1
|
Qin K, Shi D, Zheng Y, Hu W, Kang X, Wu P, Hao X, Liu H, Gao J, Li J, Wu Z, Li S, Wang H. Synthesis and evaluation of a 68Ga-labeled spermine derivative for tumor PET imaging. Nucl Med Biol 2024; 134-135:108915. [PMID: 38723361 DOI: 10.1016/j.nucmedbio.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND The polyamine transporter system (PTS), which renders it a promising target for tumor therapy and imaging applications, facilitates the transmembrane transport of polyamines. We reported a novel derivative of spermine labeled with gallium-68 ([68Ga]Ga-NOTA-Spermine) for the imaging of the PTS in mouse models of tumor. RESULTS The radiochemical yield of [68Ga]Ga-NOTA-Spermine was determined to be 64-69 %, demonstrating exceptional stability and radiochemical purity (>98 %). Cellular uptake experiments revealed that A549 cells exhibited peak uptake of [68Ga]Ga-NOTA-Spermine at 90 min (15.4 % ± 0.68 %). Biodistribution analysis demonstrated significant accumulation of [68Ga]Ga-NOTA-Spermine in kidneys and liver, while exhibiting low uptake levels in muscle, brain, and bones. Furthermore, Micro-PET/CT scans conducted on A549 tumor-bearing mouse models indicated substantial uptake of [68Ga]Ga-NOTA-Spermine, with maximum tumor/muscle (T/M) ratios reaching 3.71. CONCLUSION These results suggest that [68Ga]Ga-NOTA-Spermine holds potential as a PET imaging agent for tumors with high levels of PTS.
Collapse
Affiliation(s)
- Kaixin Qin
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Dongmei Shi
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yuzhou Zheng
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Wenhao Hu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Xiameng Kang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Ping Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Xinzhong Hao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Haiyan Liu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Jie Gao
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, Shanxi 030006, People's Republic of China
| | - Jianguo Li
- National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, China Institute for Radiation Protection, Taiyuan, Shanxi 030006, People's Republic of China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China; Collaborative Innovation Center for Molecular Imaging of Precision Medicine Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China.
| |
Collapse
|
2
|
Hassan SS, Hanna DH, Medany SS. The double‐edged sword of the amoxicillin antibiotic against prostate cancer in nano palladium form and its electrochemical detection of dopamine. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Pd (II) complex was prepared from the interaction with Schiff base based on the condensation amoxicillin trihydrate drug and 4‐N,N‐dimethylaminobenzaldehyde. The complex was prepared on the nanoscale that was investigated using transmission electron microscopy (TEM). The chemical structure of the synthesized Schiff base and its Pd (II) chelate was proved through several techniques. Assays using MTT and lactate dehydrogenase verified the Pd (II) complex ability to inhibit human prostate cancer cells (PC3). According to the findings, the inhibition of PC3 cell growth was directly proportional to the dose of Pd (II) complex. Its highest IC50 value was attained after 48 h of incubation reached to 22.6 μg/mL. As a measure of DNA damage in PC3 cells, this IC50 value demonstrated a significant increase in early and late apoptotic cells with an intense comet nucleus. Given that the concentration of reactive oxygen species (ROS) in treated PC3 cells was much higher than in control ones. These results contributed to the notion that ROS‐mediated cell death, which may have taken place via the mitochondrial pathway, was the mechanism by which the Pd (II) complex inhibited the proliferation of PC3 cancer cells. The prepared Pd (II) complex was fabricated and casted onto GC electrode for investigate the dopamine concentration in human serum. The limit of detection and limit of quantization were found to be 0.0127 and 0.0424 μM, respectively, which were in a good agreement with literature and were found to be an improvement to that present in the literature.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| | - Demiana H. Hanna
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| | - Shymaa S. Medany
- Department of Chemistry, Faculty of Science Cairo University 12613 Giza Egypt
| |
Collapse
|
3
|
Kazimir A, Schwarze B, Lönnecke P, Jelača S, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Metallodrugs against Breast Cancer: Combining the Tamoxifen Vector with Platinum(II) and Palladium(II) Complexes. Pharmaceutics 2023; 15:pharmaceutics15020682. [PMID: 36840003 PMCID: PMC9959148 DOI: 10.3390/pharmaceutics15020682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The luminal A-subtype of breast cancer, where the oestrogen receptor α (ERα) is overexpressed, is the most frequent one. The prodrug tamoxifen (1) is the clinically used agent, inhibiting the ERα activity via the formation of several active metabolites, such as 4-hydroxytamoxifen (2) or 4,4'-dihydroxytamoxifen (3). In this study, we present the tamoxifen derivative 4-[1,1-bis(4-methoxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (4), which was combined with platinum or palladium