1
|
Paduano F, Fischetto R, Moretti B, De Vito D, Tatullo M. Expanding the genetic and clinical spectrum of osteogenesis imperfecta: identification of novel rare pathogenic variants in type I collagen-encoding genes. Front Endocrinol (Lausanne) 2023; 14:1254695. [PMID: 37929041 PMCID: PMC10623311 DOI: 10.3389/fendo.2023.1254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous skeletal disorder. The majority of affected cases are attributed to autosomal dominant pathogenic variants (PVs) found in the COL1A1 and COL1A2 genes, which encode type I collagen. However, PVs in other genes involved in collagen posttranslational modification, processing, crosslinking, osteoblast differentiation, and bone mineralization have also been associated with OI. Methods In this study, we present the results of next-generation sequencing (NGS) analysis using a custom panel of 11 genes known to be associated with OI. This clinical study enrolled a total of 10 patients, comprising 7 male and 3 female patients from 7 families, all from the Puglia Region in South Italy, providing a detailed overview of their age, gender, family history, OI type, and non-skeletal features. Results The genetic analysis revealed 5 PVs in the COL1A1 gene and 2 PVs in the COL1A2 gene. Importantly, three of these PVs have not been previously reported in the literature. These include two novel heterozygous frameshift PVs in COL1A1 (c.2890_2893del and c.3887del) and one novel heterozygous missense PV in COL1A2 (c.596G>T). Discussion The identification of these previously unreported PVs expands the variant spectrum of the COL1A1 and COL1A2 genes and may have implications for accurate diagnosis, genetic counselling, and potential therapeutic interventions in affected individuals and their families.
Collapse
Affiliation(s)
- Francesco Paduano
- Stem Cells and Medical Genetics Units, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Rita Fischetto
- Metabolic and Genetic Diseases Unit, “Giovanni XXIII” Hospital, Bari, Italy
| | - Biagio Moretti
- Orthopaedic and Traumathogic Unit General Hospital Policlinico, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro” of Bari, Bari, Italy
| | - Danila De Vito
- Department of Translational Biomedicine and Neuroscience, Medical School, University ”Aldo Moro” of Bari, Bari, Italy
| | - Marco Tatullo
- Department of Translational Biomedicine and Neuroscience, Medical School, University ”Aldo Moro” of Bari, Bari, Italy
| |
Collapse
|
2
|
Neřoldová M, Ciara E, Slatinská J, Fraňková S, Lišková P, Kotalová R, Globinovská J, Šafaříková M, Pfeiferová L, Zůnová H, Mrázová L, Stránecký V, Vrbacká A, Fabián O, Sticová E, Skanderová D, Šperl J, Kalousová M, Zima T, Macek M, Pawlowska J, Knisely AS, Kmoch S, Jirsa M. Exome sequencing reveals IFT172 variants in patients with non-syndromic cholestatic liver disease. PLoS One 2023; 18:e0288907. [PMID: 37471416 PMCID: PMC10358992 DOI: 10.1371/journal.pone.0288907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND AIM Gene defects contribute to the aetiology of intrahepatic cholestasis. We aimed to explore the outcome of whole-exome sequencing (WES) in a cohort of 51 patients with this diagnosis. PATIENTS AND METHODS Both paediatric (n = 33) and adult (n = 18) patients with cholestatic liver disease of unknown aetiology were eligible. WES was used for reassessment of 34 patients (23 children) without diagnostic genotypes in ABCB11, ATP8B1, ABCB4 or JAG1 demonstrable by previous Sanger sequencing, and for primary assessment of additional 17 patients (10 children). Nasopharyngeal swab mRNA was analysed to address variant pathogenicity in two families. RESULTS WES revealed biallelic variation in 3 ciliopathy genes (PKHD1, TMEM67 and IFT172) in 4 clinically unrelated index subjects (3 children and 1 adult), heterozygosity for a known variant in PPOX in one adult index subject, and homozygosity for an unreported splice-site variation in F11R in one child. Whereas phenotypes of the index patients with mutated PKHD1, TMEM67, and PPOX corresponded with those elsewhere reported, how F11R variation underlies liver disease remains unclear. Two unrelated patients harboured different novel biallelic variants in IFT172, a gene implicated in short-rib thoracic dysplasia 10 and Bardet-Biedl syndrome 20. One patient, a homozygote for IFT172 rs780205001 c.167A>C p.(Lys56Thr) born to first cousins, had liver disease, interpreted on biopsy aged 4y as glycogen storage disease, followed by adult-onset nephronophthisis at 25y. The other, a compound heterozygote for novel frameshift variant IFT172 NM_015662.3 c.2070del p.(Met690Ilefs*11) and 2 syntenic missense variants IFT172 rs776310391 c.157T>A p.(Phe53Ile) and rs746462745 c.164C>G p.(Thr55Ser), had a severe 8mo cholestatic episode in early infancy, with persisting hyperbilirubinemia and fibrosis on imaging studies at 17y. No patient had skeletal malformations. CONCLUSION Our findings suggest association of IFT172 variants with non-syndromic cholestatic liver disease.
