko, Teratoscincus roborowskii, lives in extreme desert environments and has a flexible dietary shift to fruit-eating in warm seasons. However, the effect of such shifts on the gut microbiota is poorly understood. In this study, 16S rRNA sequencing and LC-MS metabolomics were used to examine changes in the gut microbiota composition and metabolic patterns of T. roborowskii. The results demonstrated that the gut microbes of T. roborowskii underwent significant seasonal changes, and the abundance of phylum level in autumn was significantly higher than spring, but meanwhile, the diversity was lower. At the family level, the abundance and diversity of the gut microbiota were both higher in autumn. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant gut microbes of T. roborowskii. Verrucomicrobia and Proteobacteria exhibited dynamic ebb and flow patterns between spring and autumn. Metabolomic profiling also revealed differences mainly related to the formation of secondary bile acids. The pantothenate and CoA biosynthesis, and lysine degradation pathways identified by KEGG enrichment symbolize the exuberant metabolic capacity of T. roborowskii. Furthermore, strong correlations were detected between metabolite types and bacteria, and this correlation may be an important adaptation of T. roborowskii to cope with dietary shifts and improve energy acquisition. Our study provides a theoretical basis for exploring the adaptive evolution of the special frugivorous behavior of T. roborowskii, which is an important progress in the study of gut microbes in desert lizards.
Collapse
Affiliation(s)
- Wei‐Zhen Gao
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Yi Yang
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Lei Shi
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| |
Collapse
|
18
|
Batra R, Krumsiek J, Wang X, Allen M, Blach C, Kastenmüller G, Arnold M, Ertekin-Taner N, Kaddurah-Daouk RF. Comparative brain metabolomics reveals shared and distinct metabolic alterations in Alzheimer's disease and progressive supranuclear palsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.25.23293055. [PMID: 37546878 PMCID: PMC10402214 DOI: 10.1101/2023.07.25.23293055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.
Collapse
Affiliation(s)
- Richa Batra
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Rima F Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Kavle RR, Nolan PJ, Carne A, Agyei D, Morton JD, Bekhit AEDA. Earth Worming-An Evaluation of Earthworm ( Eisenia andrei) as an Alternative Food Source. Foods 2023; 12:1948. [PMID: 37238766 PMCID: PMC10217592 DOI: 10.3390/foods12101948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Aside from their bioremediation roles, little is known about the food and feed value of earthworms. In this study, a comprehensive evaluation of the nutritional composition (proximate analysis and profiles of fatty acids and minerals) and techno-functional properties (foaming and emulsion stability and capacity) of earthworm (Eisenia andrei, sourced in New Zealand) powder (EAP) were investigated. Lipid nutritional indices, ω6/ω3, atherogenicity index, thrombogenicity index, hypocholesterolemic/hypercholesterolemic acid ratio, and health-promoting index of EAP lipids are also reported. The protein, fat, and carbohydrate contents of EAP were found to be 53.75%, 19.30%, and 23.26% DW, respectively. The mineral profile obtained for the EAP consisted of 11 essential minerals, 23 non-essential minerals, and 4 heavy metals. The most abundant essential minerals were potassium (8220 mg·kg-1 DW), phosphorus (8220 mg·kg-1 DW), magnesium (744.7 mg·kg-1 DW), calcium (2396.7 mg·kg-1 DW), iron (244.7 mg·kg-1 DW), and manganese (25.6 mg·kg-1 DW). Toxic metals such as vanadium (0.2 mg·kg-1 DW), lead (0.2 mg·kg-1 DW), cadmium (2.2 mg·kg-1 DW), and arsenic (2.3 mg·kg-1 DW) were found in EAP, which pose safety considerations. Lauric acid (20.3% FA), myristoleic acid (11.20% FA), and linoleic acid (7.96% FA) were the most abundant saturated, monounsaturated, and polyunsaturated fatty acids, respectively. The lipid nutritional indices, such as IT and ω-6/ω-3, of E. andrei were within limits considered to enhance human health. A protein extract derived from EAP (EAPPE), obtained by alkaline solubilisation and pH precipitation, exhibited an isoelectric pH of ~5. The total essential amino acid content and essential amino acid index of EAPPE were 373.3 mg·g-1 and 1.36 mg·g-1 protein, respectively. Techno-functional analysis of EAPPE indicated a high foaming capacity (83.3%) and emulsion stability (88.8% after 60 min). Heat coagulation of EAPPE was greater at pH 7.0 (12.6%) compared with pH 5.0 (4.83%), corroborating the pH-solubility profile and relatively high surface hydrophobicity (1061.0). These findings demonstrate the potential of EAP and EAPPE as nutrient-rich and functional ingredients suitable as alternative food and feed material. The presence of heavy metals, however, should be carefully considered.
Collapse
Affiliation(s)
- Ruchita Rao Kavle
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (R.R.K.); (P.J.N.); (D.A.)
| | - Patrick James Nolan
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (R.R.K.); (P.J.N.); (D.A.)
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand;
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (R.R.K.); (P.J.N.); (D.A.)
| | - James David Morton
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch 7647, New Zealand;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (R.R.K.); (P.J.N.); (D.A.)
| |
Collapse
|
20
|
Su X, Cui W, Zhang Z, Zhang J, Zhou H, Zhou K, Xu Y, Wang Z, Xu B. Effects of L-lysine and L-arginine on the structure and gel properties of konjac glucomannan. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Günay Ç, Aykol D, Özsoy Ö, Sönmezler E, Hanci YS, Kara B, Akkoyunlu Sünnetçi D, Cine N, Deniz A, Özer T, Ölçülü CB, Yilmaz Ö, Kanmaz S, Yilmaz S, Tekgül H, Yildiz N, Acar Arslan E, Cansu A, Olgaç Dündar N, Kusgoz F, Didinmez E, Gençpinar P, Aksu Uzunhan T, Ertürk B, Gezdirici A, Ayaz A, Ölmez A, Ayanoğlu M, Tosun A, Topçu Y, Kiliç B, Aydin K, Çağlar E, Ersoy Kosvali Ö, Okuyaz Ç, Besen Ş, Tekin Orgun L, Erol İ, Yüksel D, Sezer A, Atasoy E, Toprak Ü, Güngör S, Ozgor B, Karadağ M, Dilber C, Şahinoğlu B, Uyur Yalçin E, Eldes Hacifazlioglu N, Yaramiş A, Edem P, Gezici Tekin H, Yilmaz Ü, Ünalp A, Turay S, Biçer D, Gül Mert G, Dokurel Çetin İ, Kirik S, Öztürk G, Karal Y, Sanri A, Aksoy A, Polat M, Özgün N, Soydemir D, Sarikaya Uzan G, Ülker Üstebay D, Gök A, Yeşilmen MC, Yiş U, Karakülah G, Bursali A, Oktay Y, Hiz Kurul S. Shared Biological Pathways and Processes in Patients with Intellectual Disability: A Multicenter Study. Neuropediatrics 2023. [PMID: 36787800 DOI: 10.1055/a-2034-8528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Although the underlying genetic causes of intellectual disability (ID) continue to be rapidly identified, the biological pathways and processes that could be targets for a potential molecular therapy are not yet known. This study aimed to identify ID-related shared pathways and processes utilizing enrichment analyses. METHOD In this multicenter study, causative genes of patients with ID were used as input for Disease Ontology (DO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. RESULTS Genetic test results of 720 patients from 27 centers were obtained. Patients with chromosomal deletion/duplication, non-ID genes, novel genes, and results with changes in more than one gene were excluded. A total of 558 patients with 341 different causative genes were included in the study. Pathway-based enrichment analysis of the ID-related genes via ClusterProfiler revealed 18 shared pathways, with lysine degradation and nicotine addiction being the most common. The most common of the 25 overrepresented DO terms was ID. The most frequently overrepresented GO biological process, cellular component, and molecular function terms were regulation of membrane potential, ion channel complex, and voltage-gated ion channel activity/voltage-gated channel activity, respectively. CONCLUSION Lysine degradation, nicotine addiction, and thyroid hormone signaling pathways are well-suited to be research areas for the discovery of new targeted therapies in ID patients.
