1
|
Segi N, Nakashima H, Shinjo R, Kagami Y, Machino M, Ito S, Ouchida J, Morishita K, Oishi R, Yamauchi I, Imagama S. Trabecular Bone Remodeling After Posterior Lumbar Interbody Fusion: Comparison of Three-Dimensional Porous Tantalum and Titanium-Coated Polyetheretherketone Interbody Cages. Global Spine J 2024; 14:2106-2115. [PMID: 37060284 PMCID: PMC11418715 DOI: 10.1177/21925682231170613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES The criteria for determining completion of intervertebral stability after posterior lumbar interbody fusion (PLIF) remain controversial. Several new radiological indicators of bone growth and osteointegration have been established. We compared computed tomography (CT) findings related to osteointegration after PLIF with interbody cages of two different materials and designs. METHODS We retrospectively analyzed data from 103 patients who underwent PLIF with three-dimensional porous tantalum (Tn) cages or titanium-coated polyetheretherketone (TiP) cages. CT images obtained 3 months and 1 year after surgery were examined for trabecular bone remodeling (TBR), cancellous condensation (CC), and vertebral endplate cyst (VEC) formation. The incidences of each finding were compared by cage type, and rates of instrument failure and pseudarthrosis were determined. RESULTS Three months postoperatively, 87% of the levels with Tn cages exhibited TBR, whereas 96% of those with TiP cages did not (P < .001). Most levels with Tn cages levels exhibited TBR and no CC 3 months (81%) and 1 year (94%) after surgery. Although 78% of levels with TiP cages exhibited CC and no TBR 3 months after surgery, 59% exhibited both CC and TBR 1 year after surgery. Significantly fewer VECs formed around the Tn cages than around the TiP cages both 3 months (P = .002) and 1 year (P < .001) after surgery. Implant-related problems occurred at levels that exhibited neither TBR nor CC. CONCLUSIONS The porous tantalum cage may enable intervertebral stability that is comparable to bony fusion soon after surgery.
Collapse
Affiliation(s)
- Naoki Segi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Orthopedic Surgery, Anjo Kosei Hospital, Aichi, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuichi Shinjo
- Department of Orthopedic Surgery, Anjo Kosei Hospital, Aichi, Japan
| | - Yujiro Kagami
- Department of Orthopedic Surgery, Anjo Kosei Hospital, Aichi, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sadayuki Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Ouchida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuaki Morishita
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryotaro Oishi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ippei Yamauchi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
2
|
Schadow JE, Maxey D, Smith TO, Finnilä MAJ, Manske SL, Segal NA, Wong AKO, Davey RA, Turmezei T, Stok KS. Systematic review of computed tomography parameters used for the assessment of subchondral bone in osteoarthritis. Bone 2024; 178:116948. [PMID: 37926204 DOI: 10.1016/j.bone.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To systematically review the published parameters for the assessment of subchondral bone in human osteoarthritis (OA) using computed tomography (CT) and gain an overview of current practices and standards. DESIGN A literature search of Medline, Embase and Cochrane Library databases was performed with search strategies tailored to each database (search from 2010 to January 2023). The search results were screened independently by two reviewers against pre-determined inclusion and exclusion criteria. Studies were deemed eligible if conducted in vivo/ex vivo in human adults (>18 years) using any type of CT to assess subchondral bone in OA. Extracted data from eligible studies were compiled in a qualitative summary and formal narrative synthesis. RESULTS This analysis included 202 studies. Four groups of CT modalities were identified to have been used for subchondral bone assessment in OA across nine anatomical locations. Subchondral bone parameters measuring similar features of OA were combined in six categories: (i) microstructure, (ii) bone adaptation, (iii) gross morphology (iv) mineralisation, (v) joint space, and (vi) mechanical properties. CONCLUSIONS Clinically meaningful parameter categories were identified as well as categories with the potential to become relevant in the clinical field. Furthermore, we stress the importance of quantification of parameters to improve their sensitivity and reliability for the evaluation of OA disease progression and the need for standardised measurement methods to improve their clinical value.
Collapse
Affiliation(s)
- Jemima E Schadow
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - David Maxey
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom.
| | - Toby O Smith
- Warwick Medical School, University of Warwick, United Kingdom.
| | - Mikko A J Finnilä
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Sarah L Manske
- Department of Radiology, McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Neil A Segal
- Department of Rehabilitation Medicine, The University of Kansas Medical Center, Kansas City, United States.
| | - Andy Kin On Wong
- Joint Department of Medical Imaging, University Health Network, Toronto, Canada; Schroeder's Arthritis Institute, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.
| | - Tom Turmezei
- Department of Radiology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
3
|
Ozasa R, Matsugaki A, Ishimoto T, Kamura S, Yoshida H, Magi M, Matsumoto Y, Sakuraba K, Fujimura K, Miyahara H, Nakano T. Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone 2022; 155:116261. [PMID: 34826630 DOI: 10.1016/j.bone.2021.116261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Although increased bone fragility is a well-recognized consequence in patients with rheumatoid arthritis (RA), the essential cause of degenerate bone strength remains unknown. This study aimed to determine factors contributing to bone dysfunction in RA by focusing on the bone matrix micro-arrangement, based on the preferential orientation of collagen and the related apatite c-axis as a bone quality index. The classical understanding of RA is limited to its severe pathological conditions associated with inflammation-induced bone loss. This study examined periarticular proximal tibiae from RA patients as compared with osteoarthritis (OA) patients as controls. Bone tissue material strength was disrupted in the RA group compared with the control. Collagen/apatite micro-arrangement and vBMD were significantly lower in the RA group, and the rate of decrease in apatite c-axis orientation (-45%) was larger than that in vBMD (-22%). Multiple regression analysis showed that the degree of apatite c-axis orientation (β = 0.52, p = 1.9 × 10-2) significantly contributed to RA-induced bone material impairment as well as vBMD (β = 0.46, p = 3.8 × 10-2). To the best of our knowledge, this is the first report to demonstrate that RA reduces bone material strength by deteriorating the micro-arrangement of collagen/apatite bone matrix, leading to decreased fracture resistance. Our findings represent the significance of bone quality-based analysis for precise evaluation and subsequent therapy of the integrity and soundness of the bone in patients with RA.
