1
|
Dai Y, Sang XB, Bai WP. N-acetylcysteine and Hydroxychloroquine Ameliorate ADMA-Induced Fetal Growth Restriction in Mice via Regulating Oxidative Stress and Autophagy. Reprod Sci 2024; 31:779-790. [PMID: 37845590 DOI: 10.1007/s43032-023-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Fetal growth restriction (FGR) seriously threatens perinatal health. The main cause of FGR is placental malperfusion, but the specific mechanism is still unclear, and there is no effective treatment for FGR. We constructed a FGR mouse model by adding exogenous asymmetric dimethylarginine (ADMA) through in vivo experiments and found that ADMA could cause placental dysplasia and induce the occurrence of FGR. Compared with the control group, reactive oxygen species (ROS) production in the placenta was increased in mice with FGR, and the expression of autophagy-related proteins p-AKT/AKT, p-mTOR/mTOR, and P62 was significantly decreased, while the expression of Beclin-1 and LC3-II was significantly increased in the FGR group. Furthermore, ADMA had a favorable effect in promoting the formation of autophagosomes. Hydroxychloroquine (HCQ) and N-acetylcysteine (NAC) improved ADMA-induced disorders of placental development and alleviated ADMA-induced FGR. This study found that ADMA could cause excessive autophagy of trophoblasts by increasing the level of oxidative stress, ultimately leading to the occurrence of FGR, and HCQ and NAC had therapeutic effects on ADMA-induced FGR.
Collapse
Affiliation(s)
- Yan Dai
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiu-Bo Sang
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wen-Pei Bai
- The Department of Gynecology and Obstetrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Tain YL, Hsu CN. Melatonin Use during Pregnancy and Lactation Complicated by Oxidative Stress: Focus on Offspring's Cardiovascular-Kidney-Metabolic Health in Animal Models. Antioxidants (Basel) 2024; 13:226. [PMID: 38397824 PMCID: PMC10886428 DOI: 10.3390/antiox13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome has emerged as a major global public health concern, posing a substantial threat to human health. Early-life exposure to oxidative stress may heighten vulnerability to the developmental programming of adult diseases, encompassing various aspects of CKM syndrome. Conversely, the initiation of adverse programming processes can potentially be thwarted through early-life antioxidant interventions. Melatonin, originally recognized for its antioxidant properties, is an endogenous hormone with diverse biological functions. While melatonin has demonstrated benefits in addressing disorders linked to oxidative stress, there has been comparatively less focus on investigating its reprogramming effects on CKM syndrome. This review consolidates the current knowledge on the role of oxidative stress during pregnancy and lactation in inducing CKM traits in offspring, emphasizing the underlying mechanisms. The multifaceted role of melatonin in regulating oxidative stress, mediating fetal programming, and preventing adverse outcomes in offspring positions it as a promising reprogramming strategy. Currently, there is a lack of sufficient information in humans, and the available evidence primarily originates from animal studies. This opens up new avenues for novel preventive intervention in CKM syndrome.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Helland A, Bratlie M, Hagen IV, Midttun Ø, Ulvik A, Mellgren G, Ueland PM, Gudbrandsen OA. Consumption of a light meal affects serum concentrations of one-carbon metabolites and B-vitamins. A clinical intervention study. Br J Nutr 2022; 129:1-10. [PMID: 35899805 PMCID: PMC10024976 DOI: 10.1017/s0007114522002446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
The transfer of one-carbon units between molecules in metabolic pathways is essential for maintaining cellular homeostasis, but little is known about whether the circulating concentrations of metabolites involved in the one-carbon metabolism are affected by the prandial status. Epidemiological studies do not always consistently use fasting or non-fasting blood samples or may lack information on the prandial status of the study participants. Therefore, the main aim of the present study was to investigate the effects of a light breakfast on serum concentrations of selected metabolites and B-vitamins related to the one-carbon metabolism; i.e. the methionine-homocysteine cycle, the folate cycle, the choline oxidation pathway and the transsulfuration pathway. Sixty-three healthy adults (thirty-six women) with BMI ≥ 27 kg/m2 were included in the study. Blood was collected in the fasting state and 60 and 120 min after intake of a standardised breakfast consisting of white bread, margarine, white cheese, strawberry jam and orange juice (2218 kJ). The meal contained low amounts of choline, betaine, serine and vitamins B2, B3, B6, B9 and B12. Serum concentrations of total homocysteine, total cysteine, flavin mononucleotide, nicotinamide and pyridoxal 5'-phosphate were significantly decreased, and concentrations of choline, betaine, dimethylglycine, sarcosine, cystathionine and folate were significantly increased following breakfast intake (P < 0·05). Our findings demonstrate that the intake of a light breakfast with low nutrient content affected serum concentrations of several metabolites and B-vitamins related to the one-carbon metabolism.
