1
|
Tao ZS, Hu XF, Wu XJ, Wang ZY, Shen CL. Protocatechualdehyde inhibits iron overload-induced bone loss by inhibiting inflammation and oxidative stress in senile rats. Int Immunopharmacol 2024; 141:113016. [PMID: 39182269 DOI: 10.1016/j.intimp.2024.113016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/05/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The accumulating evidence has made it clear that iron overload is a crucial mechanism in bone loss. Protocatechualdehyde (PCA) has also been used to prevent osteoporosis in recent years. Whether PCA can reverse the harmful effects of iron overload on bone mass in aged rats is still unknown. Therefore, this study aimed to assess the role of PCA in iron overload-induced bone loss in senile rats. In the aged rat model, we observed that iron overload affects bone metabolism and bone remodeling, manifested by bone loss and decreased bone mineral density. The administration of PCA effectively mitigated the detrimental effects caused by iron overload, and concomitant reduction in MDA serum levels and elevation of SOD were noted. In addition, PCA-treated rats were observed to have significantly increased bone mass and elevated expression of SIRT3,BMP2,SOD2 and reduced expression of TNF-α in bone tissue. We also observed that PCA was able to reduce oxidative stress and inflammation and restore the imbalance in bone metabolism. When MC3T3-E1 and RAW264.7 cells induced osteoblast and osteoclasts differentiation, PCA intervention could significantly recover the restriction of osteogenic differentiation and up-regulation of osteoclast differentiation treated by iron overload. Further, by detecting changes in ROS, SOD, MDA, expression of SIRT3 and mitochondrial membrane potentials, we confirm that the damage caused to cells by iron overload is associated with decreased SIRT3 activity, and that 3-TYP have similar effects on oxidative stress caused by FAC. In conclusion, PCA can resist iron overload-induced bone damage by improving SIRT3 activity, anti-inflammatory and anti-oxidative stress.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei 230022, Anhui, PR China
| | - Xu-Feng Hu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Zheng-Yu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China.
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei 230022, Anhui, PR China.
| |
Collapse
|
2
|
Tao Z, Yang M, Shen CL. Tauroursodeoxycholic acid combined with selenium accelerates bone regeneration in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:64. [PMID: 39404912 PMCID: PMC11480188 DOI: 10.1007/s10856-024-06803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/20/2024] [Indexed: 10/19/2024]
Abstract
More recently, increased studies have revealed that antioxidants can cure osteoporosis by inhibiting oxidative stress. Tauroursodeoxycholic acid (TUDCA) and Selenium (Se) have been confirmed to possess potent anti-oxidative effects and accelerate bone regeneration. In addition, very little is currently known about the effects of a combination with Se and TUDCA on bone defects in osteoporotic states. We, therefore, aimed to assess the protective effect of combination with Se and TUDCA on bone regeneration and investigate the effect and underlying mechanisms. When MC3T3-E1 was cultured in the presence of H2H2, Se, TUDCA and Se/TUDCA therapy could increase the matrix mineralization and promote expression of anti-oxidative stress markers in MC3T3-E1, while reducing intracellular reactive oxygen species (ROS) and mitochondrial ROS levels. Meanwhile, silent information regulator type 1 (SIRT1) was upregulated in response to Se, TUDCA and Se/TUDCA exposures in H2H2 treated-MC3T3-E1. In the OVX rat model, Se, TUDCA and Se/TUDCA showed a clear positive effect against impaired bone repair in osteoporosis. The results above demonstrate that Se/TUDCA exhibits superior efficacy in both cellular and animal experiments, as compared to Se and TUDCA. In conclusion, combination with Se and TUDCA stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.
