1
|
Liu X, Xiao H, Peng X, Chai Y, Wang S, Wen G. Identification and comprehensive analysis of circRNA-miRNA-mRNA regulatory networks in osteoarthritis. Front Immunol 2023; 13:1050743. [PMID: 36700234 PMCID: PMC9869167 DOI: 10.3389/fimmu.2022.1050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Osteoarthritis (OA) is a common orthopedic degenerative disease, leading to high disability in activities of daily living. There remains an urgent need to identify the underlying mechanisms and identify new therapeutic targets in OA diagnosis and treatment. Circular RNAs (circRNAs) play a role in the development of multiple diseases. Many studies have reported that circRNAs regulate microRNAs (miRNAs) through an endogenous competitive mechanism. However, it remains unclear if an interplay between circRNAs, miRNAs, and target genes plays a deeper regulatory role in OA. Four datasets were downloaded from the GEO database, and differentially expressed circRNAs (DECs), differentially expressed miRNAs (DEMs), and differentially expressed genes (DEGs) were identified. Functional annotation and pathway enrichment analysis of DEGs and DECs were carried out to determine the main associated mechanism in OA. A protein-protein network (PPI) was constructed to analyze the function of, and to screen out, hub DEGs in OA. Based on the artificial intelligence prediction of protein crystal structures of two hub DEGs, TOP2A and PLK1, digitoxin and oxytetracycline were found to have the strongest affinity, respectively, with molecular docking. Subsequently, overlapping DEMs and miRNAs targeted by DECs obtained target DEMs (DETMs). Intersection of DEGs and genes targeted by DEMs obtained target DEGs (DETGs). Thus, a circRNA-miRNA-mRNA regulatory network was constructed from 16 circRNAs, 32 miRNAs, and 97 mRNAs. Three hub DECs have the largest number of regulated miRNAs and were verified through in vitro experiments. In addition, the expression level of 16 DECs was validated by RT-PCR. In conclusion, we constructed a circRNA-miRNA-mRNA regulatory network in OA and three new hub DECs, hsa_circ_0027914, hsa_circ_0101125, and hsa_circ_0102564, were identified as novel biomarkers for OA.
Collapse
Affiliation(s)
- Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Xiao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaotong Peng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Gen Wen, ; Shuo Wang,
| |
Collapse
|
2
|
Pharmaceutical therapeutics for articular regeneration and restoration: state-of-the-art technology for screening small molecular drugs. Cell Mol Life Sci 2021; 78:8127-8155. [PMID: 34783870 PMCID: PMC8593173 DOI: 10.1007/s00018-021-03983-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage damage caused by sports injury or osteoarthritis (OA) has gained increased attention as a worldwide health burden. Pharmaceutical treatments are considered cost-effective means of promoting cartilage regeneration, but are limited by their inability to generate sufficient functional chondrocytes and modify disease progression. Small molecular chemical compounds are an abundant source of new pharmaceutical therapeutics for cartilage regeneration, as they have advantages in design, fabrication, and application, and, when used in combination, act as powerful tools for manipulating cellular fate. In this review, we present current achievements in the development of small molecular drugs for cartilage regeneration, particularly in the fields of chondrocyte generation and reversion of chondrocyte degenerative phenotypes. Several clinically or preclinically available small molecules, which have been shown to facilitate chondrogenesis, chondrocyte dedifferentiation, and cellular reprogramming, and subsequently ameliorate cartilage degeneration by targeting inflammation, matrix degradation, metabolism, and epigenetics, are summarized. Notably, this review introduces essential parameters for high-throughput screening strategies, including models of different chondrogenic cell sources, phenotype readout methodologies, and transferable advanced systems from other fields. Overall, this review provides new insights into future pharmaceutical therapies for cartilage regeneration.
Collapse
|
3
|
Park S, Bello A, Arai Y, Ahn J, Kim D, Cha KY, Baek I, Park H, Lee SH. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics 2021; 13:pharmaceutics13081139. [PMID: 34452101 PMCID: PMC8400409 DOI: 10.3390/pharmaceutics13081139] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.
Collapse
Affiliation(s)
- Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Alvin Bello
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Yoshie Arai
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Jinsung Ahn
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Dohyun Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Kyung-Yup Cha
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Inho Baek
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
| | - Hansoo Park
- School of Integrative Engineering, Chung-ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul 04620, Korea; (S.P.); (A.B.); (Y.A.); (J.A.); (D.K.); (K.-Y.C.); (I.B.)
