1
|
Gómez-Pinedo U, Torre-Fuentes L, Matías-Guiu JA, Pytel V, Ojeda-Hernández DD, Selma-Calvo B, Montero-Escribano P, Vidorreta-Ballesteros L, Matías-Guiu J. Exonic variants of the P2RX7 gene in familial multiple sclerosis. Neurologia 2025; 40:150-160. [PMID: 36470550 DOI: 10.1016/j.nrleng.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Several studies have analysed the presence of P2RX7 variants in patients with MS, reporting diverging results. METHODS Our study analyses P2RX7 variants detected through whole-exome sequencing (WES). RESULTS We analysed P2RX7, P2RX4, and CAMKK2 gene variants detected by whole-exome sequencing in all living members (n = 127) of 21 families including at least 2 individuals with multiple sclerosis. P2RX7 gene polymorphisms previously associated with autoimmune disease. Although no differences were observed between individuals with and without multiple sclerosis, we found greater polymorphism of gain-of-function variants of P2RX7 in families with individuals with multiple sclerosis than in the general population. Copresence of gain-of-function and loss-of-function variants was not observed to reduce the risk of presenting the disease. Three families displayed heterozygous gain-of-function SNPs in patients with multiple sclerosis but not in healthy individuals. We were unable to determine the impact of copresence of P2RX4 and CAMKK2 variants with P2RX7 variants, or the potential effect of the different haplotypes described in the gene. No clinical correlations with other autoimmune diseases were observed in our cohort. CONCLUSIONS Our results support the hypothesis that the disease is polygenic and point to a previously unknown mechanism of genetic predisposition to familial forms of multiple sclerosis. P2RX7 gene activity can be modified, which suggests the possibility of preventive pharmacological treatments for families including patients with familial multiple sclerosis.
Collapse
Affiliation(s)
- U Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain.
| | - L Torre-Fuentes
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J A Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - V Pytel
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - D D Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - B Selma-Calvo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - P Montero-Escribano
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - L Vidorreta-Ballesteros
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - J Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain; Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Lu Y, Cui Y, Hou L, Jiang Y, Shang J, Wang L, Xu H, Ye W, Qiu Y, Guo B. Optimized automated radiosynthesis of 18F-JNJ64413739 for purinergic ion channel receptor 7 (P2X7R) imaging in osteoporotic model rats. Front Pharmacol 2024; 15:1517127. [PMID: 39726781 PMCID: PMC11669691 DOI: 10.3389/fphar.2024.1517127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent 18F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats. Methods A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the 18F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC). The resulting 18F-JNJ64413739 was subjected to quality control tests. Small-animal PET/CT imaging studies were performed in sham and osteoporotic model rats. Results The optimized automated radiossynthesis of 18F-JNJ64413739 was successfully completed in approximately 100 min with non-decay-corrected radiochemical yield of 6.7% ± 3.8% (n = 3), >97% radiochemical purity and >14.3 ± 1.3 GBq/μmol molar activity. The product met all clinical quality requirements. 18F-JNJ64413739 PET/CT imaging showed revealed significantly higher radioactivity uptake in various brain regions of the osteoporotic model rats compared to sham control group. Conclusion We successfully optimized the automated radiosynthesis of 18F-JNJ64413739. The resulting tracer not only met clinical quality requirements but also demonstrated potential for clinical application in the diagnosis of osteoporosis, as evidenced by higher radioactivity uptake in various brain regions of osteoporotic model rats compared to normal controls.
