1
|
Lippert B, Sanz Miguel PJ. Merging Metal–Nucleobase Chemistry With Supramolecular Chemistry. ADVANCES IN INORGANIC CHEMISTRY 2018. [DOI: 10.1016/bs.adioch.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Mohapatra B, Pratibha, Verma S. Directed adenine functionalization for creating complex architectures for material and biological applications. Chem Commun (Camb) 2017; 53:4748-4758. [PMID: 28393940 DOI: 10.1039/c7cc00222j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this feature article, targeted design strategies are outlined for modified adenine nucleobase derivatives in order to construct metal-mediated discrete complexes, ring-expanded purine skeletons, linear and catenated coordination polymers, shape-selective MOFs, and purine-capped nanoparticles, with a wide range of applications from gas and solvent adsorption to bioimaging agents and anticancer metallodrugs. The success of such design strategies could be ascribed to the rich chemistry of purine and pyrimidine derivatives, versatile coordination behavior, ability to bind a host of metal ions, which could be further tuned by the introduction of additional functionalities, and their inherent propensity to hydrogen bond and exhibit π-π interactions. These noncovalent interactions produce stable frameworks and network solids that are useful as advanced materials, and the biocompatibility of these ligand complexes provides an impetus for assessing novel biological applications.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Chemistry Indian Institute of Technology Kanpur, Kanpur, India.
| | | | | |
Collapse
|
3
|
Moulick A, Milosavljevic V, Vlachova J, Podgajny R, Hynek D, Kopel P, Adam V. Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA. Int J Nanomedicine 2017; 12:1277-1291. [PMID: 28243089 PMCID: PMC5317249 DOI: 10.2147/ijn.s121840] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments.
Collapse
Affiliation(s)
- Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Vlachova
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University; Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
4
|
Terrón A, Tomàs L, Bauzá A, García-Raso A, Fiol JJ, Molins E, Frontera A. The first X-ray structure of a silver–nucleotide complex: interaction of ion Ag(i) with cytidine-5′-monophosphate. CrystEngComm 2017. [DOI: 10.1039/c7ce01400g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The synthesis and X-ray characterization of an unprecedented complex of Ag(i) with cytidine-5′-monophosphate (HCMP) is reported. The coordination of Ag(i) to HCMP is via both the N3 and O2 atoms of two cytosine moieties and the phosphate group, generating a MOF.
Collapse
Affiliation(s)
- Angel Terrón
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Llorenç Tomàs
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Juan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Elies Molins
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus de la Universitat Autònoma de Barcelona
- 08193 Bellaterra
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
5
|
Ibáñez S, Mihály B, Sanz Miguel PJ, Steinborn D, Pretzer I, Hiller W, Lippert B. The challenge of deciphering linkage isomers in mixtures of oligomeric complexes derived from 9-methyladenine and trans-(NH3)2Pt(II) units. Chemistry 2015; 21:5794-806. [PMID: 25737270 DOI: 10.1002/chem.201406378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Indexed: 11/11/2022]
Abstract
Metal coordination to N9-substituted adenines, such as the model nucleobase 9-methyladenine (9MeA), under neutral or weakly acidic pH conditions in water preferably occurs at N1 and/or N7. This leads, not only to mononuclear linkage isomers with N1 or N7 binding, but also to species that involve both N1 and N7 metal binding in the form of dinuclear or oligomeric species. Application of a trans-(NH3)2Pt(II) unit and restriction of metal coordination to the N1 and N7 sites and the size of the oligomer to four metal entities generates over 50 possible isomers, which display different feasible connectivities. Slowly interconverting rotamers are not included in this number. Based on (1)H NMR spectroscopic analysis, a qualitative assessment of the spectroscopic features of N1,N7-bridged species was attempted. By studying the solution behavior of selected isolated and structurally characterized compounds, such as trans-[PtCl(9MeA-N7)(NH3)2]ClO4⋅2H2O or trans,trans-[{PtCl(NH3)2}2(9MeA-N1,N7)][ClO4]2⋅H2O, and also by application of a 9MeA complex with an (NH3)3Pt(II) entity at N7, [Pt(9MeA-N7)(NH3)3][NO3]2, which blocks further cross-link formation at the N7 site, basic NMR spectroscopic signatures of N1,N7-bridged Pt(II) complexes were identified. Among others, the trinuclear complex trans-[Pt(NH3)2{μ-(N1-9MeA-N7)Pt(NH3)3}2][ClO4]6⋅2H2O was crystallized and its rotational isomerism in aqueous solution was studied by NMR spectroscopy and DFT calculations. Interestingly, simultaneous Pt(II) coordination to N1 and N7 acidifies the exocyclic amino group of the two 9MeA ligands sufficiently to permit replacement of one proton each by a bridging heterometal ion, Hg(II) or Cu(II), under mild conditions in water.