Collapse
Affiliation(s)
- Anita Helland
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| | - Marianne Bratlie
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| | - Ingrid V. Hagen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| | | | - Arve Ulvik
- Bevital AS, Jonas Lies Veg 87, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - Oddrun A. Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, Bergen, 5021, Norway
| |
Collapse
|
4
|
Gyselaers W, Lees C. Maternal Low Volume Circulation Relates to Normotensive and Preeclamptic Fetal Growth Restriction. Front Med (Lausanne) 2022; 9:902634. [PMID: 35755049 PMCID: PMC9218216 DOI: 10.3389/fmed.2022.902634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
This narrative review summarizes current evidence on the association between maternal low volume circulation and poor fetal growth. Though much work has been devoted to the study of cardiac output and peripheral vascular resistance, a low intravascular volume may explain why high vascular resistance causes hypertension in women with preeclampsia (PE) that is associated with fetal growth restriction (FGR) and, at the same time, presents with normotension in FGR itself. Normotensive women with small for gestational age babies show normal gestational blood volume expansion superimposed upon a constitutionally low intravascular volume. Early onset preeclampsia (EPE; occurring before 32 weeks) is commonly associated with FGR, and poor plasma volume expandability may already be present before conception, thus preceding gestational volume expansion. Experimentally induced low plasma volume in rodents predisposes to poor fetal growth and interventions that enhance plasma volume expansion in FGR have shown beneficial effects on intrauterine fetal condition, prolongation of gestation and birth weight. This review makes the case for elevating the maternal intravascular volume with physical exercise with or without Nitric Oxide Donors in FGR and EPE, and evaluating its role as a potential target for prevention and/or management of these conditions.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics, Ziekenhuis Oost Limburg, Genk, Belgium.,Department of Physiology, Hasselt University, Hasselt, Belgium
| | - Christoph Lees
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.,Department of Metabolism, Digestion and Reproduction, Institute for Reproductive and Developmental Biology, Imperial College London, London, United Kingdom.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, London, United Kingdom
| |
Collapse
|
5
|
Xu L, Zeng J, Wang H, Liu H. Comparison of Diagnostic Values of Maternal Arginine Concentration for Different Pregnancy Complications: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:166. [PMID: 35052844 PMCID: PMC8773782 DOI: 10.3390/biomedicines10010166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormal arginine metabolism contributes to the development of intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM), which increase the health burden of mothers and induce adverse birth outcomes. However, associations between maternal arginine concentration and different pregnancy complications have not been systematically compared. The PubMed, ScienceDirect, and Web of Science databases were searched for peer-reviewed publications to evaluate the diagnostic value of plasma arginine concentration in complicated pregnancies. Standardized mean difference (SMD) of the arginine concentration was pooled by a random effects model. The results show that increased maternal arginine concentrations were observed in IUGR (SMD: 0.48; 95% CI: 0.20, 0.76; I2 = 47.0%) and GDM (SMD: 0.46; 95% CI: 0.11, 0.81; I2 = 82.3%) cases but not in PE patients (SMD: 0.21; 95% CI: -0.04, 0.47; I2 = 80.3%) compared with the normal cohorts. Subgroup analyses indicated that the non-fasting circulating arginine concentration in third trimester was increased significantly in GDM and severe IUGR pregnancies, but the change mode was dependent on ethnicity. Additionally, only severe PE persons were accompanied by higher plasma arginine concentrations. These findings suggest that maternal arginine concentration is an important reference for assessing the development of pregnancy complications.
Collapse
Affiliation(s)
| | | | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (J.Z.)