Collapse
Affiliation(s)
- Çağatay Günay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Duygu Aykol
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Özlem Özsoy
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ece Sönmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Yaren Sena Hanci
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Bülent Kara
- Department of Pediatric Neurology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | | | - Naci Cine
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Adnan Deniz
- Department of Pediatric Neurology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Tolgahan Özer
- Department of Medical Genetics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cemile Büşra Ölçülü
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Özlem Yilmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Seda Kanmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Sanem Yilmaz
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Hasan Tekgül
- Department of Child Neurology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nihal Yildiz
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Elif Acar Arslan
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University, Faculty of Medicine, Farabi Hospital, Trabzon, Turkey
| | - Nihal Olgaç Dündar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Fatma Kusgoz
- Department of Pediatric Neurology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Elif Didinmez
- Department of Pediatric Neurology, Tepecik Research and Training Hospital, Izmir, Turkey
| | - Pınar Gençpinar
- Department of Pediatric Neurology, İzmir Katip Çelebi University, Izmir, Turkey
| | - Tuğçe Aksu Uzunhan
- Department of Pediatric Neurology, Prof Dr Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Biray Ertürk
- Department of Pediatric Neurology, Prof Dr Cemil Tascioglu City Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Akif Ayaz
- Department of Medical Genetics, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Akgün Ölmez
- Denizli Pediatric Neurology Clinic, Denizli, Turkey
| | - Müge Ayanoğlu
- Department of Child Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Ayşe Tosun
- Department of Child Neurology, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Yasemin Topçu
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Betül Kiliç
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Kürşad Aydin
- Department of Pediatric Neurology, Istanbul Medipol University Faculty of Medicine, Istanbul, Turkey
| | - Ezgi Çağlar
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Özlem Ersoy Kosvali
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Çetin Okuyaz
- Departments of Pediatric Neurology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Şeyda Besen
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - Leman Tekin Orgun
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - İlknur Erol
- Division of Pediatric Neurology, Başkent University Adana Medical and Research Center Faculty of Medicine, Adana, Turkey
| | - Deniz Yüksel
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Abdullah Sezer
- Department of Genetics, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ergin Atasoy
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ülkühan Toprak
- Department of Pediatric Neurology, University of Health Sciences Faculty of Medicine, Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Serdal Güngör
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Bilge Ozgor
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Meral Karadağ
- Department of Paediatric Neurology, Inonu University Faculty of Medicine, Turgut Ozal Research Center, Malatya, Turkey
| | - Cengiz Dilber
- Department of Pediatric Neurology, Kahramanmaras Sutcu Imam University Faculty of Medicine, Kahramanmaraş, Turkey
| | - Bahtiyar Şahinoğlu
- Deparment of Genetics, Dr Ersin Arslan Traning and Research Hospital, Gaziantep, Turkey
| | - Emek Uyur Yalçin
- Departments of Pediatrics and Pediatric Neurology, University of Health Sciences, Zeynep Kamil Maternity and Children's Diseases Hospital, Istanbul, Turkey
| | - Nilüfer Eldes Hacifazlioglu
- Departments of Pediatrics and Pediatric Neurology, University of Health Sciences, Zeynep Kamil Maternity and Children's Diseases Hospital, Istanbul, Turkey
| | - Ahmet Yaramiş
- Diyarbakır Pediatric Neurology Clinic, Diyarbakır, Turkey
| | - Pınar Edem
- Department of Pediatric Neurology, Bakırcay University, Cigli District Training Hospital, Izmir, Turkey
| | - Hande Gezici Tekin
- Department of Pediatric Neurology, Bakırcay University, Cigli District Training Hospital, Izmir, Turkey
| | - Ünsal Yilmaz
- Department of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Aycan Ünalp
- Department of Pediatric Neurology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Sevim Turay
- Department of Pediatric Neurology, Duzce University Faculty of Medicine, Düzce, Turkey
| | - Didem Biçer
- Department of Pediatric Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Gülen Gül Mert
- Department of Pediatric Neurology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - İpek Dokurel Çetin
- Department of Pediatric Neurology, Balıkesir Atatürk Training and Research Hospital, Balıkesir, Turkey
| | - Serkan Kirik
- Fırat University School of Medicine, Pediatric Neurology, Elazığ, Turkey
| | - Gülten Öztürk
- Department of Pediatric Neurology, Marmara University School of Medicine, Istanbul, Turkey
| | - Yasemin Karal
- Department of Pediatric Neurology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Aslıhan Sanri
- Department of Pediatric Genetics, University of Health Sciences, Samsun Training and Research Hospital, Samsun, Turkey
| | - Ayşe Aksoy
- Department of Pediatric Neurology, Ondokuz Mayıs University, Samsun, Turkey
| | - Muzaffer Polat
- Department of Pediatric Neurology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Nezir Özgün
- Department of Pediatric Neurology, Mardin Artuklu University, Faculty of Health Sciences, Mardin, Turkey
| | - Didem Soydemir
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gamze Sarikaya Uzan
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Döndü Ülker Üstebay
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ayşen Gök
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Can Yeşilmen
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Ahmet Bursali
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Semra Hiz Kurul
- Department of Pediatric Neurology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| |
Collapse
|
22
|
Kim JK, Hong S, Park J, Kim S. Metabolic and Transcriptomic Changes in the Mouse Brain in Response to Short-Term High-Fat Metabolic Stress. Metabolites 2023; 13:metabo13030407. [PMID: 36984847 PMCID: PMC10051449 DOI: 10.3390/metabo13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The chronic consumption of diets rich in saturated fats leads to obesity and associated metabolic disorders including diabetes and atherosclerosis. Intake of a high-fat diet (HFD) is also recognized to dysregulate neural functions such as cognition, mood, and behavior. However, the effects of short-term high-fat diets on the brain are elusive. Here, we investigated molecular changes in the mouse brain following an acute HFD for 10 days by employing RNA sequencing and metabolomics profiling. Aberrant expressions of 92 genes were detected in the brain tissues of acute HFD-exposed mice. The differentially expressed genes were enriched for various pathways and processes such as superoxide metabolism. In our global metabolomic profiling, a total of 59 metabolites were significantly altered by the acute HFD. Metabolic pathways upregulated from HFD-exposed brain tissues relative to control samples included oxidative stress, oxidized polyunsaturated fatty acids, amino acid metabolism (e.g., branched-chain amino acid catabolism, and lysine metabolism), and the gut microbiome. Acute HFD also elevated levels of N-acetylated amino acids, urea cycle metabolites, and uracil metabolites, further suggesting complex changes in nitrogen metabolism. The observed molecular events in the present study provide a valuable resource that can help us better understand how acute HFD stress impacts brain homeostasis.
