1
|
Sauhta R, Makkar D, Siwach PS. The Sequential Therapy in Osteoporosis. Indian J Orthop 2023; 57:150-162. [PMID: 38107815 PMCID: PMC10721775 DOI: 10.1007/s43465-023-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Background Osteoporosis management often involves a sequential treatment approach to optimize patient outcomes and minimize fracture risks. This strategy is tailored to individual patient characteristics, treatment responses, and fracture risk profiles. Methods A thorough literature review was systematically executed using prominent databases, including PubMed and EMBASE. The primary aim was to identify original articles and clinical trials evaluating the effectiveness of sequential therapy with anti-osteoporosis drugs, focusing on the period from 1995 to 2023. The analysis encompassed an in-depth examination of osteoporosis drugs, delineating their mechanisms of action, side effects, and current trends as elucidated in the literature. Results and Discussion Our study yielded noteworthy insights into the optimal sequencing of pharmacologic agents for the long-term treatment of patients necessitating multiple drugs. Notably, the achievement of optimal improvements in bone mass is observed when commencing treatment with an anabolic medication, followed by the subsequent utilization of an antiresorptive drug. This stands in contrast to initiating therapy with a bisphosphonate, which may potentially diminish outcomes in the post-anabolic intervention period. Furthermore, it has been discerned that caution should be exercised against transitioning from denosumab to PTH homologs due to the adverse effects of heightened bone turnover and sustained weakening of bone structure. Despite the absence of fracture data substantiating the implementation of integrated anabolic/antiresorptive pharmacotherapy, the incorporation of denosumab and teriparatide presents a potential avenue worthy of consideration for individuals at a heightened vulnerability to fragility fractures. Conclusions A judiciously implemented sequential treatment strategy in osteoporosis offers a flexible and tailored approach to address diverse clinical scenarios, optimizing fracture prevention and patient outcomes.
Collapse
Affiliation(s)
- Ravi Sauhta
- Department Orthopedics and Joint
Replacement, Artemis Hospitals, Gurgaon, India
| | | | | |
Collapse
|
2
|
Kou Y, Rong X, Tang R, Zhang Y, Yang P, Liu H, Ma W, Li M. Eldecalcitol prevented OVX-induced osteoporosis through inhibiting BMSCs senescence by regulating the SIRT1-Nrf2 signal. Front Pharmacol 2023; 14:1067085. [PMID: 36937895 PMCID: PMC10020367 DOI: 10.3389/fphar.2023.1067085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Aging and oxidative stress are considered to be the proximal culprits of postmenopausal osteoporosis. Eldecalcitol (ED-71), a new active vitamin D derivative, has shown a good therapeutic effect on different types of osteoporosis, but the mechanism is unclear. This study focused on exploring whether ED-71 could prevent bone loss in postmenopausal osteoporosis by regulating the cell senescence of bone mesenchymal stem cells (BMSCs), and explaining its specific mechanism of action. Materials and methods: An ovariectomized (OVX) rat model was established and 30 ng/kg ED-71 was administered orally once a day. The weight of rats was recorded regularly. Micro-computed tomography (CT) and histochemical staining were used to evaluate bone mass, histological parameters, and aging-related factors. Rat bone mesenchymal stem cells were extracted and cultivated in vitro. Aging cells were marked with senescence-associated β-gal (SA-β-gal) dyeing. The mRNA and protein levels of aging-related factors and SIRT1-Nrf2 signal were detected by RT-PCR, Western blot, and immunofluorescence staining. The reactive oxygen species (ROS) levels were detected by DCFH-DA staining. Results: Compared with the Sham group, the bone volume of the ovariectomized group rats decreased while their weight increased significantly. ED-71 prevented bone loss and inhibited weight gain in ovariectomized rats. More importantly, although the expression of aging-related factors in the bone tissue increased in the ovariectomized group, the addition of ED-71 reversed changes in these factors. After extracting and in vitro culturing bone mesenchymal stem cells, the proportion of aging bone mesenchymal stem cells was higher in the ovariectomized group than in the Sham group, accompanied by a significant decrease in the osteogenic capacity. ED-71 significantly improved the bone mesenchymal stem cells senescence caused by ovariectomized. In addition, ED-71 increased the expression of SIRT1 and Nrf2 in ovariectomized rat bone mesenchymal stem cells. Inhibition of SIRT1 or Nrf2 decreased the inhibitory effect of ED-71 on bone mesenchymal stem cells senescence. ED-71 also showed a suppression effect on the reactive oxygen species level in bone mesenchymal stem cells. Conclusion: Our results demonstrated that ED-71 could inhibit the cell senescence of bone mesenchymal stem cells in ovariectomized rats by regulating the SIRT1-Nrf2 signal, thereby preventing bone loss caused by osteoporosis.
