1
|
Kaschwich M, Horn M, Matthiensen S, Stahlberg E, Behrendt CA, Matysiak F, Bouchagiar J, Dell A, Ellebrecht D, Bayer A, Kleemann M. Accuracy evaluation of patient-specific 3D-printed aortic anatomy. Ann Anat 2020; 234:151629. [PMID: 33137459 DOI: 10.1016/j.aanat.2020.151629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION 3D printing has a wide range of applications in medicine. In surgery, this technique can be used for preoperative planning of complex procedures, production of patient specific implants, as well as training. However, accuracy evaluations of 3D vascular models are rare. OBJECTIVES Aim of this study was to investigate the accuracy of patient-specific 3D-printed aortic anatomies. METHODS Patients suffering from aorto-iliac aneurysms and with indication for treatment were selected on the basis of different anatomy and localization of the aneurysm in the period from January 1st 2014 to May 27th 2016. Six patients with aorto-iliac aneurysms were selected out of the database for 3D-printing. Subsequently, computed tomography (CT) images of the printed 3D-models were compared with the original CT data sets. RESULTS The mean deviation of the six 3D-vascular models ranged between -0.73 mm and 0.14 mm compared to the original CT-data. The relative deviation of the measured values showed no significant difference between the 3D-vascular and the original patient CT-data. CONCLUSION Our results showed that 3D printing has the potential to produce patient-specific 3D vascular models with reliable accuracy. This enables the use of such models for the development of new endovascular procedures and devices.
Collapse
Affiliation(s)
- Mark Kaschwich
- Biomedical Engineering Laboratory, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; Department of Vascular Medicine, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Marco Horn
- Department of Surgery, Division of Vascular and Endovascular Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Sarah Matthiensen
- Biomedical Engineering Laboratory, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Erik Stahlberg
- Department for Radiology and Nuclear Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Germany
| | - Christian-Alexander Behrendt
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Matysiak
- Biomedical Engineering Laboratory, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Juljan Bouchagiar
- Biomedical Engineering Laboratory, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Annika Dell
- Biomedical Engineering Laboratory, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | - Andreas Bayer
- Institute of Anatomy, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Markus Kleemann
- Biomedical Engineering Laboratory, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; Kliniken Dr. Erler, 90429 Nürnberg, Germany
| |
Collapse
|