Collapse
Affiliation(s)
- Ji-Kwang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- KAIST Stem Cell Center, KAIST, Daejeon 34141, Republic of Korea
- Correspondence:
| |
Collapse
|
23
|
Jamali A, Kristensen E, Tangeraas T, Arntsen V, Sikiric A, Kupliauskiene G, Myren-Svelstad S, Berland S, Sejersted Y, Gerstner T, Hassel B, Bindoff LA, Brodtkorb E. The spectrum of pyridoxine dependent epilepsy across the age span: A nationwide retrospective observational study. Epilepsy Res 2023; 190:107099. [PMID: 36731270 DOI: 10.1016/j.eplepsyres.2023.107099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pyridoxine-dependent epilepsy (PDE) is a rare seizure disorder usually presenting with neonatal seizures. Most cases are caused by biallelic pathogenic ALDH7A1variants. While anti-seizure medications are ineffective, pyridoxine provides seizure control, and dietary interventions may be of benefit. As the natural history beyond adolescence is insufficiently explored, our study aimed to assess the spectrum of PDE at various ages in Norway. METHODS Patients were ascertained by contacting all Norwegian paediatric, neurological, and neurohabilitation departments and relevant professional societies. Medical records were collected and reviewed. RESULTS We identified 15 patients treated for PDE; 13 had ALDH7A1 variants (PDE-ALDH7A1), one had PNPO deficiency, and in one, aetiology remained obscure. Of those with PDE-ALDH7A1, 12 were alive at time of study; five were > 18 years old and six were < 4 years. Median age was 10 years (range 2 months-53 years). Estimated minimum prevalence was 6.3/million among children and 1.2/million among adults. Ten had seizure onset on the first day of life. Perinatal complications and neuroradiological abnormalities suggested additional seizure aetiologies in several patients. Pyridoxine had immediate effect in six, while six had delayed (>1 h) or uncertain effect. Median delay from first seizure to continuous treatment was 11 days (range 0-42). Nine experienced breakthrough seizures with intercurrent disease or due to pyridoxine discontinuation. Cognitive outcomes ranged from normal to severe intellectual disability. The condition appeared to remain stable in adult life. SIGNIFICANCE We found a much higher prevalence of PDE-ALDH7A1 in children relative to adults, suggesting previous underdiagnosis and early mortality. Perinatal complications are common and can delay diagnosis and initiation of pyridoxine treatment. Lifelong and continuous treatment with pyridoxine is imperative. Due to better diagnostics and survival, the number of adult patients is expected to rise.
Collapse
Affiliation(s)
- Ahmed Jamali
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Erle Kristensen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Vibeke Arntsen
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Alma Sikiric
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Guste Kupliauskiene
- Department of Paediatric and Adolescent Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Sverre Myren-Svelstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Yngve Sejersted
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thorsten Gerstner
- Department of Child Neurology and Rehabilitation, Sørlandet Hospital, Arendal, Norway
| | - Bjørnar Hassel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway; Department of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway; Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Eylert Brodtkorb
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway.
| |
Collapse
|
24
|
Lin L, Liu S, Chen Z, Xia Y, Xie J, Fu M, Lu D, Wu Y, Shen H, Yang P, Qian J. Anatomically resolved transcriptome and proteome landscapes reveal disease‐relevant molecular signatures and systematic changes in heart function of end‐stage dilated cardiomyopathy. VIEW 2022. [DOI: 10.1002/viw.20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ling Lin
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Shanshan Liu
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Zhangwei Chen
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yan Xia
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Juanjuan Xie
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Mingqiang Fu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Danbo Lu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yuan Wu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Huali Shen
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of chemistry Fudan University Shanghai China
| | - Juying Qian
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
25
|
Shao F, Li R, Guo Q, Qin R, Su W, Yin H, Tian L. Plasma Metabolomics Reveals Systemic Metabolic Alterations of Subclinical and Clinical Hypothyroidism. J Clin Endocrinol Metab 2022; 108:13-25. [PMID: 36181451 PMCID: PMC9759175 DOI: 10.1210/clinem/dgac555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Clinical hypothyroidism (CH) and subclinical hypothyroidism (SCH) have been linked to various metabolic comorbidities but the underlying metabolic alterations remain unclear. Metabolomics may provide metabolic insights into the pathophysiology of hypothyroidism. OBJECTIVE We explored metabolic alterations in SCH and CH and identify potential metabolite biomarkers for the discrimination of SCH and CH from euthyroid individuals. METHODS Plasma samples from a cohort of 126 human subjects, including 45 patients with CH, 41 patients with SCH, and 40 euthyroid controls, were analyzed by high-resolution mass spectrometry-based metabolomics. Data were processed by multivariate principal components analysis and orthogonal partial least squares discriminant analysis. Correlation analysis was performed by a Multivariate Linear Regression analysis. Unbiased Variable selection in R algorithm and 3 machine learning models were utilized to develop prediction models based on potential metabolite biomarkers. RESULTS The plasma metabolomic patterns in SCH and CH groups were significantly different from those of control groups, while metabolite alterations between SCH and CH groups were dramatically similar. Pathway enrichment analysis found that SCH and CH had a significant impact on primary bile acid biosynthesis, steroid hormone biosynthesis, lysine degradation, tryptophan metabolism, and purine metabolism. Significant associations for 65 metabolites were found with levels of thyrotropin, free thyroxine, thyroid peroxidase antibody, or thyroglobulin antibody. We successfully selected and validated 17 metabolic biomarkers to differentiate 3 groups. CONCLUSION SCH and CH have significantly altered metabolic patterns associated with hypothyroidism, and metabolomics coupled with machine learning algorithms can be used to develop diagnostic models based on selected metabolites.
Collapse
Affiliation(s)
| | | | - Qian Guo
- Department of Endocrinology (Cadre Ward 3), Gansu Provincial Hospital, Lanzhou, Gansu 730099, China
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Rui Qin
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Wenxiu Su
- Clinical Research Center for Metabolic Disease, Gansu Province. 204 Donggang West Road, Lanzhou, Gansu 730099, China
| | - Huiyong Yin
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| | - Limin Tian
- Correspondence: Limin Tian, M.D., The First School of Clinical Medicine, Lanzhou University, Gansu Provincial Hospital, Donggang West Road, 730030, Lanzhou, Gansu, China. ; Huiyong Yin, Ph.D., Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China 200031.
