1
|
Yao Y, Li QX. Efficient, fast and robust degradation of chlortetracycline in wastewater catalyzed by recombinant Arthromyces ramosus peroxidase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159872. [PMID: 36461571 DOI: 10.1016/j.scitotenv.2022.159872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Chlortetracycline (CTC), a widely used antibiotic, is recalcitrant and ubiquitous in the environment. Enzymatic degradation of CTC is an economical and efficient bioremediation method. In this work, recombinant Arthromyces ramosus peroxidase (rARP) at a concentration of 3.13 × 10-9 M was used to catalyze rapid degradation of CTC in water. The second-order rate constants of rARP showed up to 62-fold catalytic efficiency of horseradish peroxidase (HRP) toward CTC. The degradation half-life of CTC at the concentrations of 2 and 40 mg L-1 in wastewater under the rARP catalysis was, respectively, 5.3 and 5.7 min at 25 °C, and 2.7 and 3.1 min at 40 °C, which were up to 15-fold and 111-fold faster than HRP and laccase, respectively, but use of 3 % the amount of rARP as HRP. rARP catalyzed degradation of CTC at 2-40 mg L-1 in wastewater completed in 20-24 min, and its catalytic efficiency varied within only 2-fold at 25-40 °C. rARP showed only 2-3-fold discrepancy of catalytic efficiency among pH 5.0, 7.5 and 9.0. CTC under rARP catalysis underwent demethylation and oxidation to form nontoxic N-dedimethyl-9-hydroxy-CTC. The high catalytic efficiency of rARP agreed with a short distance between rARP's δN-His56 and CTC's dimethylamine N as indicated by docking simulation. rARP is a useful enzyme for CTC bioremediation.
Collapse
Affiliation(s)
- Yuqun Yao
- School of Medicine, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou 545025, China; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
2
|
Yao Y, Huang L, Xu Y, Li QX. Recombinant Arthromyces ramosus Peroxidase Has Similar Substrate Specificity Profiles as, but a Catalytic Efficiency up to 11-Fold Higher than, Horseradish Peroxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:646-655. [PMID: 34981926 DOI: 10.1021/acs.jafc.1c06261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal peroxidases are valuable enzymes. Arthromyces ramosus peroxidase (ARP) and horseradish peroxidase (HRP) share a conserved catalytic site. Both native ARP and recombinant ARP (rARP) were not commercially available. The substrate specificity and kinetic parameters of rARP and HRP were not well compared, particularly relevent to structure-activity relationship. In this work, rARP expressed by Komagataella phaffii had a production yield of 6.2 mg/L, up to 155-fold higher than ARP and other recombinant peroxidases, and a specific activity of 3240 units/mg toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), up to 29-fold higher than HRP and other peroxidases. The Michaelis constant (Km) and first-order rate constant (kcat) of rARP showed 10-fold substrate affinity and consequently 6-fold catalytic efficiency of HRP toward ABTS. Under optimal conditions, rARP shared similar substrate specificity profiles as commercial HRP; the second-order rate constants (kapp) of rARP showed 2-11-fold catalytic efficiency of HRP toward well-known peroxidase substrates. rARP's higher catalytic efficiency was also in agreement with the shorter binding distance of H/N-His56 in rARP/substrate in comparison to that of HRP/substrate, as illustrated by docking simulation. The rARP had similar substrate specificity profiles as, but higher specific activity and catalytic efficiency than, HRP, which merits its further structure-functional characterization and applications.
Collapse
Affiliation(s)
- Yuqun Yao
- School of Medicine, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou 545025, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| | - Li Huang
- School of Medicine, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou 545025, China
| | - Yueqiang Xu
- State Key Laboratory of Biochemical Engineering, Institute of Processing and Engineering, Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Paradisi A, Lancellotti L, Borsari M, Bellei M, Bortolotti CA, Di Rocco G, Ranieri A, Sola M, Battistuzzi G. Met80 and Tyr67 affect the chemical unfolding of yeast cytochrome c: comparing the solution vs.immobilized state. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00115e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The motional regime affects the unfolding propensity and axial heme coordination of the Met80Ala and Met80Ala/Tyr67Ala variants of yeast iso-1 cytochromec.