dichloride, the former a well-known scaffold in anticancer treatment, to give [PtCl2(4-κ2N,N')] (5) or [PdCl2(4-κ2N,N'] (6). To prevent fast exchange of weakly coordinating chlorido ligands in aqueous solution, a bulky, highly stable and hydrophobic nido-carborate(-2) ([C2B9H11]2-) was incorporated. The resulting complexes [3-(4-κ2N,N')-3,1,2-PtC2B9H11] (7) and [3-(4-κ2N,N')-3,1,2-PdC2B9H11] (8) exhibit a dramatic change in electronic and biological properties compared to 5 and 6. Thus, 8 is highly selective for triple-negative MDA-MB-231 cells (IC50 = 3.7 μM, MTT test), while 7 is completely inactive against this cell line. The observed cytotoxicity of compounds 4-6 and 8 against this triple-negative cell line suggests off-target mechanisms rather than only ERα inhibition, for which these compounds were originally designed. Spectroscopic properties and electronic structures of the metal complexes were investigated for possible explanations of the biological activities.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Benedikt Schwarze
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
4
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
5
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
6
|
Martins AS, Batista de Carvalho ALM, Marques MPM, Gil AM. Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs. Molecules 2021; 26:4805. [PMID: 34443394 PMCID: PMC8401043 DOI: 10.3390/molecules26164805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.
Collapse
Affiliation(s)
- Ana S. Martins
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
7
|
Batista de Carvalho LAE, Mamede AP, Batista de Carvalho ALM, Marques J, Cinque G, Rudić S, Marques MPM. Metallodrug-protein interaction probed by synchrotron terahertz and neutron scattering spectroscopy. Biophys J 2021; 120:3070-3078. [PMID: 34214537 PMCID: PMC8390959 DOI: 10.1016/j.bpj.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
This experimental work applied coherent synchrotron-radiation terahertz spectroscopy and inelastic neutron scattering to address two processes directly associated with the mode of action of metal-based anticancer agents that can severely undermine chemotherapeutic treatment: drug binding to human serum albumin, occurring during intravenous drug transport, and intracellular coordination to thiol-containing biomolecules (such as metallothioneins) associated with acquired drug resistance. Cisplatin and two dinuclear platinum (Pt)- and palladium (Pd)-polyamine agents developed by this research group, which have yielded promising results toward some types of human cancers, were investigated. Complementary synchrotron-radiation-terahertz and inelastic neutron scattering data revealed protein metalation, through S- and N-donor ligands from cysteine, methionine, and histidine residues. A clear impact of the Pt and Pd agents was evidenced, drug binding to albumin and metallothionein having been responsible for significant changes in the overall protein conformation, as well as for an increased flexibility and possible aggregation.
Collapse
Affiliation(s)
| | - Adriana Pereira Mamede
- Molecular Physical Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - Joana Marques
- Molecular Physical Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Gianfelice Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Svemir Rudić
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, Oxfordshire, United Kingdom
| | - Maria Paula Matos Marques
- Molecular Physical Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Carneiro TJ, Araújo R, Vojtek M, Gonçalves-Monteiro S, Diniz C, Batista de Carvalho ALM, Marques MPM, Gil AM. Novel Insights into Mice Multi-Organ Metabolism upon Exposure to a Potential Anticancer Pd(II)-Agent. Metabolites 2021; 11:metabo11020114. [PMID: 33671194 PMCID: PMC7922283 DOI: 10.3390/metabo11020114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pd(II)-compounds are presently regarded as promising anticancer drugs, as an alternative to Pt(II)-based drugs (e.g., cisplatin), which typically trigger severe side-effects and acquired resistance. Dinuclear Pd(II) complexes with biogenic polyamines such as spermine (Pd2Spm) have exhibited particularly beneficial cytotoxic properties, hence unveiling the importance of understanding their impact on organism metabolism. The present study reports the first nuclear magnetic resonance (NMR)-based metabolomics study to assess the in vivo impact of Pd2Spm on the metabolism of healthy mice, to identify metabolic markers with possible relation to biotoxicity/side-effects and their dynamics. The changes in the metabolic profiles of both aqueous and lipophilic extracts of mice kidney, liver, and breast tissues were evaluated, as a function of drug-exposure time, using cisplatin as a reference drug. A putative interpretation was advanced for the metabolic deviations specifically triggered by Pd2Spm, this compound generally inducing faster metabolic response and recovery to control levels for all organs tested, compared to cisplatin (except for kidney lipid metabolism). These results constitute encouraging preliminary metabolic data suggestive of potential lower negative effects of Pd2Spm administration.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Rita Araújo
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.V.); (S.G.-M.); (C.D.)