- Correspondence: ; Tel.: +82-31-961-5153; Fax: +82-31-961-5108
| |
Collapse
|
4
|
Russell KA, Garbin LC, Wong JM, Koch TG. Mesenchymal Stromal Cells as Potential Antimicrobial for Veterinary Use-A Comprehensive Review. Front Microbiol 2020; 11:606404. [PMID: 33335522 PMCID: PMC7736177 DOI: 10.3389/fmicb.2020.606404] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of “superbugs” resistant to antimicrobial medications threatens populations both veterinary and human. The current crisis has come about from the widespread use of the limited number of antimicrobials available in the treatment of livestock, companion animal, and human patients. A different approach must be sought to find alternatives to or enhancements of present conventional antimicrobials. Mesenchymal stromal cells (MSC) have antimicrobial properties that may help solve this problem. In the first part of the review, we explore the various mechanisms at work across species that help explain how MSCs influence microbial survival. We then discuss the findings of recent equine, canine, and bovine studies examining MSC antimicrobial properties in which MSCs are found to have significant effects on a variety of bacterial species either alone or in combination with antibiotics. Finally, information on the influence that various antimicrobials may have on MSC function is reviewed. MSCs exert their effect directly through the secretion of various bioactive factors or indirectly through the recruitment and activation of host immune cells. MSCs may soon become a valuable tool for veterinarians treating antimicrobial resistant infections. However, a great deal of work remains for the development of optimal MSC production conditions and testing for efficacy on different indications and species.
Collapse
Affiliation(s)
- Keith A Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Livia C Garbin
- Clinical Veterinary Sciences Department, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, West Indies
| | - Jonathan M Wong
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Li H, Yue B. Effects of various antimicrobial agents on multi-directional differentiation potential of bone marrow-derived mesenchymal stem cells. World J Stem Cells 2019; 11:322-336. [PMID: 31293715 PMCID: PMC6600849 DOI: 10.4252/wjsc.v11.i6.322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/30/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial drugs of several classes play an important role in the treatment of bone and joint infections. In addition to fighting pathogenic microorganisms, the effects of drugs on local tissues and cells are also related to the course and prognosis of bone and joint infections. The multi-directional differentiation potential of bone marrow-derived mesenchymal stem cells (MSCs) is essential for tissue repair after local injury, which is directly related to the recovery of bone, cartilage, and medullary adipose tissue. Our previous studies and the literature indicate that certain antimicrobial agents can regulate the differentiation potential of bone marrow-derived MSCs. Here, in order to systematically analyze the effects of various antimicrobial drugs on local tissue regeneration, we comprehensively review the studies on the effects of these drugs on MSC differentiation, and classify them according to the three differentiation directions (osteogenesis, chondrogenesis, and adipogenesis). Our review demonstrates the specific effects of different antimicrobial agents on bone marrow-derived MSCs and the range of concentrations at which they work, and provides a basis for drug selection at different sites of infection.
Collapse
Affiliation(s)
- Hui Li
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
6
|
Willard VP, Diekman BO, Sanchez-Adams J, Christoforou N, Leong KW, Guilak F. Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol 2015; 66:3062-72. [PMID: 25047145 DOI: 10.1002/art.38780] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The discovery of novel disease-modifying drugs for osteoarthritis (OA) is limited by the lack of adequate genetically defined cartilage tissues for application in high-throughput screening systems. We addressed this need by synthesizing cartilage from induced pluripotent stem cells (iPSCs) to establish and validate an in vitro model of OA. METHODS Native or iPSC-derived mouse cartilage samples were treated with the cytokine interleukin-1α (IL-1α) for 3 days to model the inflammatory environment of OA. The biochemical content, mechanical properties, and gene expression of the resulting tissues were assayed. In addition, the inflammatory and catabolic environment of the media was assessed. To establish high-throughput capability, we used a 96-well plate format and conducted a screen of previously identified candidate OA drugs. Glycosaminoglycan (GAG) release into the medium was used as the primary output for screening. RESULTS Treatment of iPSC-derived or native cartilage with IL-1α induced characteristic features of OA in a rapid and dose-dependent manner. In addition to the loss of GAGs and tissue mechanical properties, IL-1α treatment induced the expression of matrix metalloproteinases and increased the production of the inflammatory mediators nitric oxide and prostaglandin E2 . In the high-throughput screen validation, all candidate OA therapeutic agents provided some benefit, but only the NF-κB inhibitor SC514 effectively reduced cartilage loss in response to IL-1α. CONCLUSION This work demonstrates the utility of iPSCs for studying cartilage pathology and provides a platform for identifying novel, patient-specific therapeutic agents that prevent cartilage degradation and modify the course of OA development.