Collapse
Affiliation(s)
| | - Lidia Lancellotti
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Borsari
- Department of Chemistry and Geology
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marzia Bellei
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | | - Giulia Di Rocco
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Antonio Ranieri
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | - Marco Sola
- Department of Life Sciences
- University of Modena and Reggio Emilia
- 41126 Modena
- Italy
| | | |
Collapse
|
5
|
Redox thermodynamics of B-class dye-decolorizing peroxidases. J Inorg Biochem 2019; 199:110761. [PMID: 31325671 DOI: 10.1016/j.jinorgbio.2019.110761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/22/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022]
Abstract
With >5000 annotated genes dye-decolorizing peroxidases (DyPs) represent a heme b peroxidase family of broad functional diversity. Bacterial B-class DyPs are poor peroxidases of unknown physiological function. Hydrogen peroxide efficiently mediates the rapid formation of Compound I in B-class DyPs, which, however, is stable and shows modest reactivity towards organic and inorganic electron donors. To understand these characteristics, we have investigated the redox thermodynamics of the one-electron reduction of the ferric high-spin form of wild-type B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) and the variants D143A, R232A and D143A/R232A. These distal amino acids are fully conserved in all DyPs and play important roles in Compound I formation and maintenance of the heme cavity architecture and substrate access route(s). The E°' values of the respective redox couples Fe(III)/Fe(II) varied from -350 mV (wild-type KpDyP) to -299 mV (D143A/R232A) at pH 7.0. Variable-temperature spectroelectrochemical experiments revealed that the reduction reaction of B-class DyPs is enthalpically unfavored but entropically favored with significant differences in enthalpic and entropic contributions to E°' between the four proteins. Molecular dynamics simulations demonstrated the impact of solvent reorganization on the entropy change during reduction reaction and revealed the dynamics and restriction of substrate access channels. Obtained data are discussed with respect to the poor peroxidase activities of B-class DyPs and compared with heme peroxidases from other (super)families as well as with chlorite dismutases, which do not react with hydrogen peroxide but share a similar fold and heme cavity architecture.
Collapse
|
6
|
Ayuso‐Fernández I, De Lacey AL, Cañada FJ, Ruiz‐Dueñas FJ, Martínez AT. Increase of Redox Potential during the Evolution of Enzymes Degrading Recalcitrant Lignin. Chemistry 2019; 25:2708-2712. [PMID: 30566756 PMCID: PMC6582443 DOI: 10.1002/chem.201805679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 11/09/2022]
Abstract
To investigate how ligninolytic peroxidases acquired the uniquely high redox potential they show today, their ancestors were resurrected and characterized. Unfortunately, the transient Compounds I (CI) and II (CII) from peroxide activation of the enzyme resting state (RS) are unstable. Therefore, the reduction potentials (E°') of the three redox couples (CI/RS, CI/CII and CII/RS) were estimated (for the first time in a ligninolytic peroxidase) from equilibrium concentrations analyzed by stopped-flow UV/Vis spectroscopy. Interestingly, the E°' of rate-limiting CII reduction to RS increased 70 mV from the common peroxidase ancestor to extant lignin peroxidase (LiP), and the same boost was observed for CI/RS and CI/CII, albeit with higher E°' values. A straightforward correlation was found between the E°' value and the progressive displacement of the proximal histidine Hϵ1 chemical shift in the NMR spectra, due to the higher paramagnetic effect of the heme Fe3+ . More interestingly, the E°' and NMR data also correlated with the evolutionary time, revealing that ancestral peroxidases increased their reduction potential in the evolution to LiP thanks to molecular rearrangements in their heme pocket during the last 400 million years.
Collapse
Affiliation(s)
| | | | - Francisco J. Cañada
- Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9E-28040MadridSpain
| | | | - Angel T. Martínez
- Centro de Investigaciones BiológicasCSICRamiro de Maeztu 9E-28040MadridSpain
| |
Collapse
|
7
|
Bellei M, Bortolotti CA, Di Rocco G, Borsari M, Lancellotti L, Ranieri A, Sola M, Battistuzzi G. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. J Inorg Biochem 2018; 178:70-86. [DOI: 10.1016/j.jinorgbio.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|
8
|
Sündermann A, Reif MM, Hofbauer S, Obinger C, Oostenbrink C. Investigation of ion binding in chlorite dismutases by means of molecular dynamics simulations. Biochemistry 2014; 53:4869-79. [PMID: 24988286 PMCID: PMC4116397 DOI: 10.1021/bi500467h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Chlorite
dismutases are prokaryotic heme b oxidoreductases
that convert chlorite to chloride and dioxygen. It has been postulated
that during turnover hypochlorite is formed transiently, which might
be responsible for the observed irreversible inactivation of these
iron proteins. The only charged distal residue in the heme cavity
is a conserved and mobile arginine, but its role in catalysis and
inactivation is not fully understood. In the present study, the pentameric
chlorite dismutase (Cld) from the bacterium Candidatus Nitrospira
defluvii was probed for binding of the low spin ligand cyanide,
the substrate chlorite, and the intermediate hypochlorite. Simulations
were performed with the enzyme in the ferrous, ferric, and compound
I state. Additionally, the variant R173A was studied. We report the
parametrization for the GROMOS force field of the anions ClO–, ClO2–, ClO3–, and ClO4– and describe spontaneous
binding, unbinding, and rebinding events of chlorite and hypochlorite,
as well as the dynamics of the conformations of Arg173 during simulations.