Collapse
Affiliation(s)
- Yingtong Lu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan Cui
- Traditional Chinese Medicine Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Hou
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjie Shang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yang Qiu
- Department of Gynecology, Jiangmen Wuyi Traditional Chinese Medicine Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bin Guo
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Tang Y, Qiao C, Li Q, Zhu X, Zhao R, Peng X. Research Progress in the Relationship Between P2X7R and Cervical Cancer. Reprod Sci 2023; 30:823-834. [PMID: 35799022 DOI: 10.1007/s43032-022-01022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Xiaodi Zhu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
5
|
Ren H, Liu H, Huang L, Xie W, Lin D, Luo D. Association of ESR1 and ESR2 Polymorphisms with Osteoporosis: A Meta-Analysis from 36 Studies. J Clin Densitom 2022; 25:699-711. [PMID: 36175246 DOI: 10.1016/j.jocd.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Recently, the roles of ESR1 and ESR2 polymorphisms in osteoporosis have been extensively reported, with conflicting findings. Therefore, we performed this present study to evaluate the potential associations between ESR1 and ESR2 polymorphisms and osteoporosis risk. METHODOLOGY All included literatures published up to April 2021 were identified by searching Pubmed, Embase, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) and Wanfang databases. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated the associations using a fixed or random effects model. RESULTS 36 observational studies involving five gene polymorphisms (ESR1 PvuII, ESR1 XbaI, ESR1 G2014A, ESR2 AluI and ESR2 RsaI) covering 12507 cases and 18487 controls were included. The results of our meta-analysis demonstrated the variant A allele of ESR2 RsaI polymorphism might play a remarkable protective role in developing osteoporosis under all genetic models. However, no associations were observed between ESR1 PvuII, ESR1 XbaI, ESR1 G2014A and ESR2 AluI polymorphisms with the risk of osteoporosis under all genetic models. CONCLUSIONS Our meta-analysis suggests that genetic polymorphism in ESR2 RsaI may lead to decreased risk for osteoporosis. Further larger studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Hongyue Ren
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, 363000 Fujian Province, China
| | - Hui Liu
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, 363000 Fujian Province, China
| | - Lifeng Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, 363000 Fujian Province, China
| | - Wei Xie
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, 363000 Fujian Province, China
| | - Dasheng Lin
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, 363000 Fujian Province, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, 363000 Fujian Province, China.
| |
Collapse
|
6
|
García-Rojas MD, Palma-Cordero G, Martínez-Ramírez CO, Ponce de León-Suárez V, Valdés-Flores M, Castro-Hernández C, Rubio-Lightbourn J, Hernández-Zamora E, Reyes-Maldonado E, Velázquez-Cruz R, Barredo-Prieto B, Casas-Avila L. Association of Polymorphisms in Estrogen Receptor Genes ( ESR1 and ESR2) with Osteoporosis and Fracture-Involvement of Comorbidities and Epistasis. DNA Cell Biol 2022; 41:437-446. [PMID: 35285722 DOI: 10.1089/dna.2021.1165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the ESR1/ESR2 genes play a role in osteoporosis (OP). Our objective was to determine associations of polymorphisms in ESR genes with OP and fracture, SNP-SNP interactions, and involvement of comorbidities. We analyzed 170 Mexican osteoporotic women (FNOP), 173 with hip fracture (HFx), and 210 controls. The SNPs, ESR1 rs2234693CC, rs851982CC and rs1999805AA, were associated with reduced OP risk (odds ratios [ORs] = 0.35, 0.40 and 0.32, respectively; p < 0.05); rs2234693CC was associated with reduced fracture risk (OR = 0.24; p < 0.05). The obese/overweight carriers of rs9340799GG had a lower OP (OR = 0.15, p = 0.016) and fracture (OR = 0.12, p = 0.0057) risk. The rs9479055AA and rs3020404AA hypertensive carriers had a higher OP risk (OR = 5.96, p = 0.032; and OR = 5.29, p = 0.02, respectively). In addition, rs3020404AA had a higher risk of fracture (OR = 4.90, p = 0.045). The rs2228480GG hypertensive carriers had a higher risk of fracture (OR = 6.22, p = 0.0038). We found a synergic relation between the ESR1 rs3020331 and rs1999805 in femoral neck OP and HFx. The rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms are associated with a high risk forming a haplotype. The epistasis analysis suggests the contribution of both genes (ESR1/ESR2) to the risk of OP and fracture. Epistasis and involvement of obesity and hypertension lead to a significant modification of the risk.