Collapse
Affiliation(s)
- ZhouShan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China
| |
Collapse
|
3
|
Tao ZS, Shen CL. Favorable osteogenic activity of vericiguat doped in β-tricalcium phosphate: In vitro and in vivo studies. J Biomater Appl 2024; 38:1073-1086. [PMID: 38569649 DOI: 10.1177/08853282241245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Recently, more and more studies have shown that guanylate cyclase, an enzyme that synthesizes cyclic guanosine monophosphate (cGMP), plays an important role in bone metabolism. Vericiguat (VIT), a novel oral soluble guanylate cyclase stimulator, directly generates cyclic guanosine monophosphate and reduce the death incidence from cardio-vascular causes or hospitalization. Recent studies have shown beneficial effects of VIT in animal models of osteoporosis, but very little is currently known about the effects of VIT on bone defects in the osteoporotic states. Therefore, in this study, β-tricalcium phosphate (β-TCP) was used as a carrier to explore the effect of local VIT administration on the repair of femoral metaphyseal bone defects in ovariectomized (OVX) rats. When MC3T3-E1 was cultured in the presence of H2H2, VIT, similar to Melatonin (MT), therapy could increase the matrix mineralization and ALP, SOD2, SIRT1, and OPG expression, reduce ROS and Mito SOX production, RANKL expression, Promote the recovery of mitochondrial membrane potential. In the OVX rat model, VIT increases the osteogenic effect of β-TCP and better results were obtained at a dose of 5 mg. Local use of VIT can inhibit increased OC, BMP2 and RUNX2 expressions in bone tissue, while decreased SOST and TRAP expressions by RT-PCR and immunohistochemistry. Thereby, VIT stimulates bone regeneration and is a promising candidate for promoting bone repair in osteoporosis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cai-Liang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Tao Z, Tao M, Zhou M, Wu XJ. Niacin treatment prevents bone loss in iron overload osteoporotic rats via activation of SIRT1 signaling pathway. Chem Biol Interact 2024; 388:110827. [PMID: 38081572 DOI: 10.1016/j.cbi.2023.110827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Recently, more and more studies have revealed that iron overload can lead to osteoporosis by inducing oxidative stress. Niacin (NAN), also known as nicotinate or vitamin B3, has been confirmed to possess potent antioxidative effects. In addition, very little is currently known about the protective effects of NAN on iron overload in osteoporotic bone tissue. Therefore, we aimed to evaluate the protective effect of niacin on iron overload-induced bone injury and to investigate the effect and underlying mechanisms of the niacin and iron overload on intracellular antioxidant properties. When MC3T3-E1 and RAW264.7 cells were cultured in the presence of ammonium ferric citrate(FAC), NAN therapy could increase the matrix mineralization and promote expression of osteogenic markers in MC3T3-E1, inhibit osteoclastic differentiation of RAW264.7 cells, while increasing intracellular reactive oxygen species (ROS) levels and strengthening mitochondrial membrane potential (MMP). In the ovariectomized (OVX) rat model, NAN had an obvious protective effect against iron-overloaded injury. Meanwhile, superoxide dismutase 2 (SOD2), intracellular antioxidant enzymes and silent information regulator type 1 (SIRT1), were up-regulated in response to NAN exposures in MC3T3-E1. Furthermore, SIRT1 inhibitor EX527 attenuated the protective effects of NAN. Results revealed that NAN could stimulate osteogenic differentiation, inhibit osteoclastic differentiation and markedly increased antioxidant properties in cells through the induction of SIRT1. Studies suggest that niacin is a promising agent for preventing bone loss in iron overload conditions.
Collapse
Affiliation(s)
- Zhoushan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Ma Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Maosheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Xing-Jing Wu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| |
Collapse
|
5
|
Słota D, Piętak K, Jampilek J, Sobczak-Kupiec A. Polymeric and Composite Carriers of Protein and Non-Protein Biomolecules for Application in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2235. [PMID: 36984115 PMCID: PMC10059071 DOI: 10.3390/ma16062235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Conventional intake of drugs and active substances is most often based on oral intake of an appropriate dose to achieve the desired effect in the affected area or source of pain. In this case, controlling their distribution in the body is difficult, as the substance also reaches other tissues. This phenomenon results in the occurrence of side effects and the need to increase the concentration of the therapeutic substance to ensure it has the desired effect. The scientific field of tissue engineering proposes a solution to this problem, which creates the possibility of designing intelligent systems for delivering active substances precisely to the site of disease conversion. The following review discusses significant current research strategies as well as examples of polymeric and composite carriers for protein and non-protein biomolecules designed for bone tissue regeneration.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
6
|
The Local Release of Teriparatide Incorporated in 45S5 Bioglass Promotes a Beneficial Effect on Osteogenic Cells and Bone Repair in Calvarial Defects in Ovariectomized Rats. J Funct Biomater 2023; 14:jfb14020093. [PMID: 36826892 PMCID: PMC9964758 DOI: 10.3390/jfb14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
With the increase in the population's life expectancy, there has also been an increase in the rate of osteoporosis, which has expanded the search for strategies to regenerate bone tissue. The ultrasonic sonochemical technique was chosen for the functionalization of the 45S5 bioglass. The samples after the sonochemical process were divided into (a) functionalized bioglass (BG) and (b) functionalized bioglass with 10% teriparatide (BGT). Isolated mesenchymal cells (hMSC) from femurs of ovariectomized rats were differentiated into osteoblasts and submitted to in vitro tests. Bilateral ovariectomy (OVX) and sham ovariectomy (Sham) surgeries were performed in fifty-five female Wistar rats. After a period of 60 days, critical bone defects of 5.0 mm were created in the calvaria of these animals. For biomechanical evaluation, critical bone defects of 3.0 mm were performed in the tibias of some of these rats. The groups were divided into the clot (control) group, the BG group, and the BGT group. After the sonochemical process, the samples showed modified chemical topographic and morphological characteristics, indicating that the surface was chemically altered by the functionalization of the particles. The cell environment was conducive to cell adhesion and differentiation, and the BG and BGT groups did not show cytotoxicity. In addition, the experimental groups exhibited characteristics of new bone formation with the presence of bone tissue in both periods, with the BGT group and the OVX group statistically differing from the other groups (p < 0.05) in both periods. Local treatment with the drug teriparatide in ovariectomized animals promoted positive effects on bone tissue, and longitudinal studies should be carried out to provide additional information on the biological performance of the mutual action between the bioglass and the release of the drug teriparatide.