The findings suggest that (i) chlorite binding to ferric NdCld occurs
spontaneously and (ii) that Arg173 is important for recognition and
to impair hypochlorite leakage from the reaction sphere. The simulation
data is discussed in comparison with experimental data on catalysis
and inhibition of chlorite dismutase.
Collapse
Affiliation(s)
- Axel Sündermann
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna , Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Hofbauer S, Bellei M, Sündermann A, Pirker KF, Hagmüller A, Mlynek G, Kostan J, Daims H, Furtmüller PG, Djinović-Carugo K, Oostenbrink C, Battistuzzi G, Obinger C. Redox thermodynamics of high-spin and low-spin forms of chlorite dismutases with diverse subunit and oligomeric structures. Biochemistry 2012; 51:9501-12. [PMID: 23126649 PMCID: PMC3557923 DOI: 10.1021/bi3013033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chlorite dismutases (Clds) are heme b-containing
oxidoreductases that convert chlorite to chloride and dioxygen. In
this work, the thermodynamics of the one-electron reduction of the
ferric high-spin forms and of the six-coordinate low-spin cyanide
adducts of the enzymes from Nitrobacter winogradskyi (NwCld) and Candidatus “Nitrospira defluvii”
(NdCld) were determined through spectroelectrochemical experiments.
These proteins belong to two phylogenetically separated lineages that
differ in subunit (21.5 and 26 kDa, respectively) and oligomeric (dimeric
and pentameric, respectively) structure but exhibit similar chlorite
degradation activity. The E°′ values
for free and cyanide-bound proteins were determined to be −119
and −397 mV for NwCld and −113 and −404 mV for
NdCld, respectively (pH 7.0, 25 °C). Variable-temperature spectroelectrochemical
experiments revealed that the oxidized state of both proteins is enthalpically
stabilized. Molecular dynamics simulations suggest that changes in
the protein structure are negligible, whereas solvent reorganization
is mainly responsible for the increase in entropy during the redox
reaction. Obtained data are discussed with respect to the known structures
of the two Clds and the proposed reaction mechanism.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, VIBT-Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Battistuzzi G, Stampler J, Bellei M, Vlasits J, Soudi M, Furtmüller PG, Obinger C. Influence of the Covalent Heme–Protein Bonds on the Redox Thermodynamics of Human Myeloperoxidase. Biochemistry 2011; 50:7987-94. [DOI: 10.1021/bi2008432] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johanna Stampler
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Marzia Bellei
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Jutta Vlasits
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Monika Soudi
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| | - Christian Obinger
- Vienna
Institute of BioTechnology,
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18,
A-1190 Vienna, Austria
| |
Collapse
|
11
|
Disruption of the H-bond network in the main access channel of catalase–peroxidase modulates enthalpy and entropy of Fe(III) reduction. J Inorg Biochem 2010; 104:648-56. [DOI: 10.1016/j.jinorgbio.2010.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 01/06/2023]
|
12
|
Battistuzzi G, Bellei M, Bortolotti CA, Sola M. Redox properties of heme peroxidases. Arch Biochem Biophys 2010; 500:21-36. [PMID: 20211593 DOI: 10.1016/j.abb.2010.03.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Peroxidases are heme enzymes found in bacteria, fungi, plants and animals, which exploit the reduction of hydrogen peroxide to catalyze a number of oxidative reactions, involving a wide variety of organic and inorganic substrates. The catalytic cycle of heme peroxidases is based on three consecutive redox steps, involving two high-valent intermediates (Compound I and Compound II), which perform the oxidation of the substrates. Therefore, the thermodynamics and the kinetics of the catalytic cycle are influenced by the reduction potentials of three redox couples, namely Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+. In particular, the oxidative power of heme peroxidases is controlled by the (high) reduction potential of the latter two couples. Moreover, the rapid H2O2-mediated two-electron oxidation of peroxidases to Compound I requires a stable ferric state in physiological conditions, which depends on the reduction potential of the Fe3+/Fe2+ couple. The understanding of the molecular determinants of the reduction potentials of the above redox couples is crucial for the comprehension of the molecular determinants of the catalytic properties of heme peroxidases. This review provides an overview of the data available on the redox properties of Fe3+/Fe2+, Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+ couples in native and mutated heme peroxidases. The influence of the electron donor properties of the axial histidine and of the polarity of the heme environment is analyzed and the correlation between the redox properties of the heme group with the catalytic activity of this important class of metallo-enzymes is discussed.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