| | - Ana L. M. Batista de Carvalho
- R&D Unit “Molecular-Physical Chemistry”, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
| | - M. Paula M. Marques
- R&D Unit “Molecular-Physical Chemistry”, University of Coimbra, 3004-535 Coimbra, Portugal; (A.L.M.B.d.C.); (M.P.M.M.)
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- Department of Chemistry and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (T.J.C.); (R.A.)
- Correspondence: ; Tel.: +351-234370707
| |
Collapse
|
9
|
Carneiro TJ, Martins AS, Marques MPM, Gil AM. Metabolic Aspects of Palladium(II) Potential Anti-Cancer Drugs. Front Oncol 2020; 10:590970. [PMID: 33154950 PMCID: PMC7586886 DOI: 10.3389/fonc.2020.590970] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
This mini-review reports on the existing knowledge of the metabolic effects of palladium [Pd(II)] complexes with potential anticancer activity, on cell lines and murine models. Most studies have addressed mononuclear Pd(II) complexes, although increasing interest has been noted in bidentate complexes, as polynuclear structures. In addition, the majority of records have reported in vitro studies on cancer cell lines, some including the impact on healthy cells, as potentially informative in relation to side effects. Generally, these studies address metabolic effects related to the mechanisms of induced cell death and antioxidant defense, often involving the measurement of gene and protein expression patterns, and evaluation of the levels of reactive oxygen species or specific metabolites, such as ATP and glutathione, in relation to mitochondrial respiration and antioxidant mechanisms. An important tendency is noted toward the use of more untargeted approaches, such as the use of omic sciences e.g., proteomics and metabolomics. In the discussion section of this mini-review, the developments carried out so far are summarized and suggestions of possible future developments are advanced, aiming at recognizing that metabolites and metabolic pathways make up an important part of cell response and adaptation to therapeutic agents, their further study potentially contributing valuably for a more complete understanding of processes such as biotoxicity or development of drug resistance.
Collapse
Affiliation(s)
- Tatiana J Carneiro
- Department of Chemistry, Center for Research in Ceramic and Composite Materials (CICECO)-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,"Molecular Physical Chemistry" R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Ana S Martins
- Department of Chemistry, Center for Research in Ceramic and Composite Materials (CICECO)-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,"Molecular Physical Chemistry" R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - M Paula M Marques
- "Molecular Physical Chemistry" R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ana M Gil
- Department of Chemistry, Center for Research in Ceramic and Composite Materials (CICECO)-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
10
|
Galiana-Roselló C, Aceves-Luquero C, González J, Martínez-Camarena Á, Villalonga R, Fernández de Mattos S, Soriano C, Llinares J, García-España E, Villalonga P, González-Rosende ME. Toward a Rational Design of Polyamine-Based Zinc-Chelating Agents for Cancer Therapies. J Med Chem 2020; 63:1199-1215. [PMID: 31935092 DOI: 10.1021/acs.jmedchem.9b01554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In vitro viability assays against a representative panel of human cancer cell lines revealed that polyamines L1a and L5a displayed remarkable activity with IC50 values in the micromolar range. Preliminary research indicated that both compounds promoted G1 cell cycle arrest followed by cellular senescence and apoptosis. The induction of apoptotic cell death involved loss of mitochondrial outer membrane permeability and activation of caspases 3/7. Interestingly, L1a and L5a failed to activate cellular DNA damage response. The high intracellular zinc-chelating capacity of both compounds, deduced from the metal-specific Zinquin assay and ZnL2+ stability constant values in solution, strongly supports their cytotoxicity. These data along with quantum mechanical studies have enabled to establish a precise structure-activity relationship. Moreover, L1a and L5a showed appropriate drug-likeness by in silico methods. Based on these promising results, L1a and L5a should be considered a new class of zinc-chelating anticancer agents that deserves further development.