Collapse
Affiliation(s)
| | - Grecia Palma-Cordero
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | - Margarita Valdés-Flores
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Clementina Castro-Hernández
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Julieta Rubio-Lightbourn
- Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Edgar Hernández-Zamora
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Elba Reyes-Maldonado
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Blanca Barredo-Prieto
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| | - Leonora Casas-Avila
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, Ciudad de México, México
| |
Collapse
|
7
|
Souza RDC, Louvain de Souza T, Ferreira CDS, Nascimento LS, Nahn EP, Peixoto-Rangel AL. Associations Between the Purinergic Receptor P2X7 and Leprosy Disease. Front Genet 2021; 12:730991. [PMID: 34795692 PMCID: PMC8593470 DOI: 10.3389/fgene.2021.730991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Leprosy is an infectious disease still highly prevalent in Brazil, having been detected around 27,863 new cases in 2019. Exposure to Mycobacterium leprae may not be sufficient to trigger the disease, which seems to be influenced by host immunogenetics to determine resistance or susceptibility. The purinergic receptor P2X7 plays a crucial role in immunity, inflammation, neurological function, bone homeostasis, and neoplasia and is associated with several infectious and non-infectious diseases. Here, we first compare the P2RX7 expression in RNA-seq experiments from 16 leprosy cases and 16 healthy controls to establish the magnitude of allele-specific expression for single-nucleotide polymorphisms of the gene P2RX7 and to determine the level of gene expression in healthy and diseased skin. In addition, we also evaluated the association of two P2RX7 single-nucleotide polymorphisms (c.1513A>C/rs3751143 and c.1068A>G/rs1718119) with leprosy risk. The expression of P2RX7 was found significantly upregulated at macrophage cells from leprosy patients compared with healthy controls, mainly in macrophages from lepromatous patients. Significant risk for leprosy disease was associated with loss function of rs3751143 homozygous mutant CC [CC vs. AA: p = 0.001; odds ratio (OR) = 1.676, 95% CI = 1.251–2.247] but not with heterozygous AC (AC vs. AA: p = 0.001; OR = 1.429, 95% CI = 1.260–1.621). Contrary, the polymorphic A allele from the gain function of rs1718119 was associated with protection for the development of leprosy, as observed in the dominant model (AA + AG × GG p = 0.0028; OR = 0.03516; CI = 0.1801–0.6864). So, our results suggest that the functional P2X7 purinergic receptor may exert a key role in the Mycobacterium death inside macrophages and inflammatory response, which is necessary to control the disease.
Collapse
Affiliation(s)
- Rebeka da Conceição Souza
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thaís Louvain de Souza
- Faculdade de Medicina de Campos, Campos dos Goytacazes, Brazil.,Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Cristina Dos Santos Ferreira
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Letícia Silva Nascimento
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Alba Lucínia Peixoto-Rangel
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
8
|
Moradifard S, Hoseinbeyki M, Emam MM, Parchiniparchin F, Ebrahimi-Rad M. Association of the Sp1 binding site and -1997 promoter variations in COL1A1 with osteoporosis risk: The application of meta-analysis and bioinformatics approaches offers a new perspective for future research. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 786:108339. [PMID: 33339581 DOI: 10.1016/j.mrrev.2020.108339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022]
Abstract
As a complex disease, osteoporosis is influenced by several genetic markers. Many studies have examined the link between the Sp1 binding site +1245 G > T (rs1800012) and -1997 G > T (rs1107946) variations in the COL1A1 gene with osteoporosis risk. However, the findings of these studies have been contradictory; therefore, we performed a meta-analysis to aggregate additional information and obtain increased statistical power to more efficiently estimate this correlation. A meta-analysis was conducted with studies published between 1991-2020 that were identified by a systematic electronic search of the Scopus and Clarivate Analytics databases. Studies with bone mineral density (BMD) data and complete genotypes of the single-nucleotide variations (SNVs) for the overall and postmenopausal female population were included in this meta-analysis and analyzed using the R metaphor package. A relationship between rs1800012 and significantly decreased BMD values at the lumbar spine and femoral neck was found in individuals carrying the "ss" versus the "SS" genotype in the overall population according to a random effects model (p < 0.0001). Similar results were also found in the postmenopausal female population (p = 0.003 and 0.0002, respectively). Such findings might be an indication of increased osteoporosis risk in both studied groups in individuals with the "ss" genotype. Although no association was identified between the -1997 G > T and low BMD in the overall population, those individuals with the "GT" genotype showed a higher level of BMD than those with "GG" in the subgroup analysis (p = 0.007). To determine which transcription factor (TF) might bind to the -1997 G > T in COL1A1, 45 TFs were identified based on bioinformatics predictions. According to the GSE35958 microarray dataset, 16 of 45 TFs showed differential expression profiles in osteoporotic human mesenchymal stem cells relative to normal samples from elderly donors. By identifying candidate TFs for the -1997 G > T site, our study offers a new perspective for future research.