| |
Collapse
|
26
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
27
|
Contribution of dicarboxylic acids to pyrene biodegradation and transcriptomic responses of Enterobacter sp. PRd5. Appl Microbiol Biotechnol 2022; 106:7949-7961. [PMID: 36227340 DOI: 10.1007/s00253-022-12217-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
The colonization of degrading endophytic bacteria is an effective means to reduce the residues of polycyclic aromatic hydrocarbons (PAHs) in crops. Dicarboxylic acids, as the main active components in crops, can affect the physiological activities of endophytic bacteria and alter the biodegradation process of PAHs in crops. In this study, malonic acid and succinic acid were selected as the representatives to investigate the contribution of dicarboxylic acids to pyrene biodegradation by endophytic Enterobacter sp. PRd5 in vitro. The results showed that dicarboxylic acids improved the biodegradation of pyrene and altered the expression of the functional gene of strain PRd5. Malonic acid and succinic acid reduced the half-life of pyrene by 20.0% and 27.8%, respectively. The degrading enzyme activities were significantly stimulated by dicarboxylic acids. There were 386 genes up-regulated and 430 genes down-regulated in strain PRd5 with malonic acid, while 293 genes up-regulated and 340 genes down-regulated with succinic acid. Those up-regulated genes were distributed in the functional classification of signal transduction, membrane transport, energy metabolism, carbohydrate metabolism, and amino acid metabolism. Malonic acid mainly enhanced the central carbon metabolism, cell proliferation, and cell activity. Succinic acid mainly improved the expression of degrading gene. Overall, the findings of this study provide new insights into the regulation and control of PAH stress by crops. KEY POINTS: • Dicarboxylic acids improved the biodegradation of pyrene by Enterobacter sp. PRd5. • The degrading enzyme activities were stimulated by dicarboxylic acids. • There are different facilitation mechanisms between malonic acid and succinic acid.
Collapse
|
28
|
Leandro J, Khamrui S, Suebsuwong C, Chen PJ, Secor C, Dodatko T, Yu C, Sanchez R, DeVita RJ, Houten SM, Lazarus MB. Characterization and structure of the human lysine-2-oxoglutarate reductase domain, a novel therapeutic target for treatment of glutaric aciduria type 1. Open Biol 2022; 12:220179. [PMID: 36128717 PMCID: PMC9490328 DOI: 10.1098/rsob.220179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 12/26/2022] Open
Abstract
In humans, a single enzyme 2-aminoadipic semialdehyde synthase (AASS) catalyses the initial two critical reactions in the lysine degradation pathway. This enzyme evolved to be a bifunctional enzyme with both lysine-2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase domains (SDH). Moreover, AASS is a unique drug target for inborn errors of metabolism such as glutaric aciduria type 1 that arise from deficiencies downstream in the lysine degradation pathway. While work has been done to elucidate the SDH domain structurally and to develop inhibitors, neither has been done for the LOR domain. Here, we purify and characterize LOR and show that it is activated by alkylation of cysteine 414 by N-ethylmaleimide. We also provide evidence that AASS is rate-limiting upon high lysine exposure of mice. Finally, we present the crystal structure of the human LOR domain. Our combined work should enable future efforts to identify inhibitors of this novel drug target.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng-Jen Chen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Human cytosolic transaminases: side activities and patterns of discrimination towards physiologically available alternative substrates. Cell Mol Life Sci 2022; 79:421. [PMID: 35834009 PMCID: PMC9283133 DOI: 10.1007/s00018-022-04439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Transaminases play key roles in central metabolism, transferring the amino group from a donor substrate to an acceptor. These enzymes can often act, with low efficiency, on compounds different from the preferred substrates. To understand what might have shaped the substrate specificity of this class of enzymes, we examined the reactivity of six human cytosolic transaminases towards amino acids whose main degradative pathways do not include any transamination. We also tested whether sugars and sugar phosphates could serve as alternative amino group acceptors for these cytosolic enzymes. Each of the six aminotransferases reacted appreciably with at least three of the alternative amino acid substrates in vitro, albeit at usually feeble rates. Reactions with L-Thr, L-Arg, L-Lys and L-Asn were consistently very slow-a bias explained in part by the structural differences between these amino acids and the preferred substrates of the transaminases. On the other hand, L-His and L-Trp reacted more efficiently, particularly with GTK (glutamine transaminase K; also known as KYAT1). This points towards a role of GTK in the salvage of L-Trp (in cooperation with ω-amidase and possibly with the cytosolic malate dehydrogenase, MDH1, which efficiently reduced the product of L-Trp transamination). Finally, the transaminases were extremely ineffective at utilizing sugars and sugar derivatives, with the exception of the glycolytic intermediate dihydroxyacetone phosphate, which was slowly but appreciably transaminated by some of the enzymes to yield serinol phosphate. Evidence for the formation of this compound in a human cell line was also obtained. We discuss the biological and evolutionary implications of our results.
Collapse
|
30
|
Qi B, Zhang Y, Xu B, Zhang Y, Fei G, Lin L, Li Q. Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery. Appl Biochem Biotechnol 2022; 194:5443-5455. [DOI: 10.1007/s12010-022-04024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
|
31
|
Tsikas D, Redfors B. Pilot Study on Acute Effects of Pharmacological Intraperitoneal L-Homoarginine on Homeostasis of Lysine and Other Amino Acids in a Rat Model of Isoprenaline-Induced Takotsubo Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23094734. [PMID: 35563125 PMCID: PMC9103764 DOI: 10.3390/ijms23094734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
L-Arginine:glycine amidinotransferase (AGAT) catalyzes the formation of L-homoarginine (hArg) and L-ornithine (Orn) from L-arginine (Arg) and L-lysine (Lys): Arg + Lys ↔ hArg + Orn; equilibrium constant KhArg. AGAT also catalyzes the formation of guanidinoacetate (GAA) and Orn from Arg and glycine (Gly): Arg + Gly ↔ GAA + Orn; equilibrium constant KGAA. In humans, pharmacological hArg is metabolized to Lys. Low circulating and low excretory concentrations of hArg are associated with worse outcomes and mortality in the renal and cardiovascular systems. The metabolism and pharmacology of hArg have been little investigated. In the present study, we investigated the effects of pharmacological hArg (i.p., 0, 20, 220, 440 mg/kg at time point 0 min) on amino acids homeostasis in a rat model of isoprenaline-induced takotsubo cardiomyopathy (i.p., 50 mg/kg at time point 15 min). We measured by gas chromatography-mass spectrometry free and proteinic amino acids, as well as the polyamines putrescine and spermidine in the heart, lung, kidney, and liver of ten rats sacrificed at various time points (range, 0 to 126 min). hArg administration resulted in multiple changes in the tissue contents of several free and proteinic amino acids, as well as in the putrescine-spermidine molar ratio, an indicator of polyamines catabolism. Our results suggest that Lys and Arg are major metabolites of pharmacological hArg. Kidneys and heart seem to play a major metabolic role for hArg. Circulating Lys does not change over time, yet there is a considerable interchange of free Lys between organs, notably kidney and heart, during the presence of isoprenaline in the rats (time range, 15 to 90 min). Antidromic changes were observed for KhArg and KGAA, notably in the heart in this time window. Our study shows for the first time that free hArg and sarcosine (N-methylglycine) are positively associated with each other. The acute effects of high-dosed hArg administration and isoprenaline on various amino acids and on AGAT-catalyzed reaction in the heart, lung, kidney, and liver are detailed and discussed.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany
- Correspondence:
| | - Björn Redfors
- Department of Cardiology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| |
Collapse
|
32
|
Kroupina K, Bémeur C, Rose CF. Amino acids, ammonia, and hepatic encephalopathy. Anal Biochem 2022; 649:114696. [PMID: 35500655 DOI: 10.1016/j.ab.2022.114696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022]
|
33
|
Malinovsky AV. Lehninger’s Scheme and Conclusions Need to Be Defined More Exactly. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Martins-Noguerol R, Matías L, Pérez-Ramos IM, Moreira X, Muñoz-Vallés S, Mancilla-Leytón JM, Francisco M, García-González A, DeAndrés-Gil C, Martínez-Force E, Millán-Linares MDC, Pedroche J, Figueroa ME, Moreno-Pérez AJ, Cambrollé J. Differences in nutrient composition of sea fennel (Crithmum maritimum) grown in different habitats and optimally controlled growing conditions. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
36
|
Kaya A, Phua CZJ, Lee M, Wang L, Tyshkovskiy A, Ma S, Barre B, Liu W, Harrison BR, Zhao X, Zhou X, Wasko BM, Bammler TK, Promislow DEL, Kaeberlein M, Gladyshev VN. Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. eLife 2021; 10:e64860. [PMID: 34751131 PMCID: PMC8612763 DOI: 10.7554/elife.64860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/04/2021] [Indexed: 01/29/2023] Open
Abstract
To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, we analyzed 76 ecologically diverse wild yeast isolates and discovered a wide diversity of replicative lifespan (RLS). Phylogenetic analyses pointed to genes and environmental factors that strongly interact to modulate the observed aging patterns. We then identified genetic networks causally associated with natural variation in RLS across wild yeast isolates, as well as genes, metabolites, and pathways, many of which have never been associated with yeast lifespan in laboratory settings. In addition, a combined analysis of lifespan-associated metabolic and transcriptomic changes revealed unique adaptations to interconnected amino acid biosynthesis, glutamate metabolism, and mitochondrial function in long-lived strains. Overall, our multiomic and lifespan analyses across diverse isolates of the same species shows how gene-environment interactions shape cellular processes involved in phenotypic variation such as lifespan.