Collapse
Affiliation(s)
- Cristina Galiana-Roselló
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica , Universidad de Valencia , Paterna, 46980 Valencia , Spain.,Departamento de Farmacia, Facultad de Ciencias de la Salud , Universidad CEU Cardenal Herrera, C/ Ramón y Cajal, s/n , Alfara del Patriarca, 46115 Valencia , Spain
| | - Clara Aceves-Luquero
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) , Universitat de les Illes Balears, and Institut d'Investigació Sanitària Illes Balears (IdISBa) , Palma, 07122 Illes Balears , Spain
| | - Jorge González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica , Universidad de Valencia , Paterna, 46980 Valencia , Spain
| | - Álvaro Martínez-Camarena
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica , Universidad de Valencia , Paterna, 46980 Valencia , Spain
| | - Ruth Villalonga
- Departament de Química , Universitat de les llles Balears , Palma, 07122 Illes Balears , Spain
| | - Silvia Fernández de Mattos
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) , Universitat de les Illes Balears, and Institut d'Investigació Sanitària Illes Balears (IdISBa) , Palma, 07122 Illes Balears , Spain.,Departament de Biologia Fonamental , Universitat de les Illes Balears , Palma, 07122 Illes Balears , Spain
| | - Concepción Soriano
- Departamento de Química Orgánica , Universidad de Valencia , C/Dr. Moliner s/n , Burjassot, 46100 Valencia , Spain
| | - José Llinares
- Departamento de Química Orgánica , Universidad de Valencia , C/Dr. Moliner s/n , Burjassot, 46100 Valencia , Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Inorgánica , Universidad de Valencia , Paterna, 46980 Valencia , Spain
| | - Priam Villalonga
- Cancer Cell Biology Laboratory, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS) , Universitat de les Illes Balears, and Institut d'Investigació Sanitària Illes Balears (IdISBa) , Palma, 07122 Illes Balears , Spain
| | - María Eugenia González-Rosende
- Departamento de Farmacia, Facultad de Ciencias de la Salud , Universidad CEU Cardenal Herrera, C/ Ramón y Cajal, s/n , Alfara del Patriarca, 46115 Valencia , Spain
| |
Collapse
|
11
|
Marques MPM, Batista de Carvalho ALM, Mamede AP, Rudić S, Dopplapudi A, García Sakai V, Batista de Carvalho LAE. Intracellular water as a mediator of anticancer drug action. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1700083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M. P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - A. P. Mamede
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - S. Rudić
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, UK
| | - A. Dopplapudi
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, UK
| | - V. García Sakai
- STFC Rutherford Appleton Laboratory, ISIS Facility, Chilton, Didcot, UK
| | | |
Collapse
|
12
|
A New Look into the Mode of Action of Metal-Based Anticancer Drugs. Molecules 2020; 25:molecules25020246. [PMID: 31936161 PMCID: PMC7024343 DOI: 10.3390/molecules25020246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 01/25/2023] Open
Abstract
The mode of action of Pt- and Pd-based anticancer agents (cisplatin and Pd2Spm) was studied by characterising their impact on DNA. Changes in conformation and mobility at the molecular level in hydrated DNA were analysed by quasi-elastic and inelastic neutron scattering techniques (QENS and INS), coupled to Fourier transform infrared (FTIR) and microRaman spectroscopies. Although INS, FTIR and Raman revealed drug-triggered changes in the phosphate groups and the double helix base pairing, QENS allowed access to the nanosecond motions of the biomolecule’s backbone and confined hydration water within the minor groove. Distinct effects were observed for cisplatin and Pd2Spm, the former having a predominant effect on DNA’s spine of hydration, whereas the latter had a higher influence on the backbone dynamics. This is an innovative way of tackling a drug’s mode of action, mediated by the hydration waters within its pharmacological target (DNA).