Collapse
Affiliation(s)
- Magdaléna Neřoldová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Janka Slatinská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Soňa Fraňková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petra Lišková
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radana Kotalová
- Department of Pediatrics, Second Faculty of Medicine, Charles University and Faculty Hospital Motol, Prague, Czech Republic
| | | | - Markéta Šafaříková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lucie Pfeiferová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Informatics and Chemistry, University of Chemistry and Technology in Prague, Prague, Czech Republic
| | - Hana Zůnová
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Lenka Mrázová
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Viktor Stránecký
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Alena Vrbacká
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ondřej Fabián
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Eva Sticová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniela Skanderová
- Department of Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Jan Šperl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Joanna Pawlowska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - A S Knisely
- Diagnostik- und Forschungsinstitut für Pathologie, Medizinische Universität Graz, Graz, Austria
| | - Stanislav Kmoch
- Department of Pediatrics and Inherited Metabolic Diseases, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
3
|
Dirani M, Cuenca VD, Romero VI. COL1A1 novel splice variant in osteogenesis imperfecta and splicing variants review: A case report. Front Surg 2022; 9:986372. [PMID: 36338653 PMCID: PMC9632975 DOI: 10.3389/fsurg.2022.986372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Osteogenesis imperfecta (OI) is a rare heterogeneous genetic disorder commonly autosomal dominant with variants in the COL1A1 and COL1A2 genes. It is characterized by bone fragility and deformity, recurrent fractures, blue sclera, dentinogenesis imperfecta, short stature, and progressive deafness. Case presentation We present a novel splicing mutation in the COL1A1 gene (c.2398-1G > C) in a 6-year-old Ecuadorian girl with fractures after light pressure and blue sclera. We identified the pathogenic variant, performed a literature review of splice variants, and recognized their location in the COL1A1 functional domains. Conclusion We describe the first clinical description of a patient with OI type 1 caused by a splice variant in intron 34 of COL1A1 gene and identify that most of them are localized in the triple-helical region domain. We suggest that the splice variant in signal peptide, von Willebrand factor type C, and nonhelical regions maintain their functionality or that individuals affected with severe cases die early in development and are not reported.
Collapse
|
4
|
Yang K, Liu Y, Wu J, Zhang J, Hu HY, Yan YS, Chen WQ, Yang SF, Sun LJ, Sun YQ, Wu QQ, Yin CH. Prenatal Cases Reflect the Complexity of the COL1A1/2 Associated Osteogenesis Imperfecta. Genes (Basel) 2022; 13:genes13091578. [PMID: 36140746 PMCID: PMC9498730 DOI: 10.3390/genes13091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Osteogenesis imperfecta (OI) is a rare mendelian skeletal dysplasia with autosomal dominant or recessive inheritance pattern, and almost the most common primary osteoporosis in prenatal settings. The diversity of clinical presentation and genetic etiology in prenatal OI cases presents a challenge to counseling yet has seldom been discussed in previous studies. Methods: Ten cases with suspected fetal OI were enrolled and submitted to a genetic detection using conventional karyotyping, chromosomal microarray analysis (CMA), and whole-exome sequencing (WES). Sanger sequencing was used as the validation method for potential diagnostic variants. In silico analysis of specific missense variants was also performed. Results: The karyotyping and CMA results of these cases were normal, while WES identified OI-associated variants in the COL1A1/2 genes in all ten cases. Six of these variants were novel. Additionally, four cases here exhibited distinctive clinical and/or genetic characteristics, including the situations of intrafamilial phenotypic variability, parental mosaicism, and “dual nosogenesis” (mutations in collagen I and another gene). Conclusion: Our study not only expands the spectrum of COL1A1/2-related OI, but also highlights the complexity that occurs in prenatal OI and the importance of clarifying its pathogenic mechanisms.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yan Liu
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Jue Wu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100039, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China
| | - Hua-ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100083, China
| | - You-sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Wen-qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China
| | - Shu-fa Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Li-juan Sun
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Yong-qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Qing-qing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Correspondence: (Q.-q.W.); (C.-h.Y.)