Collapse
Affiliation(s)
- Alaattin Kaya
- Department of Biology, Virginia Commonwealth UniversityRichmondUnited States
| | - Cheryl Zi Jin Phua
- Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Mitchell Lee
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of WashingtonSeattleUnited States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Belozersky Institute of Physico-Chemical Biology, Moscow State UniversityMoscowRussian Federation
| | - Siming Ma
- Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Benjamin Barre
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Chinese Academy of Sciences, Institute of ZoologyBeijingChina
| | - Benjamin R Harrison
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Xiaqing Zhao
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Xuming Zhou
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Brian M Wasko
- Department of Biology, University of Houston - Clear LakeHoustonUnited States
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of WashingtonSeattleUnited States
| | - Daniel EL Promislow
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
- Department of Biology, University of WashingtonSeattleUnited States
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
37
|
Chen Y, Wang YS, Zhang X, Chen HH. Retardant effect of different charge-carrying amino acids on the long-term retrogradation of normal corn starch gel. Int J Biol Macromol 2021; 189:1020-1028. [PMID: 34418420 DOI: 10.1016/j.ijbiomac.2021.08.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
The effects of different charge-carrying amino acids (lysine, aspartic acid, and tyrosine) on the long-term retrogradation properties of normal corn starch (NCS) gel were studied by differential scanning calorimetry, X-ray diffractometry, low-field nuclear magnetic resonance, and dynamic rheological tests. The results suggested that these amino acids could inhibit the long-term retrogradation of NCS gels, among which the positively charge-carrying amino acid (lysine) showed the most significant inhibitory effect and the zero net charged amino acid (tyrosine) exhibited the worst inhibitory effect. These amino acids significantly decreased the retrogradation enthalpy, hardness, and R1047/1022 value of NCS gels, as well as inhibited the recrystallization of NCS. The results of retrogradation kinetics suggested that the recrystallization of NCS with amino acids followed the instantaneous nucleation and the crystallization rate constant k of recrystallization was reduced by these amino acids. The amino acids could interact with starch molecules to form hydrogen bonds and steric hindrance during the recrystallization process, which prevented the formation of double helix structures, as well as reduced the water diffusion and exudation from NCS. Therefore, the lysine could be used as a good retrogradation inhibitor for starch in food industry.
Collapse
Affiliation(s)
- Yan Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yu-Sheng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xing Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Hua Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
38
|
Al-Shekaili HH, Petkau TL, Pena I, Lengyell TC, Verhoeven-Duif NM, Ciapaite J, Bosma M, van Faassen M, Kema IP, Horvath G, Ross C, Simpson EM, Friedman JM, van Karnebeek C, Leavitt BR. A novel mouse model for pyridoxine-dependent epilepsy due to antiquitin deficiency. Hum Mol Genet 2021; 29:3266-3284. [PMID: 32969477 DOI: 10.1093/hmg/ddaa202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
Pyridoxine-dependent epilepsy (PDE) is a rare autosomal recessive disease caused by mutations in the ALDH7A1 gene leading to blockade of the lysine catabolism pathway. PDE is characterized by recurrent seizures that are resistant to conventional anticonvulsant treatment but are well-controlled by pyridoxine (PN). Most PDE patients also suffer from neurodevelopmental deficits despite adequate seizure control with PN. To investigate potential pathophysiological mechanisms associated with ALDH7A1 deficiency, we generated a transgenic mouse strain with constitutive genetic ablation of Aldh7a1. We undertook extensive biochemical characterization of Aldh7a1-KO mice consuming a low lysine/high PN diet. Results showed that KO mice accumulated high concentrations of upstream lysine metabolites including ∆1-piperideine-6-carboxylic acid (P6C), α-aminoadipic semialdehyde (α-AASA) and pipecolic acid both in brain and liver tissues, similar to the biochemical picture in ALDH7A1-deficient patients. We also observed preliminary evidence of a widely deranged amino acid profile and increased levels of methionine sulfoxide, an oxidative stress biomarker, in the brains of KO mice, suggesting that increased oxidative stress may be a novel pathobiochemical mechanism in ALDH7A1 deficiency. KO mice lacked epileptic seizures when fed a low lysine/high PN diet. Switching mice to a high lysine/low PN diet led to vigorous seizures and a quick death in KO mice. Treatment with PN controlled seizures and improved survival of high-lysine/low PN fed KO mice. This study expands the spectrum of biochemical abnormalities that may be associated with ALDH7A1 deficiency and provides a proof-of-concept for the utility of the model to study PDE pathophysiology and to test new therapeutics.