Collapse
Affiliation(s)
- Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Kamura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hiroto Yoshida
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Mayu Magi
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Yoshihiro Matsumoto
- Product Research Department, Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | - Koji Sakuraba
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Kenjiro Fujimura
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Hisaaki Miyahara
- Department of Orthopaedic Surgery, National Hospital Organization, Kyushu Medical Center, 1-8-1 Jigyouhama chuo-ku, Fukuoka, Fukuoka 811-1395, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Tozar A, Karahan İH. Electrophoretic deposition of collagen-reinforced HA/CTS biocomposite coatings. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.19.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, the biomimetic approach described as reverse engineering by trying to copy the excellent concepts of nature and taking nature as a model has been used. In order to mimic the structure of natural bone, hydroxyapatite (HA), chitosan (CTS) and collagen have been combined as a novel type of biocomposite coating. HA/CTS/collagen biocomposite coatings have been successfully electrophoretically deposited on Ti6Al4V biomedical implants. A novel type of a polyelectrolyte consisting of ethanol, water and isopropyl alcohol has been used for the electrophoretic deposition process. The effect of collagen concentration on the structural and corrosion protection performance of the biocomposite coatings has been investigated by X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, potentiodynamic polarization (Tafel extrapolation) and electrochemical impedance spectroscopy techniques. The electrophoretically deposited HA/CTS/collagen biocomposite coatings have exhibited corrosion protection against simulated physiological body fluid up to five times better than that of bare Ti6Al4V alloy.
Collapse
Affiliation(s)
- Ali Tozar
- Physics Department, Faculty of Arts and Sciences, Mustafa Kemal University, Antakya, Turkey
| | - İsmail Hakkı Karahan
- Physics Department, Faculty of Arts and Sciences, Mustafa Kemal University, Antakya, Turkey
| |
Collapse
|
5
|
Kuroshima S, Kaku M, Ishimoto T, Sasaki M, Nakano T, Sawase T. A paradigm shift for bone quality in dentistry: A literature review. J Prosthodont Res 2017. [PMID: 28633987 DOI: 10.1016/j.jpor.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The aim of this study was to present the current concept of bone quality based on the proposal by the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone quality. STUDY SELECTION This is a literature review which focuses on collagen, biological apatite (BAp), and bone cells such as osteoblasts and osteocytes. RESULTS In dentistry, the term "bone quality" has long been considered to be synonymous with bone mineral density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of bone quality as "the sum of all characteristics of bone that influence the bone's resistance to fracture," which is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in controlling the current concept of bone quality in bone around hip and dental implants. CONCLUSION The current concept of bone quality is crucial for understanding bone mechanical functions. BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading dynamically adapts bone quality. Understanding the current concept of bone quality is required in dentistry.
Collapse
Affiliation(s)
- Shinichiro Kuroshima
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan.
| | - Masaru Kaku
- Division of Bio-prosthodontics, Graduate School of Medical and Dental Science, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata-City, Niigata 951-8514, Japan
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita-city, Osaka 565-0871, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki-city, Nagasaki 852-8588, Japan
| |
Collapse
|
6
|
Lee JW, Yun HS, Nakano T. Induction of Biological Apatite Orientation as a Bone Quality Parameter in Bone Regeneration Using Hydroxyapatite/Poly ɛ-Caprolactone Composite Scaffolds. Tissue Eng Part C Methods 2016; 22:856-63. [PMID: 27474256 DOI: 10.1089/ten.tec.2016.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in the biological apatite (BAp) c-axis orientation were investigated as a bone quality parameter in bone regeneration using hydroxyapatite/poly ɛ-caprolactone (HA/PCL) composite scaffolds. Three-dimensional (3D) HA/PCL composite scaffolds were fabricated using a layer manufacturing process in three grid sizes (200-, 600-, and 1000 μm) and grafted into the forearm ulna of New Zealand white rabbits. The cross-sectional areas of the bones regenerated from the scaffolds with 600- and 1000-μm grid sizes were significantly larger than those from the scaffold with 200-μm grid sizes, whereas bone mineral density in the regenerated regions did not differ between the three grid sizes. Moreover, the BAp c-axis orientation in the bones regenerated from the scaffolds with grid sizes of 600- and 1000 μm was not significantly different; however, both scaffolds showed enhanced BAp orientation, although the degree of BAp orientation was lower than that in intact bones. In conclusion, HA/PCL composite 3D scaffolds with 600- and 1000-μm grid sizes induced BAp c-axis orientation and showed good bone regeneration behavior in vivo.
Collapse
Affiliation(s)
- Jee-Wook Lee
- 1 School of Advanced Materials Engineering, Kookmin University , Seoul, Korea
| | - Hui-Suk Yun
- 2 Powder and Ceramics Division, Korea Institute of Materials Science , Changwon, Korea
| | - Takayoshi Nakano
- 3 Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University , Suita, Japan
| |
Collapse
|