1
|
Filisola-Villaseñor JG, Arroyo-Sánchez BI, Navarro-González LJ, Morales-Ríos E, Olin-Sandoval V. Ornithine decarboxylase and its role in cancer. Arch Biochem Biophys 2025; 765:110321. [PMID: 39870288 DOI: 10.1016/j.abb.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Cancer is among the leading causes of death worldwide. The effectiveness of conventional chemotherapy has some drawbacks, therefore, there is an urgency to develop novel strategies to fight this disease. Ornithine decarboxylase (ODC) is the most finely tuned enzyme of the polyamine (PA) biosynthesis pathway as it is regulated at different levels: transcriptional, translational, post-translational, and by feedback inhibition. In cancer, this enzyme is overexpressed due to its regulation by the protooncogene c-Myc, thus it has been proposed as a drug target against this disease. This review describes information regarding the biochemistry and regulation of the ODC at different levels and its role in cancer. Moreover, we discuss the molecules aiming on the inhibition of the ODC activity that have been tested as therapeutic options. ODC remains as a therapeutic opportunity that needs to be more explored.
Collapse
Affiliation(s)
| | - Beatriz Irene Arroyo-Sánchez
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Janiel Navarro-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Edgar Morales-Ríos
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Viridiana Olin-Sandoval
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
2
|
Ivanova ON, Gavlina AV, Karpenko IL, Zenov MA, Antseva SS, Zakirova NF, Valuev-Elliston VT, Krasnov GS, Fedyakina IT, Vorobyev PO, Bartosch B, Kochetkov SN, Lipatova AV, Yanvarev DV, Ivanov AV. Polyamine Catabolism Revisited: Acetylpolyamine Oxidase Plays a Minor Role due to Low Expression. Cells 2024; 13:1134. [PMID: 38994986 PMCID: PMC11240330 DOI: 10.3390/cells13131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.
Collapse
Affiliation(s)
- Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Anna V. Gavlina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Martin A. Zenov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Svetlana S. Antseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Russia, 132098 Moscow, Russia
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Birke Bartosch
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| |
Collapse
|
3
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
4
|
Kim JH, Lee ST. Polyamine Oxidase Expression Is Downregulated by 17β-Estradiol via Estrogen Receptor 2 in Human MCF-7 Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23147521. [PMID: 35886868 PMCID: PMC9317983 DOI: 10.3390/ijms23147521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023] Open
Abstract
Polyamine levels decrease with menopause; however, little is known about the mechanisms regulated by menopause. In this study, we found that among the genes involved in the polyamine pathway, polyamine oxidase (PAOX) mRNA levels were the most significantly reduced by treatment with 17β-estradiol in estrogen receptor (ESR)-positive MCF-7 breast cancer cells. Treatment with 17β-estradiol also reduced the PAOX protein levels. Treatment with selective ESR antagonists and knockdown of ESR members revealed that estrogen receptor 2 (ESR2; also known as ERβ) was responsible for the repression of PAOX by 17β-estradiol. A luciferase reporter assay showed that 17β-estradiol downregulates PAOX promoter activity and that 17β-estradiol-dependent PAOX repression disappeared after deletions (−3126/−2730 and −1271/−1099 regions) or mutations of activator protein 1 (AP-1) binding sites in the PAOX promoter. Chromatin immunoprecipitation analysis showed that ESR2 interacts with AP-1 bound to each of the two AP-1 binding sites. These results demonstrate that 17β-estradiol represses PAOX transcription by the interaction of ESR2 with AP-1 bound to the PAOX promoter. This suggests that estrogen deficiency may upregulate PAOX expression and decrease polyamine levels.