Collapse
Affiliation(s)
- Hilal H Al-Shekaili
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Izabella Pena
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Jolita Ciapaite
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Marjolein Bosma
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriella Horvath
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Colin Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth M Simpson
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jan M Friedman
- British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BC Children's Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Holmes J, Witt CE, Keen D, Buchanan AM, Batey L, Hersey M, Hashemi P. Glutamate Electropolymerization on Carbon Increases Analytical Sensitivity to Dopamine and Serotonin: An Auspicious In Vivo Phenomenon in Mice? Anal Chem 2021; 93:10762-10771. [PMID: 34328714 DOI: 10.1021/acs.analchem.0c04316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon is the material of choice for electroanalysis of biological systems, being particularly applicable to neurotransmitter analysis as carbon fiber microelectrodes (CFMs). CFMs are most often applied to dopamine detection; however, the scope of CFM analysis has rapidly expanded over the last decade with our laboratory's focus being on improving serotonin detection at CFMs, which we achieved in the past via Nafion modification. We began this present work by seeking to optimize this modification to gain increased analytical sensitivity toward serotonin under the assumption that exposure of bare carbon to the in vivo environment rapidly deteriorates analytical performance. However, we were unable to experimentally verify this assumption and found that electrodes that had been exposed to the in vivo environment were more sensitive to evoked and ambient dopamine. We hypothesized that high in vivo concentrations of ambient extracellular glutamate could polymerize with a negative charge onto CFMs and facilitate response to dopamine. We verified this polymerization electrochemically and characterized the mechanisms of deposition with micro- and nano-imaging. Importantly, we identified that the application of 1.3 V as a positive upper waveform limit is a crucial factor for facilitating glutamate polymerization, thus improving analytical performance. Critically, information gained from these dopamine studies were extended to an in vivo environment where a 2-fold increase in sensitivity to evoked serotonin was achieved. Thus, we present here the novel finding that innate aspects of the in vivo environment are auspicious for detection of dopamine and serotonin at carbon fibers, offering a solution to our goal of an improved fast-scan cyclic voltammetry serotonin detection paradigm.
Collapse
Affiliation(s)
- Jordan Holmes
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Colby E Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Deanna Keen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Lauren Batey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina SOM, Columbia, South Carolina, 29209 United States
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, 29208 United States.,Department of Bioengineering, Imperial College, London, SW7 2AZ UK
| |
Collapse
|
40
|
Gonzalez Melo M, Remacle N, Cudré-Cung HP, Roux C, Poms M, Cudalbu C, Barroso M, Gersting SW, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Rüfenacht V, Häberle J, Braissant O, Ballhausen D. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Mol Genet Metab 2021; 133:157-181. [PMID: 33965309 DOI: 10.1016/j.ymgme.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Hong-Phuc Cudré-Cung
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Clothilde Roux
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Martin Poms
- Klinische Chemie und Biochemie Universitäts-Kinderspital Zürich, Switzerland.
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Madalena Barroso
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Søren Waldemar Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
41
|
Maria YL, Price AN, Puts NAJ, Hughes EJ, Edden RAE, McAlonan GM, Arichi T, De Vita E. Simultaneous quantification of GABA, Glx and GSH in the neonatal human brain using magnetic resonance spectroscopy. Neuroimage 2021; 233:117930. [PMID: 33711485 PMCID: PMC8204265 DOI: 10.1016/j.neuroimage.2021.117930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/23/2022] Open
Abstract
Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. In this work, we describe a systematic approach to minimise the impact of specific technical challenges inherent to acquiring MRS data in a neonatal population, including automatic segmentation, full tissue-correction and optimised GABA+ fitting and consider the minimum requirements for a robust edited-MRS acquisition. With this approach we report for the first time simultaneous GABA+, Glx (glutamate + glutamine) and GSH concentrations in the neonatal brain (n = 18) in two distinct regions (thalamus and anterior cingulate cortex (ACC)) using edited MRS at 3T. The improved sensitivity provided by our method allows specific regional neurochemical differences to be identified including: significantly lower Glx and GSH ratios to total creatine in the thalamus compared to the ACC (p < 0.001 for both), and significantly higher GSH levels in the ACC following tissue-correction (p < 0.01). Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yanez Lopez Maria
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; NIHR-Maudsley Biomedical Research, King's College London, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Enrico De Vita
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, Westminster Bridge Road, Lambeth Wing, 3rd Floor, London SE1 7EH, United Kingdom.
| |
Collapse
|
42
|
Skalny AV, Mazaletskaya AL, Zaitseva IP, Skalny AA, Spandidos DA, Tsatsakis A, Lobanova YN, Skalnaya MG, Aschner M, Tinkov AA. Alterations in serum amino acid profiles in children with attention deficit/hyperactivity disorder. Biomed Rep 2021; 14:47. [PMID: 33786176 PMCID: PMC7995246 DOI: 10.3892/br.2021.1423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/15/2021] [Indexed: 01/05/2023] Open
Abstract
The objective of the present study was to evaluate the circulating serum amino acid levels in children with attention deficit/hyperactivity disorder (ADHD). A total of 71 children with untreated ADHD and 31 neurotypical controls aged 7-14 years old were examined. Serum amino acid levels were evaluated using high-performance liquid chromatography (HPLC) with UV-detection. Laboratory quality control was performed with reference materials of human plasma amino acid levels. The obtained data demonstrated that children with ADHD were characterized by 29, 10 and 20% lower serum histidine (His), glutamine (Gln) and proline (Pro) levels compared with neurotypical children, respectively. In contrast, circulating aspartate (Asp), glutamate (Glu) and hydroxyproline (Hypro) levels exceeded the respective control values by 7, 7 and 42%. Correspondingly, the Gln-to-Glu and Pro-to-Hypro ratios were 28% and 49%, respectively, lower in ADHD cases compared with the controls. Total Gln/Glu levels were also significantly lower in ADHD patients. No significant group differences were observed between the groups in the other amino acids analyzed, including phenylalanine. Multiple linear regression analysis revealed significant associations between circulating serum Gln, lysine (Lys) (both negative) and Glu (positive) levels with total ADHD Rating Scale-IV scores. The observed alterations in Pro/Hypro and Gln/Glu levels and ratios are likely associated with the coexisting connective tissue pathology and alterations in glutamatergic neurotransmission in ADHD, respectively. Altered circulating levels of His, Lys and Asp may also be implicated in ADHD pathogenesis. However, further in vivo and in vitro studies are required in order to investigate the detailed mechanisms linking amino acid metabolism with ADHD pathogenesis.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150000, Russia.,Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Sechenov University, Moscow 119435, Russia
| | - Anna L Mazaletskaya
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150000, Russia
| | - Irina P Zaitseva
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150000, Russia
| | - Andrey A Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Sechenov University, Moscow 119435, Russia.,Center of Toxicology Science and Research, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Yulia N Lobanova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Margarita G Skalnaya
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150000, Russia
| | - Michael Aschner
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Sechenov University, Moscow 119435, Russia.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Alexey A Tinkov
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Yaroslavl 150000, Russia.,Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
43
|
Martins-Noguerol R, Cambrollé J, Mancilla-Leytón JM, Puerto-Marchena A, Muñoz-Vallés S, Millán-Linares MC, Millán F, Martínez-Force E, Figueroa ME, Pedroche J, Moreno-Pérez AJ. Influence of soil salinity on the protein and fatty acid composition of the edible halophyte Halimione portulacoides. Food Chem 2021; 352:129370. [PMID: 33652199 DOI: 10.1016/j.foodchem.2021.129370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
As the worldwide population continues to rise, so does global demand for agricultural production. This scenario of uncertain food supply is exacerbated by the high salinization of soils worldwide, a serious constraint to crop productivity. In this context, there is an increasing need for alternative sustainable crops. Halophytes are thought to be a promising alternative food source due to their natural ability to grow in saline soils and their multiple potential uses in the food industry. In this study, the protein and fatty acid content of the halophyte Halimione (Atriplex) portulacoides (L.) was studied in different saline conditions. Although more studies are needed to explore the nutritional properties of H. portulacoides, the data presented here suggest that this halophyte should be considered as a promising food crop for saline agriculture.