Collapse
|
7
|
Tao ZS, Li TL, Wei S. Co-modified 3D printed β-tricalcium phosphate with magnesium and selenium promotes bone defect regeneration in ovariectomized rat. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:7. [PMID: 36622473 PMCID: PMC9829579 DOI: 10.1007/s10856-022-06708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Magnesium (Mg) and Selenium (Se) are essential elements for bone health and have been studied extensively for its powerful osteogenesis and promoting bone regeneration. The purpose was to observe whether Co-modified 3D-printed β-tricalcium phosphate with Mg and Se could promote bone defect regeneration in an ovariectomized(OVX) rat model. The MC3T3-E1 cells were co-cultured with the leachate of β-TCP, Mg-TCP, and Mg/Se-TCP and induced to osteogenesis, and the cell viability, ROS, and osteogenic activity were observed by Cell Count Kit-8(CCK-8), fluorescent probe 2', 7'-dichlorofluorescin diacetate, Alkaline phosphatase (ALP) staining, Alizarin Red(RES) staining, western blotting(WB), and immunofluorescence. Then the β-TCP, Mg-TCP, and Mg/Se-TCP were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT and histology analysis were used to observe the therapeutic effect. In vitro results show that the cell mineralization and osteogenic activity of the Mg/Se-TCP group is significantly higher than the β-TCP group and Mg-TCP group. Protein expressions such as FOxO1, SIRT1, SOD2, Runx-2, Cola1a, and OC of the Mg/Se-TCP group are significantly higher than the Con group and the β-TCP group. The results of intracellular ROS and SIRT1 and SOD2 immunofluorescence showed that Mg/Se-TCP can restore the oxidative stress balance of osteoblasts. Micro-CT and histology analysis showed that treatment with Mg/Se-TCP showed the largest amount of bone tissue in the defect area (p < 0.05), and exhibited lower values of residual biological material (p < 0.05), compared to that of the β-TCP group and Mg-TCP group. Our research results confirm that Mg/Se-TCP can improve the activity and function of osteoblasts and enhance bone regeneration mediated by reducing intracellular ROS in OVX rat models. The release of Mg and Se during the degradation of Mg/Se-TCP can improve the local bone repair ability. At the same time, it can also inhibit cell ROS, and ultimately greatly promote local bone repair.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, P.R. China.
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, P.R. China
| |
Collapse
|
8
|
Wei S, Zhang RG, Wang ZY. Deferoxamine/magnesium modified β-tricalcium phosphate promotes the bone regeneration in osteoporotic rats. J Biomater Appl 2022; 37:838-849. [PMID: 35984333 DOI: 10.1177/08853282221121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, Deferoxamine (DFO) and magnesium (Mg) have been identified as critical factors for angiogenesis and bone formation. However, in current research studies, there is a lack of focus on whether DFO plus Mg can affect the regeneration of β-tricalcium phosphate (β-TCP) in osteoporosis and through what biological mechanisms. Therefore, the present work was aimed to preparation and evaluate the effect of Deferoxamine/magnesium modified β-tricalcium phosphate promotes (DFO/Mg-TCP) in ovariectomized rats model and preliminary exploration of possible mechanisms. The MC3T3-E1 cells were co-cultured with the exudate of DFO/Mg-TCP and induced to osteogenesis, and the cell viability, osteogenic activity were observed by Cell Counting Kit-8(CCK-8), Alkaline Phosphatase (ALP) staining, Alizarin Red Staining (RES) and Western Blot. In vitro experiments, CCK-8, ALP and ARS staining results show that the mineralization and osteogenic activity of MC3T3-E1increased significantly after intervention by DFO/Mg-TCP, as well as a higher levels of protein expressions including VEGF, OC, Runx-2 and HIF-1α. In vivo experiment, Micro-CT and Histological analysis evaluation show that DFO/Mg-TCP treatment presented the stronger effect on bone regeneration, bone mineralization and biomaterial degradation, when compared with OVX+Mg-TCP group and OVX+TCP group, as well as a higher VEGF, OC, Runx-2 and HIF-1α gene expression. The present study indicates that treatment with DFO/Mg-TCP was associated with increased regeneration by enhancing the function of osteoblasts in an OVX rat.
