1
|
Boigenzahn H, González LD, Thompson JC, Zavala VM, Yin J. Kinetic Modeling and Parameter Estimation of a Prebiotic Peptide Reaction Network. J Mol Evol 2023; 91:730-744. [PMID: 37796316 DOI: 10.1007/s00239-023-10132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Although our understanding of how life emerged on Earth from simple organic precursors is speculative, early precursors likely included amino acids. The polymerization of amino acids into peptides and interactions between peptides are of interest because peptides and proteins participate in complex interaction networks in extant biology. However, peptide reaction networks can be challenging to study because of the potential for multiple species and systems-level interactions between species. We developed and employed a computational network model to describe reactions between amino acids to form di-, tri-, and tetra-peptides. Our experiments were initiated with two of the simplest amino acids, glycine and alanine, mediated by trimetaphosphate-activation and drying to promote peptide bond formation. The parameter estimates for bond formation and hydrolysis reactions in the system were found to be poorly constrained due to a network property known as sloppiness. In a sloppy model, the behavior mostly depends on only a subset of parameter combinations, but there is no straightforward way to determine which parameters should be included or excluded. Despite our inability to determine the exact values of specific kinetic parameters, we could make reasonably accurate predictions of model behavior. In short, our modeling has highlighted challenges and opportunities toward understanding the behaviors of complex prebiotic chemical experiments.
Collapse
Affiliation(s)
- Hayley Boigenzahn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA
| | - Leonardo D González
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Jaron C Thompson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Victor M Zavala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| |
Collapse
|
2
|
Gan D, Ying J, Zhao Y. Prebiotic Chemistry: The Role of Trimetaphosphate in Prebiotic Chemical Evolution. Front Chem 2022; 10:941228. [PMID: 35910738 PMCID: PMC9326000 DOI: 10.3389/fchem.2022.941228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Life’s origins have always been a scientific puzzle. Understanding the production of biomolecules is crucial for understanding the evolution of life on Earth. Numerous studies on trimetaphosphate have been conducted in the field of prebiotic chemistry. However, its role in prebiotic chemistry has been documented infrequently in the review literature. The goal of this thesis is to review the role of trimetaphosphate in the early Earth’s biomolecule synthesis and phosphorylation. Additionally, various trimetaphosphate-mediated reaction pathways are discussed, as well as the role of trimetaphosphate in prebiotic chemistry. Finally, in our opinion, interactions between biomolecules should be considered in prebiotic synthesis scenarios since this may result in some advances in subsequent research on this subject. The research establishes an essential and opportune foundation for an in-depth examination of the “mystery of life".
Collapse
Affiliation(s)
- Dingwei Gan
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
| | - Jianxi Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- *Correspondence: Jianxi Ying,
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Ball R, Brindley J. Does Stochasticity Favour Complexity in a Prebiotic Peptide-Micelle System? ORIGINS LIFE EVOL B 2021; 51:259-271. [PMID: 34480252 DOI: 10.1007/s11084-021-09614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
A primordial environment that hosted complex pre- or proto-biochemical activity would have been subject to random fluctuations. A relevant question is then: What might be the optimum variance of such fluctuations, such that net progress could be made towards a living system? Since lipid-based membrane encapsulation was undoubtedly a key step in chemical evolution, we used a peptide-micelle system in simulated experiments where simple micelles and peptide-stabilized micelles compete for the same amphiphilic lipid substrate. As cyclic thermal driver and energy source we used a thermochemical redox oscillator, to which the micelle reactions are coupled thermally through the activation energies. The long-time series averages taken for increasing values of the fluctuation variance show two distinct minima for simple micelles, but are smoothly increasing for complex micelles. This result suggests that the fluctuation variance is an important parameter in developing and perpetuating complexity. We hypothesize that such an environment may be self-selecting for a complex, evolving chemical system to outcompete simple or parasitic molecular structures.
Collapse
Affiliation(s)
- Rowena Ball
- Mathematical Sciences Institute, Australian National University, Canberra, 2602, Australia.
| | - John Brindley
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|