Collapse
|
13
|
Vojtek M, Marques MPM, Ferreira IMPLVO, Mota-Filipe H, Diniz C. Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today 2019; 24:1044-1058. [PMID: 30849441 DOI: 10.1016/j.drudis.2019.02.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
Treatment of triple-negative breast carcinoma (TNBC) remains an unmet medical need with no targeted therapy available to date. Accounting for 10-30% of all human breast cancer tumors, this mammary carcinoma subtype has a particularly poor prognosis owing to its high metastatic potential, aggressive biology and limited pharmacological treatment options. Platinum chemotherapeutics are the mainstay therapy in patients with TNBC but their clinical use is limited by severe toxicity and acquired resistance. Palladium-based complexes are appealing alternative metal-based drugs because of significant similarities regarding structure and coordination chemistry with the platinum agents. This review summarizes the knowledge gathered so far on 121 Pd(II) complexes, emphasizing their anticancer activity and putative pharmacological targets toward TNBC.
Collapse
Affiliation(s)
- Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Maria P M Marques
- Unidade de I&D "Química-Física Molecular", Department of Chemistry, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Hélder Mota-Filipe
- iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
14
|
Batista de Carvalho ALM, Mamede AP, Dopplapudi A, Garcia Sakai V, Doherty J, Frogley M, Cinque G, Gardner P, Gianolio D, Batista de Carvalho LAE, Marques MPM. Anticancer drug impact on DNA – a study by neutron spectroscopy coupled with synchrotron-based FTIR and EXAFS. Phys Chem Chem Phys 2019; 21:4162-4175. [DOI: 10.1039/c8cp05881d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complementary information on drug–DNA interplay has been achieved for Pt/Pd anticancer agents, by a combined QENS, SR-FTIR-ATR and EXAFS approach.
Collapse
Affiliation(s)
| | - Adriana P. Mamede
- Química-Física Molecular
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| | - Asha Dopplapudi
- ISIS Facility
- STFC Rutherford Appleton Laboratory
- Chilton
- Didcot
- UK
| | | | - James Doherty
- Diamond Light Source
- Harwell Science and Innovation Campus
- Chilton
- Didcot
- UK
| | - Mark Frogley
- Diamond Light Source
- Harwell Science and Innovation Campus
- Chilton
- Didcot
- UK
| | - Gianfelice Cinque
- Diamond Light Source
- Harwell Science and Innovation Campus
- Chilton
- Didcot
- UK
| | - Peter Gardner
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
| | - Diego Gianolio
- Diamond Light Source
- Harwell Science and Innovation Campus
- Chilton
- Didcot
- UK
| | | | - M. Paula M. Marques
- Química-Física Molecular
- Department of Chemistry
- University of Coimbra
- 3004-535 Coimbra
- Portugal
| |
Collapse
|
15
|
Batista de Carvalho ALM, Pilling M, Gardner P, Doherty J, Cinque G, Wehbe K, Kelley C, Batista de Carvalho LAE, Marques MPM. Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy. Faraday Discuss 2018; 187:273-98. [PMID: 27063935 DOI: 10.1039/c5fd00148j] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Studies of drug-cell interactions in cancer model systems are essential in the preclinical stage of rational drug design, which relies on a thorough understanding of the mechanisms underlying cytotoxic activity and biological effects, at a molecular level. This study aimed at applying complementary vibrational spectroscopy methods to evaluate the cellular impact of two Pt(ii) and Pd(ii) dinuclear chelates with spermine (Pt2Spm and Pd2Spm), using cisplatin (cis-Pt(NH3)2Cl2) as a reference compound. Their effects on cellular metabolism were monitored in a human triple-negative metastatic breast cancer cell line (MDA-MB-231) by Raman and synchrotron-radiation infrared microspectroscopies, for different drug concentrations (2-8 μM) at 48 h exposure. Multivariate data analysis was applied (unsupervised PCA), unveiling drug- and concentration-dependent effects: apart from discrimination between control and drug-treated cells, a clear separation was obtained for the different agents studied - mononuclear vs. polynuclear, and Pt(ii) vs. Pd(ii). Spectral biomarkers of drug action were identified, as well as the cellular response to the chemotherapeutic insult. The main effect of the tested compounds was found to be on DNA, lipids and proteins, the Pd(ii) agent having a more significant impact on proteins while its Pt(ii) homologue affected the cellular lipid content at lower concentrations, which suggests the occurrence of distinct and unconventional pathways of cytotoxicity for these dinuclear polyamine complexes. Raman and FTIR microspectroscopies were confirmed as powerful non-invasive techniques to obtain unique spectral signatures of the biochemical impact and physiological reaction of cells to anticancer agents.