Collapse
Affiliation(s)
- Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, P.R. China
- Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, P.R. China
| | - Ren-Gang Zhang
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, P.R. China
| | - Zheng-Yu Wang
- Department of Orthopedics, 74649The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, P.R. China
| |
Collapse
|
9
|
Tao ZS, Li TL, Wei S. Silymarin prevents iron overload induced bone loss by inhibiting oxidative stress in an ovariectomized animal model. Chem Biol Interact 2022; 366:110168. [PMID: 36087815 DOI: 10.1016/j.cbi.2022.110168] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022]
Abstract
Silibinin (SIL) has been used extensively for its hepatoprotective properties and antioxidant properties, including bone health. Iron overload can inhibit osteogenic proliferation and differentiation and promote bone loss. However, whether SIL can reverse the harmful effects of iron overload inovariectomized (OVX) rats and the mechanism is not clear. Therefore, this study intends to investigate the effect of SIL on bone mass and bone metabolism in iron overload rats and also explore the role of SIL on osteogenic differentiation of MC3T3-E1.RT-qPCR was used to measure the transcribe of target genes. Furthermore, alizarin red staining, alkaline phosphatase staining, immunofluorescence and CCK-8 assay were conducted to detect cell viability and target protein expression, osteogenic function. The OVX rat model with iron overload was set up to investigate bone reconstruction.Our results demonstrated that SIL promotes the proliferation and differentiation of osteoblasts, increases the ALP secretion and mineralization ability of osteoblasts, and enhances the transcribe and expression of target genes including OC, Runx-2, SOD2 and SIRT1 in an iron overload environment. In addition, it was confirmed that systemic SIL administration inhibits bone loss in OVX rats with iron overload and changes bone metabolism and oxidative stress status. Further study has shown that iron overload exerts its harmful function by accelerating bone turnover-mediated changes in higher bone metabolism to worsen osteoporosis. SIL can inhibit the unfriendly effects of iron overload, and by modifying bone metabolism and oxidative stress levels, the results contribute to clinical prevention and treatment of the progression of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, PR China
| |
Collapse
|
10
|
Tao Z, Li TL, Yang M, Xu HG. Silibinin Can Promote Bone Regeneration of Selenium Hydrogel by Reducing the Oxidative Stress Pathway in Ovariectomized Rats. Calcif Tissue Int 2022; 110:723-735. [PMID: 35048133 DOI: 10.1007/s00223-021-00936-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Osteoporosis-related bone defects are a major public health concern. Considering poor effects of a singular pharmacological treatment, many have sought combination therapies, including local treatment combined with systemic intervention. Based on recent evidence that selenium and silibinin increase bone formation and bone mineral density, it is hypothesized that systemic administration with silibinin plus local treatment with selenium may have an additive effect on bone regeneration in an OVX rat model with bone defects. To verify this hypothesis, 3-month-old ovariectomized Sprague- Dawley rats (n = 10/gp) were intraperitoneally with a dose of 50 mg/kg silibinin with selenium hydrogel scaffolds implanted into femoral metaphysis bone defect. Moreover, the MC3T3-E1 cells were co-cultured with selenium and silibinin, and observed any change of cell viability, ROS, and osteogenic activity. Experiment results show that the cell mineralization and osteogenic activity of silibinin plus selenium (SSe) group is enormously higher than the control (Con) group and selenium (Se) group, while ROS appears to be immensely reduced. Osteogenic protein expressions such as SIRT1, SOD2, RUNX-2 and OC of SSe group are significantly higher than Con group and Se group. Micro-CT and Histological analysis evaluation display that group SSe, compared with Con group and Se group, presents the strongest effect on bone regeneration, bone mineralization and higher expression of SIRT1 and SOD2. RT-qPCR analysis indicates that SSe group manifests increased SIRT1, SOD1, SOD2 and CAT than the Con group and Se group (p < 0.05). Our current study demonstrates that systemic administration with SIL plus local treatment with Se is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved via reducing the oxidative stress pathway.
Collapse
Affiliation(s)
- Zhoushan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
11
|
Grossi JRA, Deliberador TM, Giovanini AF, Zielak JC, Sebstiani AM, Gonzaga CC, Coelho PG, Zétola AL, Weiss FP, Benalcázar Jalkh EB, Storrer CLM, Witek L. Effects of local single dose administration of parathormone on the early stages of osseointegration: A pre-clinical study. J Biomed Mater Res B Appl Biomater 2022; 110:1806-1813. [PMID: 35218605 DOI: 10.1002/jbm.b.35038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
The present study aimed to evaluate the effect of parathormone (PTH) administered directly to the implant's surface prior to insertion, using a large translational animal model. Sixty titanium implants were divided into four groups: (i) Collagen, control group, where implants were coated with Type-I Bovine-collagen, and three experimental groups, where implants received varying doses of PTH: (ii) 12.5, (iii) 25, and (iv) 50 μg, prior to placement. Fifteen female sheep (~2 years old, weighing ~65 kg) received four implants in an interpolated fashion in C3, C4 or C5 vertebral bodies. After 3-, 6- and 12-weeks, samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). BIC yielded lower values at 6-weeks for 50 μg relative to the control group, with no significant differences, when compared to the 12.5- and 25-μg. No significant differences were detected at 6-weeks between collagen, 12.5- and 25-μg groups. At 3- and 12-weeks, no differences were detected for BIC among PTH groups. With respect to BAFO, no significant differences were observed between the control and experimental groups independent of PTH concentration and time in vivo. Qualitative observations at 3-weeks indicated the presence of a more mature bone near the implant's surface with the application of PTH, however, no significant differences in new bone formation or healing patterns were observed at 6- and 12-weeks. Single local application of different concentrations of PTH on titanium implant's surface did not influence the osseointegration at any time-point evaluation in low-density bone.