Collapse
Affiliation(s)
| | | | - Mohammad Mehdi Emam
- Rheumatology Ward, Loghman Hospital, Shahid Beheshti Medical University (SBMU), Tehran, Iran
| | | | | |
Collapse
|
9
|
Gohar EY, Kasztan M, Zhang S, Inscho EW, Pollock DM. Role for ovarian hormones in purinoceptor-dependent natriuresis. Biol Sex Differ 2020; 11:52. [PMID: 32928299 PMCID: PMC7490965 DOI: 10.1186/s13293-020-00329-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/01/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Premenopausal women have a lower risk of hypertension compared to age-matched men and postmenopausal women. P2Y2 and P2Y4 purinoceptor can be considered potential contributors to hypertension due to their emerging roles in regulating renal tubular Na+ transport. Activation of these receptors inhibits epithelial Na+ channel activity (ENaC) via a phospholipase C (PLC)-dependent pathway resulting in natriuresis. We recently reported that activation of P2Y2 and P2Y4 receptors in the renal medulla by UTP promotes natriuresis in male and ovariectomized (OVX) rats, but not in ovary-intact females. This led us to hypothesize that ovary-intact females have greater basal renal medullary activity of P2 (P2Y2 and P2Y4) receptors regulating Na+ excretion compared to male and OVX rats. METHODS To test our hypothesis, we determined (i) the effect of inhibiting medullary P2 receptors by suramin (750 μg/kg/min) on urinary Na+ excretion in anesthetized male, ovary-intact female, and OVX Sprague Dawley rats, (ii) mRNA expression and protein abundance of P2Y2 and P2Y4 receptors, and (iii) mRNA expression of their downstream effectors (PLC-1δ and ENaCα) in renal inner medullary tissues obtained from these three groups. We also subjected cultured mouse inner medullary collecting duct cells (segment 3, mIMCD3) to different concentrations of 17ß-estradiol (E2, 0, 10, 100, and 1000 nM) to test whether E2 increases mRNA expression of P2Y2 and P2Y4 receptors. RESULTS Acute P2 inhibition attenuated urinary Na+ excretion in ovary-intact females, but not in male or OVX rats. We found that P2Y2 and P2Y4 mRNA expression was higher in the inner medulla from females compared to males or OVX. Inner medullary lysates showed that ovary-intact females have higher P2Y2 receptor protein abundance, compared to males; however, OVX did not eliminate this sex difference. We also found that E2 dose-dependently upregulated P2Y2 and P2Y4 mRNA expression in mIMCD3. CONCLUSION These data suggest that ovary-intact females have enhanced P2Y2 and P2Y4-dependent regulation of Na+ handling in the renal medulla, compared to male and OVX rats. We speculate that the P2 pathway contributes to facilitated renal Na+ handling in premenopausal females.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 720 20th St S, Kaul 840, Birmingham, AL, 35233, USA.