Collapse
|
7
|
Abstract
The ATDC5 cell line is derived from mouse teratocarcinoma cells and characterized as a chondrogenic cell line which goes through a sequential process analogy to chondrocyte differentiation. Thus, it is regarded as a promising in vitro model to study the factors that influence cell behaviors during chondrogenesis. It also provides insights in exploring signaling pathways related to skeletal development as well as interactions with innovative materials. To date, over 200 studies have utilized ATDC5 to obtain lots of significant findings. In this review, we summarized the literature of ATDC5 related studies and emphasized the application of ATDC5 in chondrogenesis. In addition, the general introduction of ATDC5 including its derivation and characterization is covered in this article.
Collapse
Affiliation(s)
- Yongchang Yao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | | |
Collapse
|
8
|
Yano F, Hojo H, Ohba S, Saito T, Honnami M, Mochizuki M, Takato T, Kawaguchi H, Chung UI. Cell-sheet technology combined with a thienoindazole derivative small compound TD-198946 for cartilage regeneration. Biomaterials 2013; 34:5581-7. [DOI: 10.1016/j.biomaterials.2013.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/04/2013] [Indexed: 01/14/2023]
|
9
|
Yano F, Hojo H, Ohba S, Fukai A, Hosaka Y, Ikeda T, Saito T, Hirata M, Chikuda H, Takato T, Kawaguchi H, Chung UI. A novel disease-modifying osteoarthritis drug candidate targeting Runx1. Ann Rheum Dis 2013; 72:748-53. [PMID: 23041841 DOI: 10.1136/annrheumdis-2012-201745] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To identify a new disease-modifying osteoarthritis drug (DMOAD) candidate that can effectively repair cartilage by promoting chondrogenic differentiation and halt osteoarthritis (OA) progression by suppressing aberrant hypertrophy. METHODS We screened 2500 natural and synthetic small compounds for chondrogenic agents via four steps using the Col2GFP-ATDC5 system and identified a small thienoindazole derivative compound, TD-198946, as a novel DMOAD candidate. We tested its efficacy as a DMOAD via intra-articular injections directly into the joint space in a surgically-induced mouse model of OA both at the onset (prevention model) and 4 weeks after (repair model) OA induction. The downstream molecules were screened by microarray analysis. We further investigated the mechanism of the drug action and its molecular target using in vitro and in vivo assays. RESULTS TD-198946 strongly induced chondrogenic differentiation without promoting hypertrophy in cell and metatarsal organ cultures. When administered directly into the joint space, TD-198946 successfully prevented and repaired degeneration of the articular cartilage. TD-198946 exerted its effect through the regulation of Runx1 expression, which was downregulated in both mouse and human OA cartilage compared with normal tissue. CONCLUSIONS Our data suggest that TD-198946 is a novel class of DMOAD candidate, and that targeting Runx1 will provide a promising new approach in the development of disease-modifying drugs against OA.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/chemical synthesis
- Antirheumatic Agents/pharmacology
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Cell Differentiation/drug effects
- Chondrogenesis/drug effects
- Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Disease Models, Animal
- Drug Design
- Gene Expression/drug effects
- Heterocyclic Compounds, 4 or More Rings/chemical synthesis
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Indazoles/chemical synthesis
- Indazoles/pharmacology
- Injections, Intra-Articular
- Knee Joint/drug effects
- Knee Joint/pathology
- Male
- Mice
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/prevention & control
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Fumiko Yano
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hojo H, Ohba S, Taniguchi K, Shirai M, Yano F, Saito T, Ikeda T, Nakajima K, Komiyama Y, Nakagata N, Suzuki K, Mishina Y, Yamada M, Konno T, Takato T, Kawaguchi H, Kambara H, Chung UI. Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem 2013; 288:9924-9932. [PMID: 23423383 DOI: 10.1074/jbc.m112.409342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Specification of progenitors into the osteoblast lineage is an essential event for skeletogenesis. During endochondral ossification, cells in the perichondrium give rise to osteoblast precursors. Hedgehog (Hh) and bone morphogenetic protein (BMP) are suggested to regulate the commitment of these cells. However, properties of perichondrial cells and regulatory mechanisms of the specification process are still poorly understood. Here, we investigated the machineries by combining a novel organ culture system and single-cell expression analysis with mouse genetics and biochemical analyses. In a metatarsal organ culture reproducing bone collar formation, activation of BMP signaling enhanced the bone collar formation cooperatively with Hh input, whereas the signaling induced ectopic chondrocyte formation in the perichondrium without Hh input. Similar phenotypes were also observed in compound mutant mice, where signaling activities of Hh and BMP were genetically manipulated. Single-cell quantitative RT-PCR analyses showed heterogeneity of perichondrial cells in terms of natural characteristics and responsiveness to Hh input. In vitro analyses revealed that Hh signaling suppressed BMP-induced chondrogenic differentiation; Gli1 inhibited the expression of Sox5, Sox6, and Sox9 (SRY box-containing gene 9) as well as transactivation by Sox9. Indeed, ectopic expression of chondrocyte maker genes were observed in the perichondrium of metatarsals in Gli1(-/-) fetuses, and the phenotype was more severe in Gli1(-/-);Gli2(-/-) newborns. These data suggest that Hh-Gli activators alter the function of BMP to specify perichondrial cells into osteoblasts; the timing of Hh input and its target populations are critical for BMP function.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | - Fumiko Yano
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toshiyuki Ikeda
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Keiji Nakajima
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuske Komiyama
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Masahisa Yamada
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama 351-0198, Japan; Common Resources Group, Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Tomohiro Konno
- Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroshi Kawaguchi
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Kambara
- Hitachi Central Research Laboratory, Tokyo 185-8601, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Bioengineering, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Hojo H, Ohba S, Yano F, Saito T, Ikeda T, Nakajima K, Komiyama Y, Nakagata N, Suzuki K, Takato T, Kawaguchi H, Chung UI. Gli1 protein participates in Hedgehog-mediated specification of osteoblast lineage during endochondral ossification. J Biol Chem 2012; 287:17860-17869. [PMID: 22493482 DOI: 10.1074/jbc.m112.347716] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With regard to Hedgehog signaling in mammalian development, the majority of research has focused on Gli2 and Gli3 rather than Gli1. This is because Gli1(-/-) mice do not show any gross abnormalities in adulthood, and no detailed analyses of fetal Gli1(-/-) mice are available. In this study, we investigated the physiological role of Gli1 in osteogenesis. Histological analyses revealed that bone formation was impaired in Gli1(-/-) fetuses compared with WT fetuses. Gli1(-/-) perichondrial cells expressed neither runt-related transcription factor 2 (Runx2) nor osterix, master regulators of osteogenesis, in contrast to WT cells. In vitro analyses showed that overexpression of Gli1 up-regulated early osteogenesis-related genes in both WT and Runx2(-/-) perichondrial cells, and Gli1 activated transcription of those genes via its association with their 5'-regulatory regions, underlying the function of Gli1 in the perichondrium. Moreover, Gli1(-/-);Gli2(-/-) mice showed more severe phenotypes of impaired bone formation than either Gli1(-/-) or Gli2(-/-) mice, and osteoblast differentiation was impaired in Gli1(-/-);Gli3(-/-) perichondrial cells compared with Gli3(-/-) cells in vitro. These data suggest that Gli1 itself can induce early osteoblast differentiation, at least to some extent, in a Runx2-independent manner. It also plays a redundant role with Gli2 and is involved in the repressor function of Gli3 in osteogenesis. On the basis of these findings, we propose that upon Hedgehog input, Gli1 functions collectively with Gli2 and Gli3 in osteogenesis.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033.
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033.
| | - Fumiko Yano
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Taku Saito
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Toshiyuki Ikeda
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Keiji Nakajima
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Yuske Komiyama
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033; Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | - Kentaro Suzuki
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | - Tsuyoshi Takato
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Hiroshi Kawaguchi
- Department of Sensory and Motor System Medicine, The University of Tokyo, Tokyo 113-0033
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033
| |
Collapse
|