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.X.); (J.Z.)
| |
Collapse
|
6
|
Ozcelik HS, Arslan D, Deniz CD, Gunenc O, Vatansev H, Uysal C. Evaluation of Plasma Asymmetric Dimethylarginine Levels and Abdominal Aortic Intima-Media Thickness in Infants of Smoker Mothers. Am J Perinatol 2021; 38:1494-1499. [PMID: 32683669 DOI: 10.1055/s-0040-1713816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Smoking during pregnancy has harmful effects on the fetus and infant. Although some studies suggest that exposure to fetal-maternal smoking adversely affects both fetal growth and cardiovascular development, the mechanisms and biochemical consequences of smoking in pregnancy and newborns are not yet fully understood. We aimed to investigate whether maternal smoking during pregnancy causes fetal cardiovascular effect by measuring serum asymmetric dimethylarginine (ADMA) level and abdominal aortic intima-media thickness (aIMT). STUDY DESIGN This prospective study was conducted in newborns of smoking mothers and never-smoker control mothers during their pregnancies. The babies were evaluated echocardiographically on the first day following birth. In two-dimensional mode, abdominal aIMT measurements were performed. ADMA was measured in umbilical cord blood at birth. RESULTS There were 25 mothers in the study group and 25 mothers in the control group. Serum ADMA levels were 0.459 ± 0.119 μmol/L in the study group and 0.374 ± 0.1127 μmol/L in the control group (p = 0.034). The aIMT value in the study group was 0.84 ± 0.026 mm and the aIMT value in the control group was 0.63 ± 0.011 mm (p = 0.005). CONCLUSION We found that both the serum ADMA and the aIMT significantly increased in the group with newborns of smoker mothers compared with the group of the newborns of never-smoker mothers. It may also be suggested that exposure to fetal-maternal smoking adversely affects cardiovascular development. KEY POINTS · It is a known fact that smoking during pregnancy has harmful effects on the development of the fetus and infant.. · We found that both the serum ADMA and aIMT were significantly higher in the group of infants of smoker mothers..
Collapse
Affiliation(s)
- Huseyin Samet Ozcelik
- Department of Pediatrics, Dr. Ali Kemal Belviranli Obstetrics and Gynecology Hospital, Konya, Turkey
| | - Derya Arslan
- Department of Pediatric Cardiology, University of Health Sciences Turkey, Konya Training and Research Hospital, Konya, Turkey
| | - Cigdem Damla Deniz
- Department of Biochemistry, Konya Training and Research Hospital, Konya, Turkey
| | - Oguzhan Gunenc
- Department of Obstetrics, University of Health Sciences Turkey, Konya Training and Research Hospital, Konya, Turkey
| | - Husamettin Vatansev
- Department of Biochemistry, Selcuk University Medical Faculty, Konya, Turkey
| | - Celil Uysal
- Department of Pediatrics, Patnos State Hospital, Agri, Turkey
| |
Collapse
|
7
|
OZTAN O, ŞİMŞİR C, TUTKUN L, HOCAOGLU A, DENİZ S, TÜRKSOY VA, ALAGÜNEY ME. Investigation of the relationship between placenta trace element levels and methylated arginines. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2021. [DOI: 10.32322/jhsm.962489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Begou O, Pavlaki A, Deda O, Bollenbach A, Drabert K, Gika H, Farmaki E, Dotis J, Printza N, Theodoridis G, Tsikas D. Diminished Systemic Amino Acids Metabolome and Lipid Peroxidation in Ureteropelvic Junction Obstruction (UPJO) Infants Requiring Surgery. J Clin Med 2021; 10:jcm10071467. [PMID: 33918213 PMCID: PMC8038180 DOI: 10.3390/jcm10071467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Congenital anomalies of the urinary tract, and particularly of obstructive nephropathy such as ureteropelvic junction obstruction (UPJO) in infants, can later lead to chronic kidney disease and hypertension. Fundamental questions regarding underlying mechanisms remain unanswered. The aim of the present study was to quantitate the systemic amino acids metabolome in 21 UPJO infants requiring surgery (Group A) and 21 UPJO infants under conservative treatment (Group B). Nineteen healthy age-matched infants served as controls (Group C). Serum amino acids involved in several pathways and representative metabolites, including the L-arginine-derived nitric oxide (NO) metabolites nitrite and nitrate and the lipid peroxidation biomarker malondialdehyde (MDA) were measured by gas chromatography–mass spectrometry (GC–MS) methods using their stable-isotope labeled analogs as internal standards after derivatization to their methyl esters N-pentafluoropropionic amides (amino acids) and to their pentafluorobenzyl derivatives (nitrite, nitrate, MDA). The concentrations of the majority of the biomarkers were found to be lower in Group A compared to Group B. Statistical analysis revealed clear differentiation between the examined study groups. Univariate statistical analysis highlighted serum homoarginine (q = 0.006), asymmetric dimethylarginine (q = 0.05) and malondialdehyde (q = 0.022) as potential biomarkers for UPJO infants requiring surgery. Group A also differed from Group B with respect to the diameter of the preoperative anterior–posterior renal pelvis (AP) as well as regarding the number and extent of inverse correlations between AP and the serum concentrations of the biomarkers. In Group A, but not in Group B, the AP diameter strongly correlated with hydroxy-proline (r = −0.746, p = 0.0002) and MDA (r = −0.754, p = 0.002). Our results indicate a diminished amino acids metabolome in the serum of UPJO infants requiring surgery comparing to a conservative group.