Collapse
Affiliation(s)
| | - M Pilling
- Manchester Institute of Biotechnology, Univ. Manchester, Manchester, M1 7DN, UK
| | - P Gardner
- Manchester Institute of Biotechnology, Univ. Manchester, Manchester, M1 7DN, UK
| | - J Doherty
- Manchester Institute of Biotechnology, Univ. Manchester, Manchester, M1 7DN, UK and Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - G Cinque
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - K Wehbe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - C Kelley
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | | | - M P M Marques
- "Química-Física Molecular", Univ. Coimbra, 3004-535 Coimbra, Portugal. and Dep. Life Sciences, Univ. Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
16
|
Cellular and Animal Model Studies on the Growth Inhibitory Effects of Polyamine Analogues on Breast Cancer. Med Sci (Basel) 2018. [PMID: 29533973 PMCID: PMC5872181 DOI: 10.3390/medsci6010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Collapse
|
17
|
|
18
|
Lamego I, Marques MPM, Duarte IF, Martins AS, Oliveira H, Gil AM. Impact of the Pd 2Spermine Chelate on Osteosarcoma Metabolism: An NMR Metabolomics Study. J Proteome Res 2017; 16:1773-1783. [PMID: 28244322 DOI: 10.1021/acs.jproteome.7b00035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A metabolomics study of Pd2Spermine(Spm) on osteosarcoma MG-63 and osteoblastic HOb cells is presented to assess the impact of the potential palladium drug on cell metabolism compared with cisplatin (cDDP). Despite its higher cytotoxicity, Pd2Spm induced lower (and reversible) metabolic impact on MG-63 cells and the absence of apoptosis; conversely, it induced significant deviations in osteoblastic amino acid metabolism. However, when in combination with doxorubicin and methotrexate, Pd2Spm induced strong metabolic deviations on lipids, choline compounds, amino acids, nucleotides, and compounds related to antioxidative mechanisms (e.g., glutathione, inositol, hypoxanthine), similarly to the cDDP cocktail. Synergetic effects included triggering of lipid biosynthesis by Pd2Spm in the presence of doxorubicin (and reinforced by methotrexate) and changes in the glycosylation substrate uridine diphosphate acetylgalactosamine and methionine and serine metabolisms. This work provides promising results related to the impact of Pd2Spm on osteosarcoma cellular metabolism, particularly in drug combination protocols. Lipid metabolism, glycosylation, and amino acid metabolisms emerge as relevant features for targeted studies to further understand a potential anticancer mechanism of combined Pd2Spm.
Collapse
Affiliation(s)
- Inês Lamego
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal.,R&D Unit "Molecular Physical-Chemistry", University of Coimbra , 3000-213 Coimbra, Portugal
| | - M Paula M Marques
- R&D Unit "Molecular Physical-Chemistry", University of Coimbra , 3000-213 Coimbra, Portugal.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra , 3000-213 Coimbra, Portugal
| | - Iola F Duarte
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal
| | - Ana S Martins
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro , 3810 Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, (CICECO/UA), University of Aveiro , 3810 Aveiro, Portugal
| |
Collapse
|
19
|
Marques MPM, Batista de Carvalho ALM, Sakai VG, Hatter L, Batista de Carvalho LAE. Intracellular water - an overlooked drug target? Cisplatin impact in cancer cells probed by neutrons. Phys Chem Chem Phys 2017; 19:2702-2713. [PMID: 27905583 DOI: 10.1039/c6cp05198g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The first neutron scattering study on human nucleated cells is reported, addressing the subject of solvent-slaving to a drug by probing intracellular water upon drug exposure. Inelastic and quasi-elastic neutron scattering spectroscopy with isotope labelling was applied for monitoring interfacial water response to the anticancer drug cisplatin, in the low prognosis human metastatic breast cancer cells MDA-MB-231. Optical vibrational data were also obtained for lyophilised cells. Concentration-dependent dynamical changes evidencing a progressive mobility reduction were unveiled between untreated and cisplatin-exposed samples, concurrent with variations in the native organisation of water molecules within the intracellular medium as a consequence of drug action. The results thus obtained yielded a clear picture of the intracellular water response to cisplatin and constitute the first reported experimental proof of a drug impact on the cytomatrix by neutron techniques. This is an innovative way of tackling a drug's pharmacodynamics, searching for alternative targets of drug action.