| | - Malgorzata Kasztan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 720 20th St S, Kaul 840, Birmingham, AL, 35233, USA
| | - Shali Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 720 20th St S, Kaul 840, Birmingham, AL, 35233, USA
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 720 20th St S, Kaul 840, Birmingham, AL, 35233, USA
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 720 20th St S, Kaul 840, Birmingham, AL, 35233, USA
| |
Collapse
|
10
|
Yang Z, Yue Z, Ma X, Xu Z. Calcium Homeostasis: A Potential Vicious Cycle of Bone Metastasis in Breast Cancers. Front Oncol 2020; 10:293. [PMID: 32211326 PMCID: PMC7076168 DOI: 10.3389/fonc.2020.00293] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Cancers have been considered as one of the most severe health problems in the world. Efforts to elucidate the cancer progression reveal the importance of bone metastasis for tumor malignancy, one of the leading causes for high mortality rate. Multiple cancers develop bone metastasis, from which breast cancers exhibit the highest rate and have been well-recognized. Numerous cells and environmental factors have been believed to synergistically facilitate bone metastasis in breast cancers, from which breast cancer cells, osteoclasts, osteoblasts, and their produced cytokines have been well-recognized to form a vicious cycle that aggravates tumor malignancy. Except the cytokines or chemokines, calcium ions are another element largely released from bones during bone metastasis that leads to hypercalcemia, however, have not been well-characterized yet in modulation of bone metastasis. Calcium ions act as a type of unique second messenger that exhibits omnipotent functions in numerous cells, including tumor cells, osteoclasts, and osteoblasts. Calcium ions cannot be produced in the cells and are dynamically fluxed among extracellular calcium pools, intracellular calcium storages and cytosolic calcium signals, namely calcium homeostasis, raising a possibility that calcium ions released from bone during bone metastasis would further enhance bone metastasis and aggravate tumor progression via the vicious cycle due to abnormal calcium homeostasis in breast cancer cells, osteoclasts and osteoblasts. TRPs, VGCCs, SOCE, and P2Xs are four major calcium channels/routes mediating extracellular calcium entry and affect calcium homeostasis. Here we will summarize the overall functions of these four calcium channels in breast cancer cells, osteoclasts and osteoblasts, providing evidence of calcium homeostasis as a vicious cycle in modulation of bone metastasis in breast cancers.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiying Yue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinrun Ma
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Shanghai Institute of Immunology Center for Microbiota & Immune Related Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Identification of rs11615992 as a novel regulatory SNP for human P2RX7 by allele-specific expression. Mol Genet Genomics 2019; 295:23-30. [PMID: 31410611 DOI: 10.1007/s00438-019-01598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
P2RX7 (purinergic receptor P2X 7) is an important membrane ion channel and involved in multiple physiological processes. One non-synonymous SNP on P2RX7, rs3751143, had been proven to reduce ion channel function and further associated with multiple diseases. However, it was still unclear whether there were other cis-regulatory elements for P2RX7, which might further contribute to related diseases. Allele-specific expression (ASE) is a robust and sensitive approach to identify the potential functional region in human genome. In the current study, we measured ASE on rs3751143 in lung tissues and observed a consistent excess of A allele over C (P = 0.001), which indicated that SNP(s) in linkage disequilibrium (LD) could regulate P2RX7 expression. By analyzing the 1000 genomes project data for Chinese, one SNP locating ~ 5 kb away and downstream of P2RX7, rs11615992, was disclosed to be in strong LD with rs3751143. The dual-luciferase assay confirmed that rs11615992 could alter target gene expression in lung cell line. Through chromosome conformation capture, it was verified that the region surrounding rs11615992 could interact with P2RX7 promoter and effect as an enhancer. By chromatin immunoprecipitation, the related transcription factor POU2F1 (POU class 2 homeobox 1) was recognized to bind the region spanning rs11615992. Our work identified a novel long-distance cis-regulatory SNP for P2RX7, which might contribute to multiple diseases.