Collapse
Affiliation(s)
| | | | | | - João César Zielak
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | | | - Carla Castiglia Gonzaga
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - André Luis Zétola
- Department of Oral and Maxillofacial Surgery, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Fernando P Weiss
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Ernesto B Benalcázar Jalkh
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Prosthodontics and Periodontology, University of São Paulo - Bauru School of Dentistry, Bauru, São Paulo, Brazil
| | | | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
12
|
Gomes-Ferreira PHS, Micheletti C, Frigério PB, de Souza Batista FR, Monteiro NG, Bim-júnior O, Lisboa-Filho PN, Grandfield K, Okamoto R. PTH 1-34-functionalized bioactive glass improves peri-implant bone repair in orchiectomized rats: Microscale and ultrastructural evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112688. [DOI: 10.1016/j.msec.2022.112688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
|
13
|
Frigério PB, Gomes-Ferreira PHS, de Souza Batista FR, Moura J, Rangel Garcia Júnior I, Botticelli D, Lisboa-Filho PN, Okamoto R. Effect of Topical PTH 1-34 Functionalized to Biogran ® in the Process of Alveolar Repair in Rats Submitted to Orchiectomy. MATERIALS (BASEL, SWITZERLAND) 2021; 15:207. [PMID: 35009347 PMCID: PMC8746260 DOI: 10.3390/ma15010207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
(1) Background: There are many therapies for osteoporosis control and bone maintenance; anabolic drugs such as teriparatide and bone grafts help in the repair process and stimulate bone formation. Thus, the aim of the present study was to evaluate the behavior of repaired bone in the presence of PTH (teriparatide) associated with Biogran® (biomaterial) through a sonochemical procedure after extraction in rats. (2) Methods: The insertion of Biogran® with PTH in the alveolus was performed 30 days after incisor extraction. Euthanasia occurred after 60 days. (3) Results: The use of local treatment of PTH loaded with Biogran® in healthy rats promoted good results for micro-CT, with an increase in percentage and bone volume, number and trabecular separation and less total porosity. Greater immunostaining for Wnt, β-Catenin and osteocalcin proteins and lower expression for Thrombospondin-Related Adhesive Protein (TRAP), which shows an increase in the number of osteoblasts and inhibition of osteoclast action. However, the treated orchiectomized groups did not obtain such expressive results. (4) Conclusion: The use of Biogran® with PTH improved alveolar repair in rats. However, new researches with more efficient doses must be studied to collaborate effectively with the formation of a quality bone after the orchiectomy.
Collapse
Affiliation(s)
- Paula Buzo Frigério
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil; (P.H.S.G.-F.); (F.R.d.S.B.); (J.M.); (I.R.G.J.)
| | - Pedro Henrique Silva Gomes-Ferreira
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil; (P.H.S.G.-F.); (F.R.d.S.B.); (J.M.); (I.R.G.J.)
| | - Fábio Roberto de Souza Batista
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil; (P.H.S.G.-F.); (F.R.d.S.B.); (J.M.); (I.R.G.J.)
| | - Juliana Moura
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil; (P.H.S.G.-F.); (F.R.d.S.B.); (J.M.); (I.R.G.J.)
| | - Idelmo Rangel Garcia Júnior
- Department of Diagnosis and Surgery, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil; (P.H.S.G.-F.); (F.R.d.S.B.); (J.M.); (I.R.G.J.)
| | | | - Paulo Noronha Lisboa-Filho
- Department of Physics, School of Sciences, São Paulo State University Júlio de Mesquita Filho—UNESP, Bauru 17033360, SP, Brazil;
| | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba Dental School, São Paulo State University Júlio de Mesquita Filho—UNESP, Aracatuba 16015050, SP, Brazil;
| |
Collapse
|
14
|
Tao ZS, Li TL, Xu HG, Yang M. Hydrogel contained valproic acid accelerates bone-defect repair via activating Notch signaling pathway in ovariectomized rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 33:4. [PMID: 34940936 PMCID: PMC8702411 DOI: 10.1007/s10856-021-06627-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/16/2021] [Indexed: 05/23/2023]
Abstract
The purpose was to observe whether valproic acid (VPA) has a positive effect on bone-defect repair via activating the Notch signaling pathway in an OVX rat model. The MC3T3-E1 cells were cocultured with VPA and induced to osteogenesis, and the osteogenic activity was observed by alkaline phosphatase (ALP) staining, Alizarin Red (RES) staining and Western blotting (WB). Then the hydrogel-containing VPA was implanted into the femoral epiphysis bone-defect model of ovariectomized (OVX) rats for 12 weeks. Micro-CT, biomechanical testing, histology, immunofluorescence, RT-qPCR, and WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and WB results show that the cell mineralization, osteogenic activity, and protein expression of ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA group is significantly higher than the control group. Micro-CT, biomechanical testing, histology, immunofluorescence, and RT-qPCR evaluation show that group VPA presented the stronger effect on bone strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1, HES1, HEY1, and JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling pathway and acceleration of blood vessel and bone formation.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
15
|