Collapse
Affiliation(s)
- M P M Marques
- Unidade de I&D Química-Física Molecular, Dep. of Chemistry, R. Larga, Univ. Coimbra, 3004-535 Coimbra, Portugal. and Dep. Life Sciences, Univ. Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L M Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Dep. of Chemistry, R. Larga, Univ. Coimbra, 3004-535 Coimbra, Portugal.
| | - V Garcia Sakai
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX 11 0QX, UK
| | - L Hatter
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX 11 0FA, UK
| | - L A E Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Dep. of Chemistry, R. Larga, Univ. Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
20
|
Alam MN, Huq F. Comprehensive review on tumour active palladium compounds and structure–activity relationships. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Huang X, Borgström B, Kempengren S, Persson L, Hegardt C, Strand D, Oredsson S. Breast cancer stem cell selectivity of synthetic nanomolar-active salinomycin analogs. BMC Cancer 2016; 16:145. [PMID: 26906175 PMCID: PMC4765157 DOI: 10.1186/s12885-016-2142-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/08/2016] [Indexed: 12/28/2022] Open
Abstract
Background Cancer stem cells (CSCs) have been invoked in resistance, recurrence and metastasis of cancer. Consequently, curative cancer treatments may be contingent on CSC selective approaches. Of particular interest in this respect is the ionophore salinomycin, a natural product shown to be 100-fold more active against CSCs than clinically used paclitaxel. We have previously reported that synthetic salinomycin derivatives display increased activity against breast cancer cell lines. Herein we specifically investigate the CSC selectivity of the most active member in each class of C20-O-acylated analogs as well as a C1-methyl ester analog incapable of charge-neutral metal ion transport. Methods JIMT-1 breast cancer cells were treated with three C20-O-acylated analogs, the C1-methyl ester of salinomycin, and salinomycin. The effects of treatment on the CSC-related CD44+/CD24− and the aldehyde dehydrogenase positive (ALDH+) populations were determined using flow cytometry. The survival ability of CSCs after treatment was investigated with a colony formation assay under serum free conditions. The effect of the compounds on cell migration was evaluated using wound-healing and Boyden chamber assays. The expression of vimentin, related to mesenchymal traits and expression of E-cadherin and β-catenin, related to the epithelial traits, were investigated using immunofluorescence microscopy. Results Treatment with each of the three C20-acylated analogs efficiently decreased the putative CSC population as reflected by reduction of the CD44+/CD24− and ALDH+ populations already at a 50 nM concentration. In addition, colony forming efficiency and cell migration were reduced, and the expression of the epithelial markers E-cadherin and β-catenin at the cell surface were increased. In contrast, salinomycin used at the same concentration did not significantly influence the CSC population and the C1-methyl ester was inactive even at a 20 μM concentration. Conclusions Synthetic structural analogs of salinomycin, previously shown to exhibit increased activity against cancer cells, also exhibited improved activity against CSCs across several assays even at nanomolar concentrations where salinomycin was found inactive. The methyl ester analog of salinomycin, incapable of charge-neutral metal ion transport, did not show activity in CSC assays, lending experimental support to ionophoric stress as the molecular initiating event for the CSC effects of salinomycin and related structures. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2142-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Biology, Lund University, Lund, Sweden.
| | - Björn Borgström
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, Lund, Sweden.
| | | | - Lo Persson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Cecilia Hegardt
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University Cancer Center/Medicon Village, Lund, Sweden.
| | - Daniel Strand
- Department of Chemistry, Center for Analysis and Synthesis, Lund University, Lund, Sweden.
| | | |
Collapse
|
22
|
Guo XF, Arceo J, Huge BJ, Ludwig KR, Dovichi NJ. Chemical cytometry of thiols using capillary zone electrophoresis-laser induced fluorescence and TMPAB-o-M, an improved fluorogenic reagent. Analyst 2016; 141:1325-30. [PMID: 26814594 PMCID: PMC4747679 DOI: 10.1039/c5an02116b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low molecular weight thiol compounds play crucial roles in many physiological processes. Most methods for determination of thiol compounds are population-averaged; few methods for quantification of thiol compounds in single cells have been reported. We report an ultrasensitive method for determination of thiol compounds in single cells by use of 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene (TMPAB-o-M), a fluorogenic probe with useful spectral properties, coupled with capillary zone electrophoresis and laser induced fluorescence detection using a post-column sheath flow cuvette. TMPAB-o-M provides low background, high sensitivity, and excellent reactivity. After optimization of the separation method, we achieved baseline separation of labeled glutathione (GSH), cysteine (Cys), homocysteine, and γ-glutamylcysteine within 11 min, and produced concentration limits of detection from 10 to 20 pM and mass LODs of 65 to 100 zmol. The method was applied for analysis of thiol containing compounds in both cell homogenates and in single HCT-29 and MCF-10A cells. GSH was the main thiol, and Cys was also detected in both cell types. Cells were treated with N-ethylmaleimide, which significantly attenuated thiol levels.