Collapse
Affiliation(s)
- R Martins-Noguerol
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain
| | - J Cambrollé
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain
| | | | - A Puerto-Marchena
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain
| | - S Muñoz-Vallés
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain
| | - M C Millán-Linares
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Spain
| | - F Millán
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Spain
| | - E Martínez-Force
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Spain
| | - M E Figueroa
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain
| | - J Pedroche
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Spain
| | - A J Moreno-Pérez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Spain.
| |
Collapse
|
44
|
Halama A, Oliveira JM, Filho SA, Qasim M, Achkar IW, Johnson S, Suhre K, Vinardell T. Metabolic Predictors of Equine Performance in Endurance Racing. Metabolites 2021; 11:metabo11020082. [PMID: 33572513 PMCID: PMC7912089 DOI: 10.3390/metabo11020082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Equine performance in endurance racing depends on the interplay between physiological and metabolic processes. However, there is currently no parameter for estimating the readiness of animals for competition. Our objectives were to provide an in-depth characterization of metabolic consequences of endurance racing and to establish a metabolic performance profile for those animals. We monitored metabolite composition, using a broad non-targeted metabolomics approach, in blood plasma samples from 47 Arabian horses participating in endurance races. The samples were collected before and after the competition and a total of 792 metabolites were measured. We found significant alterations between before and after the race in 417 molecules involved in lipids and amino acid metabolism. Further, even before the race starts, we found metabolic differences between animals who completed the race and those who did not. We identified a set of six metabolite predictors (imidazole propionate, pipecolate, ethylmalonate, 2R-3R-dihydroxybutyrate, β-hydroxy-isovalerate and X-25455) of animal performance in endurance competition; the resulting model had an area under a receiver operating characteristic (AUC) of 0.92 (95% CI: 0.85-0.98). This study provides an in-depth characterization of metabolic alterations driven by endurance races in equines. Furthermore, we showed the feasibility of identifying potential metabolic signatures as predictors of animal performance in endurance competition.
Collapse
Affiliation(s)
- Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar;
- Correspondence: (A.H.); (K.S.); (T.V.)
| | - Joao M. Oliveira
- Equine Veterinary Medical Center, Qatar Foundation, Doha 5825, Qatar; (J.M.O.); (M.Q.); (S.J.)
| | - Silvio A. Filho
- Department of Endurance Racing, Al Shaqab, Doha 36623, Qatar;
| | - Muhammad Qasim
- Equine Veterinary Medical Center, Qatar Foundation, Doha 5825, Qatar; (J.M.O.); (M.Q.); (S.J.)
| | - Iman W. Achkar
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar;
| | - Sarah Johnson
- Equine Veterinary Medical Center, Qatar Foundation, Doha 5825, Qatar; (J.M.O.); (M.Q.); (S.J.)
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha 24144, Qatar;
- Correspondence: (A.H.); (K.S.); (T.V.)
| | - Tatiana Vinardell
- Equine Veterinary Medical Center, Qatar Foundation, Doha 5825, Qatar; (J.M.O.); (M.Q.); (S.J.)
- College of Health and Life Sciences, Hamad Bin Khalifa University, Member of Qatar Foundation, Doha 34110, Qatar
- Correspondence: (A.H.); (K.S.); (T.V.)
| |
Collapse
|
45
|
Hsu CC, Yang AYP, Chen JY, Tsai HH, Lin SH, Tai PC, Huang MH, Hsu WH, Lin AMY, Yang JCH. Lysine Deprivation Induces AKT-AADAT Signaling and Overcomes EGFR-TKIs Resistance in EGFR-Mutant Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13020272. [PMID: 33450879 PMCID: PMC7828377 DOI: 10.3390/cancers13020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary In the Asian population, 50–60% of non-small cell lung cancer (NSCLC) patients carry the epidermal growth factor receptor (EGFR) mutation. Although treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKIs) is effective, resistance inevitably occurs. Moreover, previous studies showed that cancers harboring a specific mutation are sensitive to deficiency related to a particular amino acid. The identity of this amino acid is, however, unclear in the case of EGFR-mutant NSCLC. Our studies aim to identify the critical amino acid affected in EGFR-mutant NSCLC and develop a strategy against EGFR-TKI resistance. We determined that lysine is essential for the survival of EGFR-mutant NSCLC and EGFR-TKI-resistant sublines. In addition, we found that the presence of lysine reduction can lower the dosage of EGFR-TKI required for treatment in the case of EGFR-mutant NSCLC. Lastly, our findings provide a guiding principle showing that amino acid stress can enhance not only the therapeutic potential but also the quality of life for EGFR-mutant NSCLC patients. Abstract Epidermal growth factor receptor (EGFR) mutations are the most common driver genes in non-small cell lung cancer (NSCLC), especially in the Asian population. Although EGFR-tyrosine kinase inhibitors (TKIs) are influential in the treatment of EGFR-mutant NSCLC patients, acquired resistance inevitably occurs. Therefore, there is an urgent need to develop strategies to overcome this resistance. In addition, cancer cells with particular mutations appear more vulnerable to deficiency related to the availability of specific amino acids. However, it is still unknown which amino acid is affected in the case of EGFR-mutant NSCLC. In the present study, we established a screening platform based on amino acid deprivation and found that EGFR-mutant NSCLC cells are sensitive to short-term lysine deprivation. Moreover, we found that expression of the gene for the lysine catabolism enzyme α-aminoadipate aminotransferase (AADAT) increased under lysine deprivation, revealing that AADAT can be regulated by EGFR–AKT signaling. Finally, we found that lysine reduction can not only enhance the cytostatic effect of single-agent osimertinib but also overcome the resistance of EGFR-TKIs in EGFR-mutant NSCLC cells. In summary, our findings suggest that the introduction of lysine stress might act as an advancement in EGFR-mutant NSCLC therapy and offer a strategy to overcome EGFR-TKI resistance.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
- National Taiwan University Cancer Center, Taipei 100, Taiwan
| | - Albert Ying-Po Yang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jui-Yi Chen
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- School of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsin-Hui Tsai
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
| | - Shu-Heng Lin
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Chen Tai
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Hung Huang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
| | - Wei-Hsun Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
- National Taiwan University Cancer Center, Taipei 100, Taiwan
| | - Anya Maan-Yuh Lin
- Faculty of Pharmacy, National Yang-Ming University, Taipei 112, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: (A.M.-Y.L.); (J.C.-H.Y.); Tel.: +886-2-23123456 (ext. 67511) (J.C.-H.Y.); Fax: +886-2-23711174 (J.C.-H.Y.)
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; (C.-C.H.); (A.Y.-P.Y.); (J.-Y.C.); (H.-H.T.); (S.-H.L.); (P.-C.T.); (M.-H.H.); (W.-H.H.)