13
|
Battistuzzi G, Bellei M, Vlasits J, Banerjee S, Furtmüller PG, Sola M, Obinger C. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase. Arch Biochem Biophys 2009; 494:72-7. [PMID: 19944669 DOI: 10.1016/j.abb.2009.11.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 11/10/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Eosinophil peroxidase (EPO) and lactoperoxidase (LPO) are important constituents of the innate immune system of mammals. These heme enzymes belong to the peroxidase-cyclooxygenase superfamily and catalyze the oxidation of thiocyanate, bromide and nitrite to hypothiocyanate, hypobromous acid and nitrogen dioxide that are toxic for invading pathogens. In order to gain a better understanding of the observed differences in substrate specificity and oxidation capacity in relation to heme and protein structure, a comprehensive spectro-electrochemical investigation was performed. The reduction potential (E degrees ') of the Fe(III)/Fe(II) couple of EPO and LPO was determined to be -126mV and -176mV, respectively (25 degrees C, pH 7.0). Variable temperature experiments show that EPO and LPO feature different reduction thermodynamics. In particular, reduction of ferric EPO is enthalpically and entropically disfavored, whereas in LPO the entropic term, which selectively stabilizes the oxidized form, prevails on the enthalpic term that favors reduction of Fe(III). The data are discussed with respect to the architecture of the heme cavity and the substrate channel. Comparison with published data for myeloperoxidase demonstrates the effect of heme to protein linkages and heme distortion on the redox chemistry of mammalian peroxidases and in consequence on the enzymatic properties of these physiologically important oxidoreductases.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ayala M, Verdin J, Vazquez-Duhalt R. The prospects for peroxidase-based biorefining of petroleum fuels. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701379015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Efimov I, Papadopoulou ND, McLean KJ, Badyal SK, Macdonald IK, Munro AW, Moody PCE, Raven EL. The redox properties of ascorbate peroxidase. Biochemistry 2007; 46:8017-23. [PMID: 17580972 DOI: 10.1021/bi7006492] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reduction potentials for the catalytic compound I/compound II and compound II/Fe3+ redox couples, and for the two-electron compound I/Fe3+ redox couple, have been determined for ascorbate peroxidase (APX) and for a number of site-directed variants. For the wild type enzyme, the values are E degrees '(compound I/compound II) = 1156 mV, E degrees '(compound II/Fe3+) = 752 mV, and E degrees '(compound I/Fe3+) = 954 mV. For the variants, the analysis also includes determination of Fe3+/Fe2+ potentials which were used to calculate (experimentally inaccessible) E degrees '(compound II/Fe3+) potentials. The data provide a number of new insights into APX catalysis. The measured values for E degrees '(compound I/compound II) and E degrees '(compound II/Fe3+) for the wild type protein account for the much higher oxidative reactivity of compound I compared to compound II, and this correlation holds for a number of other active site and substrate binding variants of APX. The high reduction potential for compound I also accounts for the known thermodynamic instability of this intermediate, and it is proposed that this instability can account for the deviations from standard Michaelis kinetics observed for most APX enzymes during steady-state oxidation of ascorbate. This study provides the first systematic evaluation of the redox properties of any ascorbate peroxidase using a number of methods, and the data provide an experimental and theoretical framework for accurate determination of the redox properties of Fe3+, compound I, and compound II species in related enzymes.