Collapse
Affiliation(s)
- Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Rong Tang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Yuan Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
| | - Wanli Ma
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- Department of Traumatic Orthopedics, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Wanli Ma, ; Minqi Li,
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China
- *Correspondence: Wanli Ma, ; Minqi Li,
| |
Collapse
|
3
|
Cui L, Xia W, Yu C, Dong S, Pei Y. Overview of the clinical efficacy and safety of eldecalcitol for the treatment of osteoporosis. Arch Osteoporos 2022; 17:74. [PMID: 35513519 PMCID: PMC9072485 DOI: 10.1007/s11657-022-01071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/31/2022] [Indexed: 02/03/2023]
Abstract
Eldecalcitol (ELD) is a new oral analog of the active form of vitamin D with anti-resorptive properties. We conducted a meta-analysis to investigate the efficacy and safety of ELD in osteoporosis. Compared with alfacalcidol, ELD significantly lowered vertebral facture risk, increased bone mineral density, but also had a higher risk of hypercalciuria. PURPOSE This study aimed to investigate the efficacy and safety of eldecalcitol (ELD) in osteoporosis by examining fracture rates, bone mineral density (BMD), bone turnover markers, and adverse events as outcomes. METHODS PubMed, EMBASE, and Cochrane Library were searched up to July 20, 2020, to identify eligible randomized controlled trials. The odds ratio (OR) or weighted mean difference (WMD) with 95% confidence interval was calculated by the random-effects model. RESULTS ELD significantly increased lumbar BMD (WMD: 2.80; 95% CI: 1.60, 4.00; P < 0.001, 2 studies involved), total hip BMD (WMD: 2.11; 95% CI: 0.68, 3.55; P = 0.004, 2 studies involved), and femoral neck BMD (WMD: 1.78; 95% CI: 0.76, 2.79; P = 0.001, 1 study involved) compared with alfacalcidol. Moreover, ELD caused a significantly lower rate of vertebral fracture (OR: 0.52; 95% CI: 0.29-0.95; P = 0.034, 2 studies involved) than alfacalcidol, but did not lower the rate of non-vertebral facture (OR: 0.44; 95% CI: 0.06-3.05; P = 0.405, 2 studies involved) compared with alfacalcidol. ELD significantly reduced the percentage change in bone-specific alkaline phosphatase (WMD: - 15.40; 95% CI: - 20.30, - 10.60; P < 0.001, 1 study involved) and serum type I collagen C-telopeptide (WMD: - 38.50; 95% CI: - 50.00, - 27.10; P < 0.001, 1 study involved) as compared with alfacalcidol. ELD was also associated with higher risk of hypercalciuria compared with alfacalcidol (OR: 1.64; 95% CI: 1.22, 2.20; P = 0.001, 2 studies involved). CONCLUSIONS This systematic review indicated that ELD was superior than alfacalcidol for improving vertebral fracture risk and BMD. Further large-scale trials should be conducted to verify the long-term effects and safety of ELD in osteoporosis. PROSPERO REGISTRATION NUMBER CRD42020147518.
Collapse
Affiliation(s)
- Lijia Cui
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Chuan Yu
- Chugai Pharma China CO., LTD, Shanghai, 200021, China
| | | | - Yu Pei
- Department of Endocrinology, First Medical Center, General Hospital of the People's Liberation Army of China, Beijing, 100039, China.
| |
Collapse
|
4
|
Liu H, Wang G, Wu T, Mu Y, Gu W. Efficacy and Safety of Eldecalcitol for Osteoporosis: A Meta-Analysis of Randomized Controlled Trials. Front Endocrinol (Lausanne) 2022; 13:854439. [PMID: 35518938 PMCID: PMC9063410 DOI: 10.3389/fendo.2022.854439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Object Eldecalcitol (ED-71) is a vitamin D analog for the treatment of osteoporosis. However, inconsistent results have been reported in this regard. Hence, this meta-analysis of randomized controlled trials (RCTs) aimed to assess the efficacy and safety of ED-71 for osteoporosis. Methods The PubMed, Embase, and the Cochrane Library databases were systematically searched to identify potential trials from inception until April 2021. The investigated outcomes included bone mineral density and fractures at various sites, and potential adverse events. The pooled effect estimates were calculated using weighted mean difference (WMD) and relative risk (RR) with 95% confidence interval (CI) using the random-effects model. Results Eight RCTs involving 2368 patients were selected for the final meta-analysis. The pooled results showed that ED-71 were associated with a higher level of femoral neck (FN) bone mineral density (BMD) (WMD: 0.92; 95% CI: 0.24-1.60; P = 0.008), while it had no significant effect on lumbar spine BMD (WMD: 1.09; 95% CI: -0.11 to 2.30; P = 0.076) and hip BMD (WMD: 1.12; 95% CI: -0.16 to 2.40; P = 0.088). Moreover, the use of ED-71 could protect against the risk of all osteoporotic fracture (RR: 0.70; 95% CI: 0.55-0.88; P = 0.003) and vertebral fracture (RR: 0.74; 95% CI: 0.55-0.98; P = 0.038), while it did not affect the risk of nonvertebral fracture (RR: 0.53; 95%CI: 0.23-1.23; P = 0.140). The subgroup analyses found that the effects of ED-71 were superior to those of alfacalcidol on both BMD and fracture results. Moreover, the use of ED-71 plus bisphosphonate was associated with a greater improvement in BMD at various sites compared with bisphosphonate alone. Finally, ED-71 was associated with an increased risk of increased urine calcium level (RR: 1.69; 95% CI: 1.33-2.15; P < 0.001). Conclusion This study found that the use of ED-71 could improve BMD and fractures at various sites, especially compared with alfacalcidol or a combination with bisphosphonate for patients with osteoporosis. Systematic Review Registration [http://www.crd.york.ac.uk/prospero], identifier [CRD42021270536].