Collapse
Affiliation(s)
- Olga Begou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (O.D.); (H.G.)
- Core Unit Proteomics, Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (A.B.); (K.D.); (D.T.)
- Correspondence: ; Tel.: +30-2310-990596
| | - Antigoni Pavlaki
- Paediatric Nephrology Unit, First Department of Paediatrics, Hippokratio Hospital, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.P.); (J.D.); (N.P.)
| | - Olga Deda
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (O.D.); (H.G.)
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Alexander Bollenbach
- Core Unit Proteomics, Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (A.B.); (K.D.); (D.T.)
| | - Kathrin Drabert
- Core Unit Proteomics, Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (A.B.); (K.D.); (D.T.)
| | - Helen Gika
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (O.D.); (H.G.)
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelia Farmaki
- Paediatric Immunology and Rheumatology Referral Center, First Department of Paediatrics, Hippokratio Hospital, University Campus, 54124 Thessaloniki, Greece;
| | - John Dotis
- Paediatric Nephrology Unit, First Department of Paediatrics, Hippokratio Hospital, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.P.); (J.D.); (N.P.)
| | - Nikoleta Printza
- Paediatric Nephrology Unit, First Department of Paediatrics, Hippokratio Hospital, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; (A.P.); (J.D.); (N.P.)
| | - Georgios Theodoridis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
- Biomic_AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, B1.4, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001 Thessaloniki, Greece; (O.D.); (H.G.)
| | - Dimitrios Tsikas
- Core Unit Proteomics, Hannover Medical School, Institute of Toxicology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; (A.B.); (K.D.); (D.T.)
| |
Collapse
|
9
|
Dai Y, Li TH, He X, Yan SB, Gao Y, Chen Y. The Effect and Mechanism of Asymmetric Dimethylarginine Regulating Trophoblastic Autophagy on Fetal Growth Restriction. Reprod Sci 2021; 28:2012-2022. [PMID: 33428125 DOI: 10.1007/s43032-020-00442-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
Fetal growth restriction (FGR) is an important cause of perinatal death and adverse pregnancy outcomes. Asymmetric dimethylarginine (ADMA) is associated with FGR, but the mechanisms have not been thoroughly studied. Here, we determined the levels of ADMA and autophagy-related molecules in human blood samples and placental tissues. And we also used the human chorionic carcinoma cell line BeWo to investigate the mechanism of ADMA-induced FGR in vitro. Compared with the control group, ADMA levels in maternal blood and placenta were increased in patients with FGR, and the birth weight (BW) percentile was negatively correlated with maternal serum ADMA concentration in the FGR group. The expression of mammalian target of rapamycin (mTOR) in the placenta of the FGR group was lower than the control group, while the expression of Beclin-1 and microtubule-associated protein 1 light chain 3-II (LC3-II)/LC3-I was significantly increased in the FGR group. And the expression of matrix metalloproteinase 9 (MMP9) was decreased in the placenta of patients with FGR. In in vitro cell experiments, compared with the control group, the expression of mTOR and MMP9 in BeWo cells was decreased and the expression of Beclin-1 and LC3-II/LC3-I was increased in the ADMA-treated group. Moreover, ADMA had favorable effects on the formation of autophagic vacuoles, and the autophagy inhibitor 3-Methyladenine (3-MA) could reduce the autophagy-induction effect of ADMA on BeWo cells. This study found that ADMA could participate in the occurrence of FGR through inducing autophagy in trophoblasts.
