1
|
Varga I, Goldschmidt Gőz V, Pintér I, Csámpai A, Perczel A. Acetyl group for proper protection of β-sugar-amino acids used in SPPS. Amino Acids 2023; 55:969-979. [PMID: 37340192 PMCID: PMC10514111 DOI: 10.1007/s00726-023-03278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023]
Abstract
The synthesis of D-glucosamine-1-carboxylic acid based β-sugar amino acids (β-SAAs) is typically performed in nine consecutive steps via an inefficient OAc → Br → CN conversion protocol with low overall yield. Here, we present the improved and more efficient synthesis of both Fmoc-GlcAPC-OH and Fmoc-GlcAPC(Ac)-OH, β-SAAs consisting of only 4-5 synthetic steps. Their active ester and amide bond formation with glycine methyl ester (H-Gly-OMe) was completed and monitored by 1H NMR. The stability of the pyranoid OHs protecting the acetyl groups was investigated under three different Fmoc cleavage conditions and was found to be satisfactory even at high piperidine concentration (e.g. 40%). We designed a SPPS protocol using Fmoc-GlcAPC(Ac)-OH to produce model peptides Gly-β-SAA-Gly as well as Gly-β-SAA-β-SAA-Gly with high coupling efficiency. The products were deacetylated using the Zemplén method, which allows the hydrophilicity of a building block and/or chimera to be fine-tuned, even after the polypeptide chain has already been synthesized.
Collapse
Affiliation(s)
- István Varga
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. Stny. 1/A, Budapest, 1117, Hungary
- György Hevesy Doctoral School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - István Pintér
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. Stny. 1/A, Budapest, 1117, Hungary
| | - Antal Csámpai
- Organic Chemistry Department, Eötvös Loránd University, Pázmány P. Stny. 1/A, Budapest, 1117, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány P. Stny. 1/A, Budapest, 1117, Hungary.
- ELKH-ELTE Protein Modeling Research Group, Pázmány P. Stny. 1/A, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Gupta S, Sharma A, Mondal D, Bera S. Advancement of the Cleavage Methods of Carbohydrate-derived Isopropylidene and Cyclohexylidene Ketals. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220426104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Carbohydrates, amino acids, and nucleosides, the fundamental building blocks of complex biomolecules in nature, are essential starting materials for the fabrication of natural and unnatural structural entities, which necessitate the masking and demasking of various functional groups with the utmost chemoselectivity, mildness, and efficiency to avoid unintended bond breaking and formation, as well as associated reactions. Ketals, benzylidene, methoxymethyl, p-methoxybenzyl, silyl ethers, trityl, tert-butyl carbamate, and other functional groups are widely used in modern organic synthesis. In carbohydrate chemistry, the commonly used protecting functionality of isopropylidene and cyclohexylidene ketals necessitates effective methods for selective cleavage. This review summarises different methods for deblocking isopropylidene and cyclohexylidene ketals using inorganic acids, Lewis acid, silica-supported inorganic acids, Amberlite-120 (H+) resin, phosphotungstic acid, Nafion-H, NaBArF4.2H2O, montmorillonite clay, Dowex 50W-X8, camphorsulphonic acid (CSA), ceric ammonium nitrate, molecular iodine, ionic liquids, zeolites and so on.
Collapse
Affiliation(s)
- Shilpi Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Anjali Sharma
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Dhananjoy Mondal
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| | - Smritilekha Bera
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar-382030, India
| |
Collapse
|
3
|
Goldschmidt Gőz V, Duong KHY, Horváth D, Ferentzi K, Farkas V, Perczel A. Application of Sugar Amino Acids: Flow Chemistry Used for α/β‐Chimera Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Viktória Goldschmidt Gőz
- MTA-ELTE Protein Modeling Research Group Eötvös Loránd Research Network (ELKH) ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Kim Hoang Yen Duong
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
- Hevesy György PhD School of Chemistry Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Kristóf Ferentzi
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
- Hevesy György PhD School of Chemistry Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - Viktor Farkas
- MTA-ELTE Protein Modeling Research Group Eötvös Loránd Research Network (ELKH) ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| | - András Perczel
- MTA-ELTE Protein Modeling Research Group Eötvös Loránd Research Network (ELKH) ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
- Laboratory of Structural Chemistry and Biology Institute of Chemistry ELTE Eötvös Loránd University Pázmány P. stny. 1/A 1117 Budapest Hungary
| |
Collapse
|
4
|
Tanács D, Berkecz R, Misicka A, Tymecka D, Fülöp F, Armstrong DW, Ilisz I, Péter A. Enantioseparation of ß 2-amino acids by liquid chromatography using core-shell chiral stationary phases based on teicoplanin and teicoplanin aglycone. J Chromatogr A 2021; 1653:462383. [PMID: 34280793 DOI: 10.1016/j.chroma.2021.462383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Enantioseparation of nineteen ß2-amino acids has been performed by liquid chromatography on chiral stationary phases based on native teicoplanin and teicoplanin aglycone covalently bonded to 2.7 µm superficially porous silica particles. Separations were carried out in unbuffered (water/methanol), buffered [aqueous triethylammonium acetate (TEAA)/methanol] reversed-phase (RP) mode, and in polar-ionic (TEAA containing acetonitrile/methanol) mobile phases. Effects of pH in the RP mode, acid and salt additives, as well as counter-ion concentrations on chromatographic parameters have been studied. The structure of selectands (ß2-amino acids possessing aliphatic or aromatic side chains) and selectors (native teicoplanin or teicoplanin aglycone) was found to have a considerable influence on separation performance. Analysis of van Deemter plots and determination of thermodynamic parameters were performed to further explore details of the separation performance.
Collapse
Affiliation(s)
- Dániel Tanács
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Somogyi B. u. 4, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Somogyi B. u. 4, H-6720 Szeged, Hungary
| | - Aleksandra Misicka
- Department of Chemistry, University of Warsaw, Pasteura str. 1, 02-093 Warsaw, Poland
| | - Dagmara Tymecka
- Department of Chemistry, University of Warsaw, Pasteura str. 1, 02-093 Warsaw, Poland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019-0065, USA
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Somogyi B. u. 4, H-6720 Szeged, Hungary.
| | - Antal Péter
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Centre, University of Szeged, Somogyi B. u. 4, H-6720 Szeged, Hungary
| |
Collapse
|