1
|
Pham HG, Tran KN, Gomelsky L, Roy T, Gigley JP, Gomelsky M. Robust Inducible Gene Expression in Intracellular Listeria monocytogenes In Vivo. ACS Synth Biol 2025; 14:1397-1404. [PMID: 40277175 DOI: 10.1021/acssynbio.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Attenuated strains of the intracellular pathogen Listeria monocytogenes can deliver genetically encoded payloads inside tumor cells. L. monocytogenes preferentially accumulates and propagates in immune-suppressed tumor microenvironments. To maximize the payload impact in tumors and minimize damage to healthy tissues, it is desirable to induce payload synthesis when bacteria are eliminated from the healthy tissues but are grown to high numbers intratumorally. Here, we have engineered a tightly controlled gene expression system for intracellular L. monocytogenes inducible with a cumin derivative, cumate. Upon cumate addition, expression of a reporter gene is increased in L. monocytogenes growing in vitro by 80-fold and in intracellular L. monocytogenes in murine tumors by 75-fold. This study demonstrates the feasibility of activating gene expression in intracellular bacteria in live animals using an edible inducer. The system is expected to enhance the efficacy and safety of the attenuated L. monocytogenes strains as antitumor payload delivery bacterial drones.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kiet N Tran
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Tathagato Roy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
2
|
Song N, Yang M, Zhang H, Yang SK. Intracellular Calcium Homeostasis and Kidney Disease. Curr Med Chem 2021; 28:3647-3665. [PMID: 33138745 DOI: 10.2174/0929867327666201102114257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
Kidney disease is a serious health problem that burdens our healthcare system. It is crucial to find the accurate pathogenesis of various types of kidney disease to provide guidance for precise therapies for patients suffering from these diseases. However, the exact molecular mechanisms underlying these diseases have not been fully understood. Disturbance of calcium homeostasis in renal cells plays a fundamental role in the development of various types of kidney disease, such as primary glomerular disease, diabetic nephropathy, acute kidney injury and polycystic kidney disease, through promoting cell proliferation, stimulating extracellular matrix accumulation, aggravating podocyte injury, disrupting cellular energetics as well as dysregulating cell survival and death dynamics. As a result, preventing the disturbance of calcium homeostasis in specific renal cells (such as tubular cells, podocytes and mesangial cells) is becoming one of the most promising therapeutic strategies in the treatment of kidney disease. The endoplasmic reticulum and mitochondria are two vital organelles in this process. Calcium ions cycle between the endoplasmic reticulum and mitochondria at the conjugation of these two organelles known as the mitochondria-associated endoplasmic reticulum membrane, maintaining calcium homeostasis. The pharmacologic modulation of cellular calcium homeostasis can be viewed as a novel therapeutic method for renal diseases. Here, we will introduce calcium homeostasis under physiological conditions and the disturbance of calcium homeostasis in kidney diseases. We will focus on the calcium homeostasis regulation in renal cells (including tubular cells, podocytes and mesangial cells), especially in the mitochondria- associated endoplasmic reticulum membranes of these renal cells.
Collapse
Affiliation(s)
- Na Song
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Shi-Kun Yang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
3
|
Yang Y, Liu X, Li S, Chen Y, Zhao Y, Wei Y, Qiu Y, Liu Y, Zhou Z, Han J, Wu G, Ding Q. Genome-scale CRISPR screening for potential targets of ginsenoside compound K. Cell Death Dis 2020; 11:39. [PMID: 31959745 PMCID: PMC6971025 DOI: 10.1038/s41419-020-2234-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/24/2022]
Abstract
Ginsenosides exhibit a large variety of biological activities in maintaining physical health; however, the molecule underpinnings underlining these biological activities remain to be defined. Here, we took a cellular condition that compound K (CK) induces autophagic cell death in HeLa cells, and setup a high-throughput genetic screening using CRISPR technology. We have identified a number of CK-resistant and CK-sensitive genes, and further validated PMAIP1 as a CK-resistant gene and WASH1 as a CK-sensitive gene. Compound K treatment reduces the expression of WASH1, which further accelerates the autophagic cell death, highlighting WASH1 as an interesting downstream mediator of CK effects. Overall, our study offers an easy-to-adopt platform to study the functional mediators of ginsenosides, and provides a candidate list of genes that are potential targets of CK.
Collapse
Affiliation(s)
- Yuanyuan Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guohao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
4
|
Kerkhofs M, Bultynck G, Vervliet T, Monaco G. Therapeutic implications of novel peptides targeting ER-mitochondria Ca 2+-flux systems. Drug Discov Today 2019; 24:1092-1103. [PMID: 30910738 DOI: 10.1016/j.drudis.2019.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 01/03/2023]
Abstract
Intracellular Ca2+-flux systems located at the ER-mitochondrial axis govern mitochondrial Ca2+ balance and cell fate. Multiple yet incurable pathologies are characterized by insufficient or excessive Ca2+ fluxes toward the mitochondria, in turn leading to aberrant cell life or death dynamics. The discovery and ongoing molecular characterization of the main interorganellar Ca2+ gateways have resulted in a novel class of peptide tools able to regulate relevant protein-protein interactions (PPIs) underlying this signaling scenario. Here, we review peptides, molecularly derived from Ca2+-flux systems or their accessory proteins. We discuss how they alter Ca2+-signaling protein complexes and modulate cell survival in light of their forthcoming therapeutic applications.
Collapse
Affiliation(s)
- Martijn Kerkhofs
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| | - Tim Vervliet
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium
| | - Giovanni Monaco
- KU Leuven, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Laboratory of Molecular and Cellular Signaling, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|