Collapse
Affiliation(s)
- Igor Efimov
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Battistuzzi G, Bellei M, Casella L, Bortolotti CA, Roncone R, Monzani E, Sola M. Redox reactivity of the heme Fe3+/Fe2+ couple in native myoglobins and mutants with peroxidase-like activity. J Biol Inorg Chem 2007; 12:951-8. [PMID: 17576605 DOI: 10.1007/s00775-007-0267-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
The reaction enthalpy and entropy for the one-electron reduction of the ferric heme in horse heart and sperm whale aquometmyoglobins (Mb) have been determined exploiting a spectroelectrochemical approach. Also investigated were the T67R, T67K, T67R/S92D and T67R/S92D Mb-H variants (the latter containing a protoheme-L: -histidine methyl ester) of sperm whale Mb, which feature peroxidase-like activity. The reduction potential (E degrees ') in all species consists of an enthalpic term which disfavors Fe(3+) reduction and a larger entropic contribution which instead selectively stabilizes the reduced form. This behavior differs from that of the heme redox enzymes and electron transport proteins investigated so far. The reduction thermodynamics in the series of sperm whale Mb variants show an almost perfect enthalpy-entropy compensation, indicating that the mutation-induced changes in DeltaH(o')(rc) and DeltaS(o')(rc) are dominated by reduction-induced solvent reorganization effects. The modest changes in E degrees ' originate from the enthalpic effects of the electrostatic interactions of the heme with the engineered charged residues. The small influence that the mutations exert on the reduction potential of myoglobin suggests that the increased peroxidase activity of the variants is not related to changes in the redox reactivity of the heme iron, but are likely related to a more favored substrate orientation within the distal heme cavity.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Huang L, Ortiz de Montellano PR. Arthromyces ramosus peroxidase produces two chlorinating species. Biochem Biophys Res Commun 2007; 355:581-6. [PMID: 17303078 PMCID: PMC1852486 DOI: 10.1016/j.bbrc.2007.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
We previously reported that the hemes of horseradish peroxidase (HRP) and Arthromyces ramosus peroxidase (ARP) undergo vinyl and meso-carbon modifications when the enzymes oxidize chloride ion. Here we demonstrate for ARP that, although both modifications exhibit the same pH profile with an optimum at approximately pH 4.0, monochlorodimedone suppresses the vinyl but not meso-carbon modifications. Furthermore, meso-chlorination occurs when ARP reacts with exogenous HOCl, implicating an Fe(III)-O-Cl intermediate in the reaction. These results establish that (a) the chloro species involved in meso-modification differs from that which reacts with the vinyl groups, (b) equilibration of the vinyl modifying species (HOCl) into the medium occurs more rapidly than vinyl group modification, and (c) the oxidation of chloride by ARP produces two reactive species: HOCl, which adds to the heme vinyl but not meso-positions, and a distinct second species that adds to the meso-carbon.
Collapse
Affiliation(s)
| | - Paul R. Ortiz de Montellano
- To whom editorial correspondence should be addressed: Dr. Paul Ortiz de Montellano, University of California, Genentech Hall N572D, 600 16 Street, San Francisco, CA 94158-2517, TEL: (415) 476-2903, FAX: (415) 502-4728, e-mail:
| |
Collapse
|
18
|
Battistuzzi G, Bellei M, Zederbauer M, Furtmüller PG, Sola M, Obinger C. Redox thermodynamics of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms. Biochemistry 2006; 45:12750-5. [PMID: 17042493 DOI: 10.1021/bi061647k] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase (MPO) (donor, hydrogen peroxide oxidoreductase, EC 1.11.1.7) is the most abundant neutrophil enzyme and catalyzes predominantly the two-electron oxidation of ubiquitous chloride (Cl-), to generate the potent bleaching oxidant hypochlorous acid (HOCl), thus contributing to bacterial killing and inflammatory reactions of neutrophils. Here, the thermodynamics of the one-electron reduction of the ferric heme in its ferric high-spin and cyanide-bound low-spin forms were determined through spectroelectrochemical experiments. The E(o)' values for free and cyanide-bound MPO (5 and -37 mV, respectively, at 25 degrees C and pH 7.0) are significantly higher than those of other heme peroxidases. Variable-temperature experiments revealed that the enthalpic stabilization of ferric high-spin MPO is much weaker than in other heme peroxidases and is exactly compensated by the entropic change upon reduction. In contrast to those of other heme peroxidases, the stabilization of the ferric cyanide-bound MPO is also very weak and fully entropic. This peculiar behavior is discussed with respect to the MPO-typical covalent heme to protein linkages as well as to the published structures of ferric MPO and its cyanide complex and the recently published structure of lactoperoxidase as well as the physiological role of MPO in bacterial killing.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
|