Collapse
Affiliation(s)
- Xiao-Feng Guo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA. and Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jennifer Arceo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Katelyn R Ludwig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
23
|
Aderibigbe BA. Polymeric Prodrugs Containing Metal-Based Anticancer Drugs. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Marques MPM, Gianolio D, Cibin G, Tomkinson J, Parker SF, Valero R, Pedro Lopes R, Batista de Carvalho LAE. A molecular view of cisplatin's mode of action: interplay with DNA bases and acquired resistance. Phys Chem Chem Phys 2015; 17:5155-71. [DOI: 10.1039/c4cp05183a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A definite molecular picture of cisplatin's MOA is presented, including a detailed interpretation of the glutathione-mediated drug scavenging process.
Collapse
Affiliation(s)
- M. Paula M. Marques
- Molecular Physical Chemistry R&D Unit
- Fac. Science and Technology
- Univ. Coimbra
- 3004-535 Coimbra
- Portugal
| | - Diego Gianolio
- Diamond Light Source
- STFC Harwell Science and Innovation Campus
- UK
| | | | - John Tomkinson
- ISIS Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Rosendo Valero
- Molecular Physical Chemistry R&D Unit
- Fac. Science and Technology
- Univ. Coimbra
- 3004-535 Coimbra
- Portugal
| | - R. Pedro Lopes
- Molecular Physical Chemistry R&D Unit
- Fac. Science and Technology
- Univ. Coimbra
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
25
|
The palladacycle, AJ-5, exhibits anti-tumour and anti-cancer stem cell activity in breast cancer cells. Cancer Lett 2014; 357:206-218. [PMID: 25444915 DOI: 10.1016/j.canlet.2014.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignancy amongst women worldwide but despite enormous efforts to address this problem, there is still limited success with most of the current therapeutic strategies. The current study describes the anti-cancer activity of a binuclear palladacycle complex (AJ-5) in oestrogen receptor positive (MCF7) and oestrogen receptor negative (MDA-MB-231) breast cancer cells as well as human breast cancer stem cells. AJ-5 is shown to induce DNA double strand breaks leading to intrinsic and extrinsic apoptosis and autophagy cell death pathways which are mediated by the p38 MAP kinase. This study provides evidence that AJ-5 is potentially an effective compound in the treatment of breast cancer.
Collapse
|
26
|
Polyamines metabolism and breast cancer: state of the art and perspectives. Breast Cancer Res Treat 2014; 148:233-48. [PMID: 25292420 DOI: 10.1007/s10549-014-3156-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
Breast cancer (BC) is a common disease that generally occurs in women over the age of 50, and the risk is especially high for women over 60 years of age. One of the major BC therapeutic problems is that tumors initially responsive to chemotherapeutic approaches can progress to more aggressive forms poorly responsive to therapies. Polyamines (PAs) are small polycationic alkylamines, naturally occurring and essential for normal cell growth and development in eukaryotes. The intracellular concentration of PA is maintained within strongly controlled contents, while a dysregulation occurs in BC cells. Polyamines facilitate the interactions of transcription factors, such as estrogen receptors with their specific response element, and are involved in the proliferation of ER-negative and highly invasive BC tumor cells. Since PA metabolism has a critical role in cell death and proliferation, it represents a potential target for intervention in BC. The goal of this study was to perform a literature search reviewing the association between PA metabolism and BC, and the current evidence supporting the BC treatment targeting PA metabolism. We here describe in vitro and in vivo models, as well as the clinical trials that have been utilized to unveil the relationship between PA metabolism and BC. Polyamine pathway is still an important target for the development of BC chemotherapy via enzyme inhibitors. Furthermore, a recent promising strategy in breast anticancer therapy is to exploit the self-regulatory nature of PA metabolism using PA analogs to affect PA homeostasis. Nowadays, antineoplastic compounds targeting the PA pathway with novel mechanisms are of great interest and high social impact for BC chemotherapy.
Collapse
|