1
|
Cheng C, Xing Z, Hu Q, Kong N, Liao C, Xu S, Zhang J, Kang F, Zhu X. A bone-targeting near-infrared luminescence nanocarrier facilitates alpha-ketoglutarate efficacy enhancement for osteoporosis therapy. Acta Biomater 2024; 173:442-456. [PMID: 37984632 DOI: 10.1016/j.actbio.2023.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Osteoporosis (OP), which largely increases the risk of fractures, is the most common chronic degenerative orthopedic disease in the elderly due to the imbalance of bone homeostasis. Alpha-ketoglutaric acid (AKG), an endogenous metabolic intermediate involved in osteogenesis, plays critical roles in osteogenic differentiation and mineralization and the inhibition of osteoclastogenic differentiation. However, the low bioavailability and poor bone-targeting efficiency of AKG seriously limit its efficacy in OP treatment. In this work, a bone-targeting, near-infrared emissive lanthanide luminescence nanocarrier loaded with AKG (β-NaYF4:7%Yb, 60%Nd@NaLuF4@mSiO2-EDTA-AKG, abbreviated as LMEK) is developed for the enhancement of AKG efficacy in OP therapy. By utilizing the NIR-II luminescence (>1000 nm) of LMEK, whole-body bone imaging with high spatial resolution is achieved to confirm the bone enrichment of AKG noninvasively in vivo. The results reveal that LMEK exhibits a remarkable OP therapeutic effect in improving the osseointegration of the surrounding bone in the ovariectomized OP mice models, which is validated by the enhanced inhibition of osteoclast through hypoxia-inducible factor-1α suppression and promotion of osteogenic differentiation in osteoblast. Notably, the dose of AKG in LMEK can be reduced to only 0.2 % of the dose when pure AKG is used in therapy, which dramatically improves the bioavailability of AKG and mitigates the metabolism burden. This work provides a strategy to conquer the low utilization of AKG in OP therapy, which not only overcomes the challenges in AKG efficacy for OP treatment but also offers insights into the development and application of other potential drugs for skeletal diseases. STATEMENT OF SIGNIFICANCE: Alpha-ketoglutarate (AKG) is an intermediate within the Krebs cycle, participating in diverse metabolic and cellular processes, showing potential for osteoporosis (OP) therapy. However, AKG's limited bioavailability and inefficient bone-targeting hinder its effectiveness in treating OP. Herein, a near-infrared emissive nanocarrier is developed that precisely targets bones and delivers AKG, bolstering its effectiveness in OP therapy. Thanks to this efficient bone-targeting delivery, the AKG dosage is reduced to 0.2 % of the conventional treatment level. This marks the first utilization of a bone-targeting nanocarrier to amplify AKG's bioavailability and OP therapy efficacy. Furthermore, the mechanism of AKG-loaded nanocarrier regulating the biological behavior of osteoclasts and osteoblasts mediated is tentatively explored.
Collapse
Affiliation(s)
- Chunan Cheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, Middle Yan Chang Road, Shanghai 200072, PR China
| | - Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, PR China
| | - Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, PR China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, PR China
| | - Chongshan Liao
- Department of Orthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, Middle Yan Chang Road, Shanghai 200072, PR China
| | - Sixin Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, PR China
| | - Jieying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, PR China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, No. 399, Middle Yan Chang Road, Shanghai 200072, PR China.
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, PR China.
| |
Collapse
|
2
|
Yu KH, Hung HY. Synthetic strategy and structure-activity relationship (SAR) studies of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1, Lificiguat): a review. RSC Adv 2021; 12:251-264. [PMID: 35424505 PMCID: PMC8978903 DOI: 10.1039/d1ra08120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
Since 1994, YC-1 (Lificiguat, 3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of hypoxia-inducible factor-1 (HIF-1) and NF-κB. Recently, Riociguat®, the first soluble guanylate cyclase (sGC) stimulator drug used to treat pulmonary hypertension and pulmonary arterial hypertension, was derived from the YC-1 structure. In this review, we aim to highlight the synthesis and structure–activity relationships in the development of YC-1 analogs and their possible indications. Since 1994, YC-1 (Lificiguat) has been synthesized, and many targets for special bioactivities have been explored, such as stimulation of platelet-soluble guanylate cyclase, indirect elevation of platelet cGMP levels, and inhibition of HIF-1 and NF-κB.![]()
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy College of Medicine, National Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
3
|
Yan T, Xie Y, He H, Fan W, Huang F. Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 2021; 48:168. [PMID: 34278439 PMCID: PMC8285047 DOI: 10.3892/ijmm.2021.5001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic-related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
Collapse
Affiliation(s)
- Tong Yan
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yongjian Xie
- Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
4
|
Korkmaz Y, Puladi B, Galler K, Kämmerer PW, Schröder A, Gölz L, Sparwasser T, Bloch W, Friebe A, Deschner J. Inflammation in the Human Periodontium Induces Downregulation of the α 1- and β 1-Subunits of the sGC in Cementoclasts. Int J Mol Sci 2021; 22:ijms22020539. [PMID: 33430449 PMCID: PMC7827426 DOI: 10.3390/ijms22020539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α1- and β1-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α1- and β1-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α1- and β1-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption.