Shen C, Wang MM, Witek L, Tovar N, Cronstein BN, Torroni A, Flores RL, Coelho PG. Transforming the Degradation Rate of β-tricalcium Phosphate Bone Replacement Using 3-Dimensional Printing. Ann Plast Surg 2021; 87:e153-e162. [PMID: 34611100 PMCID: PMC8616850 DOI: 10.1097/sap.0000000000002965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND β-Tricalcium phosphate (β-TCP) is one of the most common synthetic bone grafting materials utilized in craniofacial reconstruction; however, it is limited by a slow degradation rate. The aim of this study was to leverage 3-dimensional (3D) printing in an effort to accelerate the degradation kinetics of β-TCP. METHODS Twenty-two 1-month-old New Zealand white rabbits underwent creation of calvarial and alveolar defects, repaired with 3D-printed β-TCP scaffolds coated with 1000 μM of osteogenic agent dipyridamole. Rabbits were euthanized after 2, 6, and 18 months after surgical intervention. Bone regeneration, scaffold degradation, and bone mechanical properties were quantified. RESULTS Histological analysis confirmed the generation of vascularized and organized bone. Microcomputed tomography analysis from 2 to 18 months demonstrated decreased scaffold volume within calvarial (23.6% ± 2.5%, 5.1% ± 2.2%; P < 0.001) and alveolar (21.5% ± 2.2%, 0.2% ± 1.9%; P < 0.001) defects, with degradation rates of 54.6%/year and 90.5%/year, respectively. Scaffold-inducted bone generation within the defect was volumetrically similar to native bone in the calvarium (55.7% ± 6.9% vs 46.7% ± 6.8%; P = 0.064) and alveolus (31.4% ± 7.1% vs 33.8% ± 3.7%; P = 0.337). Mechanical properties between regenerated and native bone were similar. CONCLUSIONS Our study demonstrates an improved degradation profile and replacement of absorbed β-TCP with vascularized, organized bone through 3D printing and addition of an osteogenic agent. This novel additive manufacturing and tissue engineering protocol has implications to the future of craniofacial skeletal reconstruction as a safe and efficacious bone tissue engineering method.
Collapse
Affiliation(s)
- Chen Shen
- Department of Biomaterials & Biomimetics, NYU College of Dentistry, 433 1st Avenue, New York NY 10010
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, 307 E 33rd St, New York NY 10016
| | - Maxime M. Wang
- Department of Biomaterials & Biomimetics, NYU College of Dentistry, 433 1st Avenue, New York NY 10010
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, 307 E 33rd St, New York NY 10016
| | - Lukasz Witek
- Department of Biomaterials & Biomimetics, NYU College of Dentistry, 433 1st Avenue, New York NY 10010
- Department of Biomedical Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn NY 11201
| | - Nick Tovar
- Department of Biomaterials & Biomimetics, NYU College of Dentistry, 433 1st Avenue, New York NY 10010
| | - Bruce N. Cronstein
- Department of Medicine, NYU Langone Health, 550 1st Avenue, New York NY 10016
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, 307 E 33rd St, New York NY 10016
| | - Roberto L. Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, 307 E 33rd St, New York NY 10016
| | - Paulo G. Coelho
- Department of Biomaterials & Biomimetics, NYU College of Dentistry, 433 1st Avenue, New York NY 10010
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, 307 E 33rd St, New York NY 10016
- Department of Mechanical Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn NY 11201
| |
Collapse
|
16
|
Li TL, Tao ZS, Wu XJ, Yang M, Xu HG. Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab 2021; 39:934-943. [PMID: 34189659 DOI: 10.1007/s00774-021-01240-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects. METHODS Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism. RESULT Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05). CONCLUSION Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|
17
|
The effect of osteoporosis and its treatment on fracture healing a systematic review of animal and clinical studies. Bone Rep 2021; 15:101117. [PMID: 34458509 PMCID: PMC8379440 DOI: 10.1016/j.bonr.2021.101117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction Osteoporosis is characterised by low bone mass and micro-architectural deterioration of bone structure. Its treatment is directed at the processes of bone formation or resorption, that are of utmost importance in fracture healing. We provide a comprehensive review of the literature aiming to summarize and clarify the effects of osteoporosis and its treatment on fracture healing. Material and methods A literature search was conducted in PubMed and Embase (OVID version). In vivo animal and human studies on long bone fractures were included. A total of 93 articles were included for this review; 23 studies on the effect of osteoporosis (18 animal and 5 clinical studies) and 70 studies on the effect of osteoporosis treatment (41 animal, 26 clinical studies and 3 meta-analyses) on fracture healing. Results In animal fracture models osteoporosis was associated with decreased callus formation and bone growth, bone mineral density, biomechanical strength and delayed cellular and differentiation processes during fracture healing. Two large databases identified osteoporosis as a risk factor for non-union whereas three other studies did not. One of those three studies however found a prolonged healing time in patients with osteoporosis. Anti-osteoporosis medication showed inconsistent effects on fracture healing in both non-osteoporotic and osteoporotic animal models. Only the parathyroid hormone and anti-resorption medication were related to improved fracture healing and delayed remodelling respectively. Clinical studies performed in predominantly hip and distal radius fracture patients showed no effect of bisphosphonates on fracture healing. Parathyroid hormone reduced time to union in several clinical trials performed in mainly hip fracture patients, but this did not result in decreased delayed or non-union rates. Conclusion Evidence that substantiates the negative influence of osteoporosis on fracture healing is predominantly from animal studies and to a lesser extent from clinical studies, since convincing clinical evidence lacks. Bisphosphonates and parathyroid hormone may be used during fracture healing, since no clear negative effect has been shown. Parathyroid hormone might even decrease time to fracture union, without decreasing union rate. Osteoporosis negatively influences fracture healing in animal models. There is no convincing evidence for a similar effect in humans. In animals, bisphosphonates delay bone remodelling In animals, parathyroid hormone improves fracture healing In humans, anti-osteoporotic drugs do not interfere with fracture healing.