| | - Cheng-hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
- Correspondence: (Q.-q.W.); (C.-h.Y.)
| |
Collapse
|
5
|
Wu Y, Liao L, Lin F. The diagnostic protocol for hereditary spherocytosis-2021 update. J Clin Lab Anal 2021; 35:e24034. [PMID: 34689357 PMCID: PMC8649336 DOI: 10.1002/jcla.24034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023] Open
Abstract
Background Hereditary spherocytosis (HS), a commonly encountered hereditary hemolytic disease, is mostly inherited in an autosomal dominant manner. The clinical manifestations in patients with HS show obvious heterogeneity. Moreover, the sensitivity or specificity of some HS diagnostic tests are not ideal and may easily result in misdiagnosis or missed diagnosis in some patients. The objective of this study was to propose a simple and practical diagnostic protocol, which can contribute to the diagnosis of HS and its differential diagnosis with different types of hemolytic anemia such as thalassemia (THAL), autoimmune hemolytic anemia (AIHA), and glucose‐6‐phosphate dehydrogenase (G6PD) deficiency, thus, to provide an alternative simple and reliable method for better clinical diagnosis of HS. Methods Through combing our research with existing experimental technologies and studies, we propose a simple and practical protocol for HS diagnosis, which will help clinicians to improve HS diagnosis. Results Compared with the existing HS diagnostic protocols, the HS diagnostic protocol we proposed is simpler. In this new protocol, some experimental tests with ideal diagnostic efficiency are added, such as mean reticulocyte volume (MRV), mean sphered cell volume (MSCV), mean corpuscular volume (MCV), in combination with the observation of clinical manifestations, family investigation, routine tests for hemolytic anemia, genetic testing, and other screening tests. Conclusion The HS diagnostic protocol we proposed could improve the clinical practice and efficiency of HS diagnosis.
Collapse
Affiliation(s)
- Yangyang Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Skarp S, Xia JH, Zhang Q, Löija M, Costantini A, Ruddock LW, Mäkitie O, Wei GH, Männikkö M. Exome Sequencing Reveals a Phenotype Modifying Variant in ZNF528 in Primary Osteoporosis With a COL1A2 Deletion. J Bone Miner Res 2020; 35:2381-2392. [PMID: 32722848 PMCID: PMC7757391 DOI: 10.1002/jbmr.4145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
We studied a family with severe primary osteoporosis carrying a heterozygous p.Arg8Phefs*14 deletion in COL1A2, leading to haploinsufficiency. Three affected individuals carried the mutation and presented nearly identical spinal fractures but lacked other typical features of either osteogenesis imperfecta or Ehlers-Danlos syndrome. Although mutations leading to haploinsufficiency in COL1A2 are rare, mutations in COL1A1 that lead to less protein typically result in a milder phenotype. We hypothesized that other genetic factors may contribute to the severe phenotype in this family. We performed whole-exome sequencing in five family members and identified in all three affected individuals a rare nonsense variant (c.1282C > T/p.Arg428*, rs150257846) in ZNF528. We studied the effect of the variant using qPCR and Western blot and its subcellular localization with immunofluorescence. Our results indicate production of a truncated ZNF528 protein that locates in the cell nucleus as per the wild-type protein. ChIP and RNA sequencing analyses on ZNF528 and ZNF528-c.1282C > T indicated that ZNF528 binding sites are linked to pathways and genes regulating bone morphology. Compared with the wild type, ZNF528-c.1282C > T showed a global shift in genomic binding profile and pathway enrichment, possibly contributing to the pathophysiology of primary osteoporosis. We identified five putative target genes for ZNF528 and showed that the expression of these genes is altered in patient cells. In conclusion, the variant leads to expression of truncated ZNF528 and a global change of its genomic occupancy, which in turn may lead to altered expression of target genes. ZNF528 is a novel candidate gene for bone disorders and may function as a transcriptional regulator in pathways affecting bone morphology and contribute to the phenotype of primary osteoporosis in this family together with the COL1A2 deletion. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sini Skarp
- Infrastructure for Population Studies, Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ji-Han Xia
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Marika Löija
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Stockholm, Stockholm, Sweden
| | - Lloyd W Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet/Stockholm, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Männikkö
- Infrastructure for Population Studies, Northern Finland Birth Cohorts, Faculty of Medicine, University of Oulu, Oulu, Finland.,Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|