Collapse
Affiliation(s)
- Yan Dai
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Tian-He Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Xin He
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Song-Biao Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Yan Gao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| |
Collapse
|
10
|
Hsu CN, Tain YL. Developmental Origins of Kidney Disease: Why Oxidative Stress Matters? Antioxidants (Basel) 2020; 10:E33. [PMID: 33396856 PMCID: PMC7823649 DOI: 10.3390/antiox10010033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
The "developmental origins of health and disease" theory indicates that many adult-onset diseases can originate in the earliest stages of life. The developing kidney has emerged as being particularly vulnerable to adverse in utero conditions leading to morphological and functional changes, namely renal programming. Emerging evidence indicates oxidative stress, an imbalance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant systems, plays a pathogenetic role in the developmental programming of kidney disease. Conversely, perinatal use of antioxidants has been implemented to reverse programming processes and prevent adult-onset diseases. We have termed this reprogramming. The focus of this review is twofold: (1) To summarize the current knowledge on oxidative stress implicated in renal programming and kidney disease of developmental origins; and (2) to provide an overview of reprogramming effects of perinatal antioxidant therapy on renal programming and how this may prevent adult-onset kidney disease. Although early-life oxidative stress is implicated in mediating renal programming and adverse offspring renal outcomes, and animal models provide promising results to allow perinatal antioxidants applied as potential reprogramming interventions, it is still awaiting clinical translation. This presents exciting new challenges and areas for future research.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
11
|
Ramiro-Cortijo D, de la Calle M, Böger R, Hannemann J, Lüneburg N, López-Giménez MR, Rodríguez-Rodríguez P, Martín-Cabrejas MÁ, Benítez V, de Pablo ÁLL, González MDC, Arribas SM. Male fetal sex is associated with low maternal plasma anti-inflammatory cytokine profile in the first trimester of healthy pregnancies. Cytokine 2020; 136:155290. [PMID: 32956948 DOI: 10.1016/j.cyto.2020.155290] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Male fetal sex associates with higher rates of materno-fetal complications. Inflammation and inadequate vasoactive responses are mechanisms implicated in obstetric complications, and alterations in maternal plasma cytokine profile and nitric oxide (NO) metabolites are potential predictive biomarkers. We aimed to assess if these parameters are influenced by fetal sex. A prospective, observational study was carried out in 85 healthy pregnant women with singleton pregnancies in the first trimester of gestation. A blood sample was extracted at the tenth week of gestation. In plasma, we assessed: 1) cytokines (micro-array): pro-inflammatory (IL1α, IL1 β, IL6, TNFα), anti-inflammatory (IL4, IL10, IL13), and chemoattractant (IL8, MCP1, IFNγ), and 2) NO metabolites (liquid chromatography-tandem mass spectrometry and Griess reaction): L-arginine, ADMA, SDMA, nitrates (NOx). Women with a male fetus (n = 50) exhibited, compared with those with a female (n = 35): higher IL1β (OR = 1.09 with 95% CI: 0.97-1.28), and lower IL13 (OR = 0.93 with 95% CI: 0.87-0.99), and higher plasma NOx (OR = 1.14 with 95% CI: 1.03-1.31). Our data suggest that fetal sex influences maternal plasma cytokine profile and NO in early pregnancy. Women with a male fetus may have a worse capacity to counteract an inflammatory response. They may have better vasodilator capacity, but in the presence of an oxidative environment, a higher nitrosative damage may occur. These data reinforce the need to include sex as variable in predictive models.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María de la Calle
- Obstetrics and Gynecology Service, La Paz University Hospital, Madrid, Spain
| | - Rainer Böger
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hannemann
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Lüneburg
- Hospital Pharmacy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - María Rosario López-Giménez
- Department of Preventive Medicine, Public Health & Microbiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Vanesa Benítez
- Institute of Food Science Research (CIAL) & Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Silvia M Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Dai Y, Zhang J, Liu R, Xu N, Yan SB, Chen Y, Li TH. The role and mechanism of asymmetric dimethylarginine in fetal growth restriction via interference with endothelial function and angiogenesis. J Assist Reprod Genet 2020; 37:1083-1095. [PMID: 32215825 DOI: 10.1007/s10815-020-01750-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/16/2020] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Fetal growth restriction (FGR) is a high-risk pregnancy, and placental dysfunction is the main cause of FGR. The upregulation of asymmetric dimethylarginine (ADMA) is linked to FGR pathology, but the mechanism needs to be investigated. METHODS The levels of ADMA and other related molecules were measured in human biological samples. We further used human umbilical vein endothelial cells (HUVECs) to reveal the mechanism of ADMA-induced FGR in vitro. RESULTS Compared with the control group, FGR patients had higher placental resistance, and