Collapse
Affiliation(s)
- Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-17-7247
| | - Behrus Puladi
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany;
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, 93042 Regensburg, Germany;
| | - Peer W. Kämmerer
- Department of Oral- and Maxillofacial and Plastic Surgery, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Lina Gölz
- Department of Orthodontics and Orofacial Orthopedics, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, 91054 Erlangen, Germany;
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, 50933 Cologne, Germany;
| | - Andreas Friebe
- Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| |
Collapse
|
5
|
Hsiao CY, Chen TH, Chu TH, Ting YN, Tsai PJ, Shyu JF. Calcitonin Induces Bone Formation by Increasing Expression of Wnt10b in Osteoclasts in Ovariectomy-Induced Osteoporotic Rats. Front Endocrinol (Lausanne) 2020; 11:613. [PMID: 33013696 PMCID: PMC7506163 DOI: 10.3389/fendo.2020.00613] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Calcitonin is a small peptide hormone secreted from the parafollicular cells of the thyroid gland in response to an increase in serum calcium. The inhibition of osteoclastic resorption is the main mechanism by which calcitonin quickly decreases circulating calcium levels. Although calcitonin pharmacologically acts on osteoclasts to prevent bone resorption, the results of studies on genetically modified animals have shown that the physiological effect of calcitonin is in the inhibition of osteoblastic bone formation. Because the calcitonin receptor is only expressed in osteoclasts, the effect of calcitonin on osteoblasts maybe indirect and mediated via osteoclasts. Wnt ligands are involved in various aspects of skeletal biology, including bone remodeling and endochondral bone formation. Wnt10b has recently been recognized as a clastokine, and is potentially a therapeutic target for treating bone disorders. However, the extent to which Wnt signaling is involved in bone physiology and disease is not yet fully understood. We hypothesize that calcitonin indirectly increases osteoblastic bone formation by inducing Wnt10b expression in osteoclasts. Micro-CT analysis revealed reduced bone loss in calcitonin-treated ovariectomized rats. The serum of animals treated with calcitonin had decreased TRAP5b and CTX-1 but increased osteocalcin, P1NP, and Wnt10b. Immunohistochemistry staining showed that the level of Wnt10b in the femur was increased in calcitonin-treated groups as compared with control groups. Hematopoietic mononuclear cells were separated from rat femur and tibia bone marrow, and were induced into osteoclasts following treatment with M-CSF and RANKL. In these cells, immunoconfocal microscopy and Western blot analysis showed that calcitonin induced an increase in Wnt10b expression. In a culture of osteoblasts isolated from neonatal rat calvariae, the calcitonin-treated osteoclast supernatant showed an increase in mineralization, as indicated by ALP and alizarin red staining. Taken together, these results indicate that calcitonin induces bone formation by increasing the expression of Wnt10b in osteoclasts in ovariectomy-induced osteoporotic rats. The present study provides in-depth information about the effects of calcitonin on bone remodeling and will thus help in the development of future potential therapeutic strategies for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chen-Yuan Hsiao
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei, Taiwan
- Department of Surgery, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Hua Chen
- School of Medicine, Institute of Anatomy and Cell Biology, National Yang Ming University, Taipei, Taiwan
- Department of Surgery, Trauma Center, Veterans General Hospital, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Hui Chu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Nien Ting
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Jiun Tsai
- School of Medicine, Institute of Anatomy and Cell Biology, National Yang Ming University, Taipei, Taiwan
- Department of Surgery, Trauma Center, Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Veterans General Hospital, Taipei, Taiwan
- *Correspondence: Pei-Jiun Tsai
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Department of Psychiatry, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
- Jia-Fwu Shyu
| |
Collapse
|
6
|
Targeting heme-oxidized soluble guanylate cyclase to promote osteoblast function. Drug Discov Today 2019; 25:422-429. [PMID: 31846712 DOI: 10.1016/j.drudis.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
The enzyme soluble guanylate cyclase (sGC) plays an essential part in the nitric oxide (NO) signaling pathway by binding to the prosthetic heme group; thereby catalyzing the synthesis of cyclic guanosine monophosphate (cGMP)-dependent protein kinases. Impaired NO-sGC-cGMP signaling could lead to osteoblast apoptosis by mechanisms involving the oxidative-stress-induced shift of the redox state of the reduced heme to oxidized sGC, leading to diminished heme binding to the enzyme and rendering the sGC unresponsive to NO. Targeting oxidized sGC to enhance cGMP production could restore proliferation and differentiation of osteoblasts into osteocytes. Here, the potential role of sGC activators of an oxidized or heme-free sGC as a target for promoting osteoblast function is reviewed and strategies for delivering drugs to bone are identified.