Collapse
|
5
|
Hwang WY, Park WH, Suh DH, Kim K, Kim YB, No JH. Difluoromethylornithine Induces Apoptosis through Regulation of AP-1 Signaling via JNK Phosphorylation in Epithelial Ovarian Cancer. Int J Mol Sci 2021; 22:ijms221910255. [PMID: 34638596 PMCID: PMC8508876 DOI: 10.3390/ijms221910255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022] Open
Abstract
Difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), has promising activity against various cancers and a tolerable safety profile for long-term use as a chemopreventive agent. However, the anti-tumor effects of DFMO in ovarian cancer cells have not been entirely understood. Our study aimed to identify the effects and mechanism of DFMO in epithelial ovarian cancer cells using SKOV-3 cells. Treatment with DFMO resulted in a significantly reduced cell viability in a time- and dose-dependent manner. DFMO treatment inhibited the activity and downregulated the expression of ODC in ovarian cancer cells. The reduction in cell viability was reversed using polyamines, suggesting that polyamine depletion plays an important role in the anti-tumor activity of DFMO. Additionally, significant changes in Bcl-2, Bcl-xL, Bax protein levels, activation of caspase-3, and cleavage of poly (ADP-ribose) polymerase were observed, indicating the apoptotic effects of DFMO. We also found that the effect of DFMO was mediated by AP-1 through the activation of upstream JNK via phosphorylation. Moreover, DFMO enhanced the effect of cisplatin, thus showing a possibility of a synergistic effect in treatment. In conclusion, treatment with DFMO alone, or in combination with cisplatin, could be a promising treatment for ovarian cancer.
Collapse
Affiliation(s)
- Woo Yeon Hwang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Wook Ha Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea; (W.Y.H.); (W.H.P.); (D.H.S.); (K.K.); (Y.B.K.)
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-31-787-7253
| |
Collapse
|
6
|
Novita Sari I, Setiawan T, Seock Kim K, Toni Wijaya Y, Won Cho K, Young Kwon H. Metabolism and function of polyamines in cancer progression. Cancer Lett 2021; 519:91-104. [PMID: 34186159 DOI: 10.1016/j.canlet.2021.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Polyamines are essential for the proliferation, differentiation, and development of eukaryotes. They include spermine, spermidine, and the diamine precursor putrescine, and are low-molecular-weight, organic polycations with more than two amino groups. Their intracellular concentrations are strictly maintained within a specific physiological range through several regulatory mechanisms in normal cells. In contrast, polyamine metabolism is dysregulated in many neoplastic states, including cancer. In various types of cancer, polyamine levels are elevated, and crosstalk occurs between polyamine metabolism and oncogenic pathways, such as mTOR and RAS pathways. Thus, polyamines might have potential as therapeutic targets in the prevention and treatment of cancer. The molecular mechanisms linking polyamine metabolism to carcinogenesis must be unraveled to develop novel inhibitors of polyamine metabolism. This overview describes the nature of polyamines, their association with carcinogenesis, the development of polyamine inhibitors and their potential, and the findings of clinical trials.
Collapse
Affiliation(s)
- Ita Novita Sari
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| |
Collapse
|
7
|
Dumouchel JL, Kramlinger VM. Case Study 10: A Case to Investigate Acetyl Transferase Kinetics. Methods Mol Biol 2021; 2342:781-808. [PMID: 34272717 DOI: 10.1007/978-1-0716-1554-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Major routes of metabolism for marketed drugs are predominately driven by enzyme families such as cytochromes P450 and UDP-glucuronosyltransferases. Less studied conjugative enzymes, like N-acetyltransferases (NATs), are commonly associated with detoxification pathways. However, in the clinic, the high occurrence of NAT polymorphism that leads to slow and fast acetylator phenotypes in patient populations has been linked to toxicity for a multitude of drugs. A key example of this is the observed clinical toxicity in patients who exhibit the slow acetylator phenotype and were treated with isoniazid. Toxicity in patients has led to detailed characterization of the two NAT isoforms and their polymorphic genotypes. Investigation in recombinant enzymes, genotyped hepatocytes, and in vivo transgenic models coupled with acetylator status-driven clinical studies have helped understand the role of NATs in drug development, clinical study design and outcomes, and potential roles in human disease models. The selected case studies herein document NAT enzyme kinetics to explore substrate overlap from two human isoforms, preclinical species considerations, and clinical genotype population concerns.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Molecular Pharmacology and Physiology Graduate Training Program, Brown University, Providence, RI, USA.
| | - Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| |
Collapse
|
8
|
Cellular and Animal Model Studies on the Growth Inhibitory Effects of Polyamine Analogues on Breast Cancer. Med Sci (Basel) 2018. [PMID: 29533973 PMCID: PMC5872181 DOI: 10.3390/medsci6010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Collapse
|
9
|
Wang C, Ruan P, Zhao Y, Li X, Wang J, Wu X, Liu T, Wang S, Hou J, Li W, Li Q, Li J, Dai F, Fang D, Wang C, Xie S. Spermidine/spermine N1-acetyltransferase regulates cell growth and metastasis via AKT/β-catenin signaling pathways in hepatocellular and colorectal carcinoma cells. Oncotarget 2018; 8:1092-1109. [PMID: 27901475 PMCID: PMC5352037 DOI: 10.18632/oncotarget.13582] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/12/2016] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and colorectal cancer (CRC) are among the most common cancers across the world. Therefore, identifying the potential molecular mechanisms that promote HCC and CRC progression and metastasis are urgently needed. Spermidine/spermine N1-acetyltransferase (SSAT) is a catabolic enzyme that acetylates the high-order polyamines spermine and spermidine, thus decreasing the cellular content of polyamines. Several publications have suggested that depletion of intracellular polyamines inhibited tumor progression and metastasis in various cancer cells. However, whether and how SSAT regulates cell growth, migration and invasion in hepatocellular and colorectal carcinoma cells remains unclear. In this study, depletion of polyamines mediated by SSAT not only attenuated the tumor cell proliferation but also dramatically inhibited cell migration and invasion in hepatocellular and colorectal carcinoma cells. Subsequent investigations revealed introduction of SSAT into HepG2, SMMC7721 hepatocellular carcinoma cells and HCT116 colorectal carcinoma cells significantly suppressed p-AKT, p-GSK3β expression as well as β-catenin nuclear translocation, while inhibition of GSK3β activity or exogenous polyamines could restore SSAT-induced decreases in the protein expression of p-AKT, p-GSK3β and β-catenin. Conversely, knockdown of SSAT in Bel7402 hepatocellular carcinoma cells and HT-29 colorectal carcinoma cells which expressed high levels of SSAT endogenously significantly promoted the expression of p-AKT, p-GSK3β as well as β-catenin nuclear translocation. Taken together, our results indicated depletion of polyamines by SSAT significantly inhibited cell proliferation, migration and invasion through AKT/GSK3β/β-catenin signaling pathway in hepatocellular carcinoma and colorectal cancer cells.
Collapse
Affiliation(s)
- Cong Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ping Ruan
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Ying Zhao
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaomin Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jun Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Xiaoxiao Wu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Tong Liu
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Shasha Wang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Jiuzhou Hou
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Wei Li
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Qian Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Jinghua Li
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Fujun Dai
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Dong Fang
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Songqiang Xie
- Institute of Chemical Biology, College of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
An R, Dong P, Komiyama M, Pan X, Liang X. Inhibition of nonenzymatic depurination of nucleic acids by polycations. FEBS Open Bio 2017; 7:1707-1714. [PMID: 29123979 PMCID: PMC5666391 DOI: 10.1002/2211-5463.12308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/08/2017] [Accepted: 08/24/2017] [Indexed: 11/11/2022] Open
Abstract
DNA base depurination is one of the most common forms of DNA damage in vivo and in vitro, and the suppression of depurination is very important for versatile applications of DNA in biotechnology and medicine. In this work, it was shown that the polycations chitosan (Cho) and spermine (Spm) strongly inhibit DNA depurination through the formation of polyion complexes with DNA molecules. The intramolecular electrostatic interaction of positively charged polycations with DNA efficiently suppresses the protonation of purine groups, which is the key step of depurination. Importantly, the optimal pH for Cho's inhibition of depurination is significantly different from that of Spm. Cho is very effective in the inhibition of depurination in highly acidic media (pH: 1.5–3), whereas Spm is found to suppress the chemical reaction near neutral pH, as well as in acidic solutions. This remarkable pH specificity of the two biorelevant polycations is attributed to the difference in the pKa values of the amino groups. The relevance of our results with the biological roles of biogenic polycations is also discussed.