ADMA levels were increased in the maternal blood, cord blood, and placenta; additionally, nitric oxide (NO) production decreased, accompanied by a decreased expression of endogenous NO synthase (eNOS). The expression of vascular growth factor (VEGF) and placental growth factor (PLGF) in the maternal blood during the third trimester and umbilical cord of the FGR group was lower than the control group. The PLGF levels in the placentas of the FGR group were also reduced, while the expression of soluble fms-like tyrosine kinase-1 (sFlt-1) increased. In in vitro cell experiments, NO production was obviously lower when the cells were exposed to 100 μM of ADMA, with no difference in eNOS expression. There was a dose-dependent decrease in PLGF expression with increasing doses of ADMA, and the levels of sFlt-1 increased. Moreover, we confirmed that tube formation in HUVECs was lower after ADMA treatment compared with the control group. CONCLUSION The accumulation of ADMA during pregnancy has an adverse effect on fetal development via interference with placental endothelial function and angiogenesis.
Collapse
Affiliation(s)
- Yan Dai
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Jun Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Rong Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Na Xu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Song-Biao Yan
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| | - Tian-He Li
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, 251# Yao Jia Yuan Road, Chao Yang District, Beijing, 100026, China.
| |
Collapse
|
13
|
Gilley SP, Weaver NE, Sticca EL, Jambal P, Palacios A, Kerns ME, Anand P, Kemp JF, Westcott JE, Figueroa L, Garcés AL, Ali SA, Pasha O, Saleem S, Hambidge KM, Hendricks AE, Krebs NF, Borengasser SJ. Longitudinal Changes of One-Carbon Metabolites and Amino Acid Concentrations during Pregnancy in the Women First Maternal Nutrition Trial. Curr Dev Nutr 2020; 4:nzz132. [PMID: 32175519 PMCID: PMC7064164 DOI: 10.1093/cdn/nzz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas E Weaver
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Evan L Sticca
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Palacios
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mattie E Kerns
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pratibha Anand
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie E Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lester Figueroa
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Ana Lucía Garcés
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Sumera A Ali
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - Omrana Pasha
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sarah Saleem
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - K Michael Hambidge
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey E Hendricks
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Circulating Concentrations of Key Regulators of Nitric Oxide Production in Undernourished Sheep Carrying Single and Multiple Fetuses. Animals (Basel) 2019; 10:ani10010065. [PMID: 31905930 PMCID: PMC7023428 DOI: 10.3390/ani10010065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The present study aimed to determine the blood concentrations of L-arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and L-homoarginine, modulating nitric oxide (NO) synthesis, in single, twin. and triplet pregnancies in ewes undergoing either dietary energy restriction or receiving 100% of their energy requirements. Blood concentrations of L-arginine, of its metabolites. and the ratio between NO synthesis boosters and inhibitors are altered in energy-restricted ewes, these alterations being higher in ewes carrying multiple fetuses. Abstract The aim of this study was to investigate the blood concentrations of L-arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and L-homoarginine, which are regulators of nitric oxide (NO) synthesis, in single, twin, and triplet pregnancies in ewes undergoing either a dietary energy restriction or receiving 100% of their energy requirements. From day 24 to 100 of pregnancy, the ewes were fed ryegrass hay and two different iso-proteic concentrates fulfilling either 100% of ewes’ energy requirements (control group; n = 30, 14 singleton pregnancies, 12 twin pregnancies, and 4 triplet pregnancies) or only 45% (feed-restricted group; n = 29; 11 singleton pregnancies, 15 twin pregnancies, and 3 triplet pregnancies). Blood samples were collected monthly to measure, by capillary electrophoresis, the circulating concentrations of arginine, ADMA, homoarginine, SDMA, and of other amino acids not involved in NO synthesis to rule out possible direct effects of diet restriction on their concentrations. No differences between groups were observed in the circulating concentrations of most of the amino acids investigated. L-homoarginine increased markedly in both groups during pregnancy (p < 0.001). SDMA (p < 0.01), L-arginine, and ADMA concentrations were higher in feed-restricted ewes than in controls. The L-arginine/ADMA ratio, an indicator of NO production by NOS, decreased towards term without differences between groups. The ADMA/SDMA ratio, an index of the ADMA degrading enzyme activity, was higher in controls than in feed-restricted ewes (p < 0.001). Obtained results show that circulating concentrations of L-arginine, of its metabolites, and the ratio between NO synthesis boosters and inhibitors are altered in energy-restricted ewes, and that these alterations are more marked in ewes carrying multiple fetuses.