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guoqi Wang
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ting Wu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Li H, Xiao Z, Quarles LD, Li W. Osteoporosis: Mechanism, Molecular Target and Current Status on Drug Development. Curr Med Chem 2021; 28:1489-1507. [PMID: 32223730 PMCID: PMC7665836 DOI: 10.2174/0929867327666200330142432] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
Abstract
CDATA[Osteoporosis is a pathological loss of bone mass due to an imbalance in bone remodeling where osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation resulting in skeletal fragility and fractures. Anti-resorptive agents, such as bisphosphonates and SERMs, and anabolic drugs that stimulate bone formation, including PTH analogues and sclerostin inhibitors, are current treatments for osteoporosis. Despite their efficacy, severe side effects and loss of potency may limit the long term usage of a single drug. Sequential and combinational use of current drugs, such as switching from an anabolic to an anti-resorptive agent, may provide an alternative approach. Moreover, there are novel drugs being developed against emerging new targets such as Cathepsin K and 17β-HSD2 that may have less side effects. This review will summarize the molecular mechanisms of osteoporosis, current drugs for osteoporosis treatment, and new drug development strategies.
Collapse
Affiliation(s)
- Hanxuan Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38165, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
6
|
Zheng Z, Luo J. The therapeutic effect to eldecalcitol + bisphosphonate is superior to bisphosphonate alone in the treatment of osteoporosis: a meta-analysis. J Orthop Surg Res 2020; 15:390. [PMID: 32907639 PMCID: PMC7487739 DOI: 10.1186/s13018-020-01896-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/16/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Osteoporosis is a metabolic bone disease. Bisphosphonate (BP) and eldecalcitol (ELD) are two clinical first-line drugs for osteoporosis patients. However, the effect of ELD + BP vs. BP alone on osteoporosis treatment is still unclear. The present meta-analysis was conducted to evaluate the different therapeutic effect of BP + ELD vs. BP alone in osteoporosis treatment. METHODS Eligible documents that selected from online databases including PubMed, Embase, and Cochrane Library were included in this study (updated to March 3, 2020). The quality assessment of the included studies was based on the guidelines of Cochrane. Meta-analysis was performed according to criteria such as intervention plan and outcome. The indicators including bone mineral density (BMD) in all enrolled studies were included in the current analysis. Pooled odds ratios (ORs) and weighted mean differences (WMDs) with 95% confidence intervals (CI) were calculated using fixed- or random-effects models. Then, heterogeneity analysis was performed based on Cochran's Q test and I2 statistics. RESULTS A total of 4 studies (456 cases) with high quality were enrolled in this study. The effect of ELD + BP was superior to BP alone based on indicators including femoral neck BMD (FN-BMD) and total hip BMD (TH-BMD) in patients with followed up ≤ 6 months. Moreover, the effect of ELD + BP was superior to BP alone based on lumbar spine BMD (LS-BMD) in patients with 12 months followed up. CONCLUSION Therapeutic effect of ELD + BP was superior to BP alone in osteoporotic patients based on the influence of BMD.
Collapse
Affiliation(s)
- Zaoqian Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
- Division of Medical Administration, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310012, Zhejiang, China
| | - Jinyu Luo
- Hemopurification Center, Division of Nursing, Tongde Hospital of Zhejiang Province, No. 234 Gucui Road, Xihu District, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
7
|
Ma X, Xu Z, Ding S, Yi G, Wang Q. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway. Exp Ther Med 2017; 15:182-190. [PMID: 29375681 PMCID: PMC5763659 DOI: 10.3892/etm.2017.5381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Zhongyang Xu
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Shaofeng Ding
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Guangkun Yi
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Qian Wang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|