Collapse
|
7
|
Xiao S, Li Q, Hu L, Yu Z, Yang J, Chang Q, Chen Z, Hu G. Soluble Guanylate Cyclase Stimulators and Activators: Where are We and Where to Go? Mini Rev Med Chem 2019; 19:1544-1557. [PMID: 31362687 DOI: 10.2174/1389557519666190730110600] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/05/2019] [Accepted: 04/20/2019] [Indexed: 02/04/2023]
Abstract
Soluble Guanylate Cyclase (sGC) is the intracellular receptor of Nitric Oxide (NO). The activation of sGC results in the conversion of Guanosine Triphosphate (GTP) to the secondary messenger cyclic Guanosine Monophosphate (cGMP). cGMP modulates a series of downstream cascades through activating a variety of effectors, such as Phosphodiesterase (PDE), Protein Kinase G (PKG) and Cyclic Nucleotide-Gated Ion Channels (CNG). NO-sGC-cGMP pathway plays significant roles in various physiological processes, including platelet aggregation, smooth muscle relaxation and neurotransmitter delivery. With the approval of an sGC stimulator Riociguat for the treatment of Pulmonary Arterial Hypertension (PAH), the enthusiasm in the discovery of sGC modulators continues for broad clinical applications. Notably, through activating the NO-sGC-cGMP pathway, sGC stimulator and activator potentiate for the treatment of various diseases, such as PAH, Heart Failure (HF), Diabetic Nephropathy (DN), Systemic Sclerosis (SS), fibrosis as well as other diseases including Sickle Cell Disease (SCD) and Central Nervous System (CNS) disease. Here, we review the preclinical and clinical studies of sGC stimulator and activator in recent years and prospect for the development of sGC modulators in the near future.
Collapse
Affiliation(s)
- Sijia Xiao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University Kitashirakawa- Oiwakecho, Sakyo-Ku, kyoto, Japan
| | - Jie Yang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Qi Chang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| |
Collapse
|
8
|
Kalyanaraman H, Schall N, Pilz RB. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide 2018; 76:62-70. [PMID: 29550520 PMCID: PMC9990405 DOI: 10.1016/j.niox.2018.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/24/2023]
Abstract
Nitric oxide plays a central role in the regulation of skeletal homeostasis. In cells of the osteoblastic lineage, NO is generated in response to mechanical stimulation and estrogen exposure. Via activation of soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinases (PKGs), NO enhances proliferation, differentiation, and survival of bone-forming cells in the osteoblastic lineage. NO also regulates the differentiation and activity of bone-resorbing osteoclasts; here the effects are largely inhibitory and partly cGMP-independent. We review the skeletal phenotypes of mice deficient in NO synthases and PKGs, and the effects of NO and cGMP on bone formation and resorption. We examine the roles of NO and cGMP in bone adaptation to mechanical stimulation. Finally, we discuss preclinical and clinical data showing that NO donors and NO-independent sGC activators may protect against estrogen deficiency-induced bone loss. sGC represents an attractive target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Nadine Schall
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0652, USA.
| |
Collapse
|