Collapse
|
15
|
Abraham AJM, Bobby Z, Chaturvedula L, Vinayagam V, Syed H, Jacob SE. Utility of time of onset of hypertension, ADMA and TAS in predicting adverse neonatal outcome in hypertensive disorders of pregnancy. Fetal Pediatr Pathol 2019; 38:460-476. [PMID: 31130051 DOI: 10.1080/15513815.2019.1619205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Limited studies have been conducted to evaluate the utility of indices for the prediction of the adverse neonatal outcomes in hypertensive disorders of pregnancy (HDP).Method: A total of 174 pregnant women with HDP (gestational hypertension, late onset preeclampsia, and early onset preeclampsia) and 49 controls were sampled during the third trimester. Preterm birth, low birth weight, fetal, and infant mortality and low Apgar scores were assessed.Results: Multivariate analysis confirmed systolic blood pressure (SBP), time of onset of hypertension (TOH), and total antioxidant status (TAS) as predictors of preterm births; TOH and diastolic blood pressure (DBP) to be predictors of low birth weight babies; TOH and asymmetric dimethyl arginine (ADMA) as predictors of fetal mortality and babies with low Apgar at 5 min. We found TOH as the single best predictor for adverse neonatal outcomes.Conclusion: This study identified TOH as an important predictor of most of the adverse neonatal outcomes.
Collapse
Affiliation(s)
- Angelin Jeba Malar Abraham
- Department of Biochemistry, JIPMER Academic Centre, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Zachariah Bobby
- Department of Biochemistry, JIPMER Academic Centre, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Latha Chaturvedula
- Department of Obstetrics and Gynecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Vickneshwaran Vinayagam
- Department of Biochemistry, JIPMER Academic Centre, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Habeebullah Syed
- Department of Obstetrics and Gynecology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Sajini Elizabeth Jacob
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
16
|
Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J Clin Med 2019; 8:jcm8101625. [PMID: 31590294 PMCID: PMC6832549 DOI: 10.3390/jcm8101625] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/22/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertensive disorders of pregnancy affect up to 10% of pregnancies worldwide, which includes the 3%–5% of all pregnancies complicated by preeclampsia. Preeclampsia is defined as new onset hypertension after 20 weeks’ gestation with evidence of maternal organ or uteroplacental dysfunction or proteinuria. Despite its prevalence, the risk factors that have been identified lack accuracy in predicting its onset and preventative therapies only moderately reduce a woman’s risk of preeclampsia. Preeclampsia is a major cause of maternal morbidity and is associated with adverse foetal outcomes including intra-uterine growth restriction, preterm birth, placental abruption, foetal distress, and foetal death in utero. At present, national guidelines for foetal surveillance in preeclamptic pregnancies are inconsistent, due to a lack of evidence detailing the most appropriate assessment modalities as well as the timing and frequency at which assessments should be conducted. Current management of the foetus in preeclampsia involves timely delivery and prevention of adverse effects of prematurity with antenatal corticosteroids and/or magnesium sulphate depending on gestation. Alongside the risks to the foetus during pregnancy, there is also growing evidence that preeclampsia has long-term adverse effects on the offspring. In particular, preeclampsia has been associated with cardiovascular sequelae in the offspring including hypertension and altered vascular function.
Collapse
|