Collapse
|
18
|
Zhang R, Yang M, Li Y, Liu H, Ren M, Tao ZS. Effect of alendronate on the femoral metaphyseal defect under carbamazepine in ovariectomized rats. J Orthop Surg Res 2021; 16:14. [PMID: 33407695 PMCID: PMC7788868 DOI: 10.1186/s13018-020-02151-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The use of antiepileptic drugs and estrogen deficiency put forward higher requirements for bone defect regeneration. The present study investigated the effects of alendronate (ALN) on femoral bone defect in ovariectomized (OVX) rats under the influence of carbamazepine (CBZ). METHODS One hundred female SD rats at 3 months of age were either sham-operated or OVX and divided into four groups: sham control (CON); OVX control (OVX); ovariectomized rats treated with CBZ via gavage (75 mg/kg/day; CBZ); ovariectomized rats treated with CBZ plus ALN (2 mg/kg/day; CBZ-ALN). A critical-sized femoral metaphyseal bone defect was established in all female SD rats. Animals from the CBZ and CBZ-ALN groups received drugs by gavage the day after bone defect surgery was performed. After the rats were sacrificed, the defected area located in the distal femur was harvested for evaluation by microcomputed tomography (micro-CT), hematoxylin and eosin (HE) staining, and Masson's trichrome staining. The samples were also analyzed by biomechanics and immunohistochemical evaluation (IHC). Besides, biochemical analysis evaluates all serum samples. RESULTS The present study showed that ovariectomy changed the microstructural parameters of bone. The use of CBZ further decreased femur bone mass while treatment with ALN prevented bone loss. Compared to OVX and CBZ groups, CBZ-ALN group promoted bone neoformation and enhanced the ultimate load of the femur bone. However, the group of CBZ-ALN did not return to normal levels compared with the CON group. Besides, we noticed that CBZ-ALN group reduced tartrate-resistant acid phosphatase-5b (Tracp-5b) expression and had no significant effect on the expression of osteocalcin (OCN) and type I collagen (Col-I) in IHC compared with CBZ group. Biochemical analysis results presented that systemic delivery of CBZ showed pernicious effects on bone formation and resorption in ovariectomized rats, with the worse effects on C-terminal crosslinked telopeptide of type I collagen (CTX-1). Besides, a significant decrease in CTX-1 levels was observed in CBZ-ALN group as compared to the group of CBZ. CONCLUSION These results demonstrated that ALN can effectively reverse the effects of CBZ on the microarchitectural properties of bone, and thus can have a positive effect on local bone neoformation in rats with osteoporosis. CLINICAL RELEVANCE The dose of 2 mg/kg ALN improves the negative effect of prescription of CBZ at 75 mg/kg and promotes bone neoformation of femoral bony deficits.
Collapse
Affiliation(s)
- Ruotian Zhang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital, No. 2, Zhe shan Xi Road, Anhui, 241001, Wuhu, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital, No. 2, Zhe shan Xi Road, Anhui, 241001, Wuhu, People's Republic of China.
| | - Yang Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital, No. 2, Zhe shan Xi Road, Anhui, 241001, Wuhu, People's Republic of China
| | - Hedong Liu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital, No. 2, Zhe shan Xi Road, Anhui, 241001, Wuhu, People's Republic of China
| | - Maoxian Ren
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital, No. 2, Zhe shan Xi Road, Anhui, 241001, Wuhu, People's Republic of China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College,Yijishan Hospital, No. 2, Zhe shan Xi Road, Anhui, 241001, Wuhu, People's Republic of China
| |
Collapse
|
19
|
Tao ZS, Zhou WS, Xu HG, Yang M. Aspirin modified strontium-doped β-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Biomed Pharmacother 2020; 132:110911. [PMID: 33125972 DOI: 10.1016/j.biopha.2020.110911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose was to observe whether local administration Strontium (Sr) and Aspirin (Asp) can enhance the efficacy of β-Tricalcium phosphate(β-TCP) in the treatment of osteoporotic bone defect. The MC3T3-E1 cells were co-cultured with β-TCP, Sr/β-TCP, Asp-Sr/β-TCP scaffold and induced to osteogenesis, and the cell viability, mineralization ability were observed by MTT, Alizarin Red staining(ARS) and Western blotting(WB). Then this scaffolds were implanted into the femoral epiphysis bone defect model of ovariectomized(OVX) rats for 8 weeks. X-ray, Micro-CT, histology and Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and explore the possible mechanism. MTT, ARS results show that the cell mineralization and viability of Asp-Sr/β-TCP group is significantly higher than Control group, β-TCP group and Sr/β-TCP group. Protein expression show that the osteogenic protein expression such as ALP、OP、RUNX-2、OC and COL-1 of Asp-Sr/β-TCP group is significantly higher than Control group, β-TCP group and Sr/β-TCP group. X-ray images, Micro-CT and Histological analysis evaluation show that, group Asp-Sr/β-TCP presented the strongest effect on bone regeneration and bone mineralization, when compared with β-TCP group and Sr/β-TCP group. RT-qPCR analysis show that Asp-Sr/β-TCP, β-TCP group and Sr/β-TCP group showed increased BMP2, Smad1, OPG than the OVX group(p < 0.05), while Asp-Sr/β-TCP exhibited decreased TNF-α、IFN-γ and RANKL than the OVX group(p < 0.05). Our current study demonstrated that Asp-Sr/ β-TCP is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local inflammation and through BMP-2/Smad1 and OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, the Second Affiliated Hospital of Wannan Medical College, No.123, Kangfu Road, Wuhu, 241000 Anhui, People's Republic of China.