Collapse
Affiliation(s)
- Ran An
- College of Food Science and Engineering Ocean University of China Qingdao China.,Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology China
| | - Ping Dong
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Makoto Komiyama
- College of Food Science and Engineering Ocean University of China Qingdao China.,National Institute for Materials Science (NIMS) Tsukuba Japan
| | - Xiaoming Pan
- College of Food Science and Engineering Ocean University of China Qingdao China
| | - Xingguo Liang
- College of Food Science and Engineering Ocean University of China Qingdao China.,Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology China
| |
Collapse
|
11
|
Chanphai P, Bekale L, Sanyakamdhorn S, Agudelo D, Bérubé G, Thomas T, Tajmir-Riahi H. PAMAM dendrimers in drug delivery: loading efficacy and polymer morphology. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The binding efficacy of anticancer drugs doxorubicin and tamoxifen with polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at physiological pH. The results of multiple spectroscopic methods, transmission electron microscopy (TEM), and molecular modeling of conjugated drug–polymer were examined. Structural analysis showed that drug–polymer conjugation occurs mainly via H-bonding and hydrophilic and hydrophobic contacts. Doxorubicin forms a more stable conjugate with PAMAM-G4 than tamoxifen. The drug loading efficacy was 40%–50%. The TEM images showed major changes in the PAMAM morphology upon drug encapsulation. Modeling showed that drug is located in the polymer surface and in the internal cavities. PAMAM nanoparticles are capable of transporting doxorubicin and tamoxifen in vitro. This minireview presents the most recent work performed with the dendrimers demonstrating their usefulness for drug delivery in cancer therapy.
Collapse
Affiliation(s)
- P. Chanphai
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - L. Bekale
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - S. Sanyakamdhorn
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - D. Agudelo
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - G. Bérubé
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - T.J. Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - H.A. Tajmir-Riahi
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, C. P. 500, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
12
|
Kang B, Jiang D, Ma R, He H, Yi Z, Chen Z. OAZ1 knockdown enhances viability and inhibits ER and LHR transcriptions of granulosa cells in geese. PLoS One 2017; 12:e0175016. [PMID: 28362829 PMCID: PMC5376318 DOI: 10.1371/journal.pone.0175016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies suggest that ornithine decarboxylase antizyme 1 (OAZ1), which is regarded as a tumor suppressor gene, regulates follicular development, ovulation, and steroidogenesis. The granulosa cells in the ovary play a critical role in these ovarian functions. However, the action of OAZ1 mediating physiological functions of granulosa cells is obscure. OAZ1 knockdown in granulosa cells of geese was carried out in the current study. The effect of OAZ1 knockdown on polyamine metabolism, cell proliferation, apoptosis, and hormone receptor transcription of primary granulosa cells in geese was measured. The viability of granulosa cells transfected with the shRNA OAZ1 at 48 h was significantly higher than the control (p<0.05). The level of putrescine and spermidine in granulosa cells down-regulating OAZ1 was 7.04- and 2.11- fold higher compared with the control, respectively (p<0.05). The CCND1, SMAD1, and BCL-2 mRNA expression levels in granulosa cells down-regulating OAZ1 were each significantly higher than the control, respectively (p<0.05), whereas the PCNA and CASPASE 3 expression levels were significantly lower than the control (p<0.05). The estradiol concentration, ER and LHR mRNA expression levels were significantly lower in granulosa cells down-regulating OAZ1 compared with the control (p<0.05). Taken together, our results indicated that OAZ1 knockdown elevated the putrescine and spermidine contents and enhanced granulosa cell viability and inhibited ER and LHR transcriptions of granulosa cells in geese.
Collapse
Affiliation(s)
- Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (BK); (DMJ)
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
- * E-mail: (BK); (DMJ)
| | - Rong Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Hui He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Zhixin Yi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ziyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
13
|
|