Collapse
|
12
|
Jørgensen NR. Role of the purinergic P2X receptors in osteoclast pathophysiology. Curr Opin Pharmacol 2019; 47:97-101. [DOI: 10.1016/j.coph.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022]
|
13
|
The association of genetic variants in FGFR2 with osteoporosis susceptibility in Chinese Han population. Biosci Rep 2019; 39:BSR20190275. [PMID: 31113874 PMCID: PMC6549083 DOI: 10.1042/bsr20190275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/19/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
Objective: The present study was conducted for exploring the influence of fibroblast growth factor 2 receptor (FGFR2) gene polymorphisms on osteoporosis occurrence risk in the Chinese population. Methods: Polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) was conducted for the genotyping of polymorphism in 145 osteoporosis patients and 123 controls. The status of Hardy–Weinberg equilibrium was detected in the control group. Genotype and allele frequency comparison of polymorphism between the two groups was performed by χ2 test, odds ratio (OR) with 95% confidence interval (95% CI) was used for the result expression about the association of FGFR2 polymorphisms with osteoporosis. Furthermore, the results were adjusted by clinical features via logistic regression analysis. Results: AA genotype and A allele of rs2420946 were significantly associated with the increased risk of osteoporosis development adjusted by clinical features (OR = 2.238, 95% CI = 1.055–4.746; OR = 1.482, 95% CI = 1.042–2.019). Similarly, CC genotype and C allele frequencies of rs1219648 were detected the significant difference between the case and control groups (P<0.01); moreover, it was still significant by the adjustion of clinical features, which indicated that rs1219648 was significantly associated with the risk of osteoporosis occurrence (OR = 2.900, 95% CI = 1.341–6.271; OR = 1.602, 95% CI = 1.126–2.279). Haplotype T-A-C-T also obviously increased the occurrence risk of osteoporosis (OR = 1.844, 95% CI = 1.180–2.884). Besides, the significant interaction of FGFR2 polymorphisms with drinking status in osteoporosis was also found (P<0.05), especially rs2981579. Conclusion:FGFR2 rs2420946 and rs1219648 polymorphisms may be the risk factor of osteoporosis in Chinese population. Furthermore, the interaction of FGFR2 polymorphisms with drinking may play an important role in osteoporosis etiology.
Collapse
|
14
|
Pan Z, Zhang X, Ma Y, Xu S, Shuai Z, Pan F, Sun G. Genetic variation of rs7958311 in P2X7R gene is associated with the susceptibility and disease activity of ankylosing spondylitis. Postgrad Med J 2019; 95:251-257. [PMID: 30992418 DOI: 10.1136/postgradmedj-2018-136036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/05/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To describe association between the genetic variation of inflammation-associated gene, P2X7R, and ankylosing spondylitis (AS) susceptibility. METHODS Four single nucleotide polymorphisms (SNPs) of P2 X 7 R gene were genotyped in 673 patients with AS and 687 healthy controls. Allele and genotype frequencies and different genetic models were performed to calculate ORs and 95% CIs, the demographic and clinical characteristics of patients were recorded. The data analyses were also conducted by sex. RESULTS Compared with controls, genetic variation in rs7958311 but not the other three SNPs was statistically significant in female patients (χ2=6.907, p=0.032). Specifically, the P2 X 7 R gene rs7958311 polymorphism A allele showed a protective effect in AS susceptibility (OR=0.704, p=0.049, pFDR=0.061). In addition, female individuals with GA and/or AA genotypes had a lower risk of having AS compared with those with GG genotype (GA vs GG: OR=0.446, p=0.012, pFDR=0.030; AA vs GG: OR=0.440, p=0.039, pFDR=0.061; GA/AA vs GG: OR=0.445, p=0.009, pFDR=0.030). Furthermore, individuals with A allele (ie, GA/AA vs GG) had a higher disease activity, including Bath Ankylosing Spondylitis Disease Activity Index (overall: Z=- 2.630, p=0.014; male: Z=- 2.243, p=0.025), Schober test (overall: Z=- 3.041, p<0.001; male: Z=- 2.243, p=0.025) and chest expansion (overall: Z=- 3.895, p=0.004; male: Z=- 2.403, p=0.016). CONCLUSION The allelic variation of rs7958311 SNP in P2X7R gene may have a protective effect on AS susceptibility in females and is associated with disease activity in male patients.
Collapse
Affiliation(s)
- Zhipeng Pan
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China .,School of Public Health, The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Guoping Sun
- Department of Medical Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|