| | - Hong-Guang Xu
- Department of Spinal orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001 Anhui, People's Republic of China
| |
Collapse
|
20
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
21
|
Locally administrated single-dose teriparatide affects critical-size rabbit calvarial defects: A histological, histomorphometric and micro-CT study. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2019; 53:478-484. [PMID: 31530436 PMCID: PMC6938999 DOI: 10.1016/j.aott.2019.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/08/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of teriparatide (PTH 1-34, rhPTH) on a rabbit defect model with local xenogen grafts histomorphometrically and radiologically. METHODS For this purpose, two 10 mm diameter critical-size defects were created in the calvaria of 16 rabbits. In the control group, the defect area was filled with a xenogen graft, while in the teriparatide group (PTH 1-34), a xenogen graft combination with 20 mcg teriparatide was used. For both 4 - week and 8 - week study groups, new bone, residual graft, and soft tissue areas were evaluated as well as bone volume histomorphometrically and radiologically. RESULTS Histomorphometrically, there was a significant difference in new bone area values at the 8th week (p < 0.05), but there was no significant difference between the 4 - week values (p > 0.05). There was no statistically significant difference between the groups at both 4 and 8 weeks (p > 0.05). In the radiologically measured total bone volume values, PTH1-34 group values were found to be significantly higher for both 4 - and 8 - weeks values compared to the control groups (p < 0.05). CONCLUSION In this study, rhPTH, which is used locally in defect areas to be repaired with bone grafts, increases both new bone volume and total bone volume.
Collapse
|
22
|
Tao ZS, Wu XJ, Zhou WS, Wu XJ, Liao W, Yang M, Xu HG, Yang L. Local administration of aspirin with β-tricalcium phosphate/poly-lactic-co-glycolic acid (β-TCP/PLGA) could enhance osteoporotic bone regeneration. J Bone Miner Metab 2019; 37:1026-1035. [PMID: 31076895 DOI: 10.1007/s00774-019-01008-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Composite materials β-tricalcium phosphate (β-TCP) and poly-lactic-co-glycolic acid (PLGA) have achieved stable bone regeneration without cell transplantation in previous studies. Recent research shows that aspirin (ASP) has great potential in promoting bone regeneration. The objective of the present study was to incorporate PLGA into β-TCP combined with a lower single-dose local administration of ASP to enhance its in vivo biodegradation and bone tissue growth. After the creation of a rodent critical-sized femoral metaphyseal bone defect, PLGA -modified β-TCP (TP) was prepared by mixing sieved granules of β-TCP and PLGA (50:50, v/v) for medical use, then TP with dripped 50 µg/0.1 ml and 100 µg/0.1 ml aspirin solution was implanted into the defect of OVX rats until death at 8 weeks. The defected area in distal femurs of rats was harvested for evaluation by histology, micro-CT, biomechanics and real time RT-PCR. The results of our study show that a single-dose local administration of ASP combined with the local usage of TP can increase the healing of defects in OVX rats. Single-dose local administration of aspirin can improve the transcription of genes involved in the regulation of bone formation and vascularization in the defect area, and inhibits osteoclast activity. Furthermore, treatments with a higher single-dose local administration of ASP and TP showed a stronger effect on accelerating the local bone formation than while using a lower dose of ASP. The results from our study demonstrate that the combination of a single-dose local administration of ASP and β-TCP/PLGA had an additive effect on local bone formation in osteoporosis rats, and bone regeneration by PLGA/β-TCP/ASP occured in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Wan-Shu Zhou
- Department of Geriatrics, The Second Affiliated Hospital of Wannan Medical College, No. 123, Kangfu Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Xin-Ju Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Wei Liao
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, No. 8, Jiangdong South Road, Jianye District, Nanjing, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
- Department of Spinal Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang, People's Republic of China
| |
Collapse
|