- Cancer Biology Research Group, Center of Precision Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
- National Taiwan University Cancer Center, Taipei 100, Taiwan
- Correspondence: (A.M.-Y.L.); (J.C.-H.Y.); Tel.: +886-2-23123456 (ext. 67511) (J.C.-H.Y.); Fax: +886-2-23711174 (J.C.-H.Y.)
| |
Collapse
|
46
|
Lukasheva EV, Makletsova MG, Lukashev AN, Babayeva G, Arinbasarova AY, Medentsev AG. Fungal Enzyme l-Lysine α-Oxidase Affects the Amino Acid Metabolism in the Brain and Decreases the Polyamine Level. Pharmaceuticals (Basel) 2020; 13:E398. [PMID: 33212812 PMCID: PMC7698073 DOI: 10.3390/ph13110398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022] Open
Abstract
The fungal glycoprotein l-lysine α-oxidase (LO) catalyzes the oxidative deamination of l-lysine (l-lys). LO may be internalized in the intestine and shows antitumor, antibacterial, and antiviral effects in vivo. The main mechanisms of its effects have been shown to be depletion of the essential amino acid l-lys and action of reactive oxidative species produced by the reaction. Here, we report that LO penetrates into the brain and is retained there for up to 48 h after intravenous injection, which might be explained by specific pharmacokinetics. LO actively intervenes in amino acid metabolism in the brain. The most significant impact of LO was towards amino acids, which are directly exposed to its action (l-lys, l-orn, l-arg). In addition, the enzyme significantly affected the redistribution of amino acids directly associated with the tricarboxylic acid (TCA) cycle (l-asp and l-glu). We discovered that the depletion of l-orn, the precursor of polyamines (PA), led to a significant and long-term decrease in the concentration of polyamines, which are responsible for regulation of many processes including cell proliferation. Thus, LO may be used to reduce levels of l-lys and PA in the brain.
Collapse
Affiliation(s)
- Elena V. Lukasheva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia;
| | - Marina G. Makletsova
- Department of Biology and General Pathology, Don State Technical University, Gagarin Square 1, Rostov-on-Don 344011, Russia;
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), 20 M. Pirogovskaya str., Moscow 119435, Russia;
| | - Gulalek Babayeva
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia;
| | - Anna Yu. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Pr. Nauki, Pushchino, Moscow Region 142290, Russia; (A.Y.A.); (A.G.M.)
| | - Alexander G. Medentsev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Pr. Nauki, Pushchino, Moscow Region 142290, Russia; (A.Y.A.); (A.G.M.)
| |
Collapse
|
47
|
Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc Natl Acad Sci U S A 2020; 117:29904-29913. [PMID: 33172990 DOI: 10.1073/pnas.2016589117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD). Both the mPFC and the SCN displayed a robust cyclic metabolism, with a strikingly high sensitivity to HFD perturbation in an area-specific manner. The phase and amplitude of oscillations were drastically different between the SCN and mPFC, and the metabolic pathways impacted by HFD were remarkably region-dependent. Furthermore, HFD induced a significant increase in the number of cycling metabolites exclusively in the SCN, revealing an unsuspected susceptibility of the master clock to food stress.
Collapse
|
48
|
Leandro J, Dodatko T, DeVita RJ, Chen H, Stauffer B, Yu C, Houten SM. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. J Inherit Metab Dis 2020; 43:1154-1164. [PMID: 32567100 DOI: 10.1002/jimd.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by acute encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. We investigated the efficacy of substrate reduction through inhibition of 2-aminoadipic semialdehyde synthase (AASS), an enzyme upstream of the defective glutaryl-CoA dehydrogenase (GCDH), in a cell line and mouse model of GA1. We show that loss of AASS function in GCDH-deficient HEK-293 cells leads to an approximately fivefold reduction in the established GA1 clinical biomarker glutarylcarnitine. In the GA1 mouse model, deletion of Aass leads to a 4.3-, 3.8-, and 3.2-fold decrease in the glutaric acid levels in urine, brain, and liver, respectively. Parallel decreases were observed in urine and brain 3-hydroxyglutaric acid levels, and plasma, urine, and brain glutarylcarnitine levels. These in vivo data demonstrate that the saccharopine pathway is the main source of glutaric acid production in the brain and periphery of a mouse model for GA1, and support the notion that pharmacological inhibition of AASS may represent an attractive strategy to treat GA1.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York, New York, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Bassi G, Favalli N, Vuk M, Catalano M, Martinelli A, Trenner A, Porro A, Yang S, Tham CL, Moroglu M, Yue WW, Conway SJ, Vogt PK, Sartori AA, Scheuermann J, Neri D. A Single-Stranded DNA-Encoded Chemical Library Based on a Stereoisomeric Scaffold Enables Ligand Discovery by Modular Assembly of Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001970. [PMID: 33240760 PMCID: PMC7675038 DOI: 10.1002/advs.202001970] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Indexed: 06/11/2023]
Abstract
A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.
Collapse
Affiliation(s)
- Gabriele Bassi
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Miriam Vuk
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Adriano Martinelli
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Anika Trenner
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Antonio Porro
- Institute of Molecular Cancer ResearchUniversity of ZürichZürich8006Switzerland
| | - Su Yang
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | - Chuin Lean Tham
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Wyatt W. Yue
- Structural Genomic Consortium (SGC)Nuffield Department of MedicineUniversity of OxfordOxfordOX1 2JDUK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Peter K. Vogt
- Scripps Research InstituteDepartment of Molecular MedicineLa JollaCA92037USA
| | | | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesETH ZürichZürich8092Switzerland
| |
Collapse
|
50
|
Reedoy KS, Loots DT, Beukes D, Reenen MV, Pillay B, Pillay M. Mycobacterium tuberculosis curli pili (MTP) is associated with significant host metabolic pathways in an A549 epithelial cell infection model and contributes to the pathogenicity of Mycobacterium tuberculosis. Metabolomics 2020; 16:116. [PMID: 33084984 DOI: 10.1007/s11306-020-01736-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A clear understanding of the metabolome of Mycobacterium tuberculosis and its target host cell during infection is fundamental for the development of novel diagnostic tools, effective drugs and vaccines required to combat tuberculosis. The surface-located Mycobacterium tuberculosis curli pili (MTP) adhesin forms initial contact with the host cell and is therefore important for the establishment of infection. OBJECTIVE The aim of this investigation was to determine the role of MTP in modulating pathogen and host metabolic pathways in A549 epithelial cells infected with MTP proficient and deficient strains of M. tuberculosis. METHODS Uninfected A549 epithelial cells, and those infected with M. tuberculosis V9124 wild-type strain, Δmtp and the mtp-complemented strains, were subjected to metabolite extraction, two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOFMS) and bioinformatic analyses. Univariate and multivariate statistical tests were used to identify metabolites that were significantly differentially produced in the WT-infected and ∆mtp-infected A549 epithelial cell models, comparatively. RESULTS A total of 46 metabolites occurred in significantly lower relative concentrations in the Δmtp-infected cells, indicating a reduction in nucleic acid synthesis, amino acid metabolism, glutathione metabolism, oxidative stress, lipid metabolism and peptidoglycan, compared to those cells infected with the WT strain. CONCLUSION The absence of MTP was associated with significant changes to the host metabolome, suggesting that this adhesin is an important contributor to the pathogenicity of M. tuberculosis, and supports previous findings of its potential as a suitable drug, vaccine and diagnostic target.
Collapse
Affiliation(s)
- K S Reedoy
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa
| | - D T Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - D Beukes
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - M van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag x6001, Box 269, Potchefstroom, 2531, South Africa
| | - B Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - M Pillay
- Medical Microbiology School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Doris Duke Medical Research Institute, University of KwaZulu-Natal, 1st Floor, Congella, Private Bag 7, Durban, 4013, South Africa.
| |
Collapse
|