Collapse
Affiliation(s)
- Susana Ibáñez
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund (Germany), Fax: (+49) 231-755-3797
| | | | | | | | | | | | | |
Collapse
|
6
|
Gáliková J, Trávníček Z. Effect of different reaction conditions on the structural diversity of zinc(II) complexes with 9-deazahypoxanthine. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Masoud MS, Ali AE, Abd El-Kaway MY. Thermal properties of mercury(II) and palladium(II) purine and pyrimidine complexes. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2014; 116:183-194. [DOI: 10.1007/s10973-013-3551-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Albertí FM, Rodríguez-Santiago L, Sodupe M, Mirats A, Kaitsiotou H, Sanz Miguel PJ, Lippert B. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3). Chemistry 2014; 20:3394-407. [PMID: 24532472 DOI: 10.1002/chem.201304686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 11/12/2022]
Abstract
Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton transfer to NH3 and formation of U(-H(+) ) species, which exhibits an intramolecular hydrogen bond between the deprotonated N6H(-) of one adenine and the N6H2 group of the other adenine. Finally the question is examined, how metal cross-linking patterns in closed metallacyclic quartets containing two adenine and two guanine nucleobases influence the overall shape (square, rectangle, trapezoid) and the planarity of a metalated purine quartet.
Collapse
Affiliation(s)
- Francisca M Albertí
- Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund (Germany), Fax: (+49) 231-755-3797
| | | | | | | | | | | | | |
Collapse
|
9
|
Stereospecific intra-molecular interligand interactions affecting base-specific metal bonding to purine nucleobases in the solid state. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Kozma Á, Ibáñez S, Silaghi-Dumitrescu R, Sanz Miguel PJ, Gupta D, Lippert B. 7-Methylguanine: protonation, formation of linkage isomers with trans-(NH3)2Pt(II), and base pairing properties. Dalton Trans 2012; 41:6094-103. [PMID: 22354137 DOI: 10.1039/c2dt12228f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three protonated forms of 7-methylguanine (7-MeGH, 1) with different counter ions, [7-MeGH(2)]X (X = NO(3), 1a; ClO(4), 1b; BF(4), 1c) and two Pt(II) complexes, trans-[Pt(NH(3))(2)(7-MeGH-N9)(2)](ClO(4))(2) (4) and trans-[Pt(NH(3))(2)(7-MeGH-N9)(7-MeGH-N3)](ClO(4))(2)·3H(2)O (5) are described and their X-ray crystal structures are reported. 1a-1c form infinite ribbons via pairs of intermolecular hydrogen bonds between N1H···O6 and N3···N2H(2) sites, with anions connecting individual ribbons, thereby generating extended sheets. 4 and 5 do not display unusual features, except that 5 represents a rare case of a bis(nucleobase) complex of Pt(II) in which linkage isomers occur. Unlike in a previously reported compound, [Pt(dien)(7-MeGH-N9)](NO(3))(ClO(4)), the Pt coordination planes and the 7-MeGH planes are not coplanar in 4 and 5. The hydrogen bonding behaviour of 7-MeGH, free and when platinated at N9 (complex 4), was studied in Me(2)SO-d(6). It revealed the following: (i) there is no detectable self-association of 1 in Me(2)SO solution. (ii) 1 and 1-methylcytosine (1-MeC) form Watson-Crick pairs. (iii) 4 does not self-associate. (iv) 4 associates with 1-MeC in the Watson-Crick fashion. (v) 4 and 1 interact in solution, but no model can be proposed at present. (vi) Remarkable interaction shifts between 4 and 1 occur when NH(3) is liberated from trans-(NH(3))(2)Pt(II) to give NH(4)(+) in Me(2)SO-d(6). Feasible models, which imply the presence of deprotonated 7-MeG(-) species are proposed. Finally, DFT calculations were carried out to qualitatively estimate the effect of 7-MeGH acidity in [Pt(dien)(7-MeGH-N9)](2+) in dependence of the dihedral angle between the Pt coordination plane and the nucleobase.
Collapse
Affiliation(s)
- Ágnes Kozma
- Fakultät Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Masoud MS, El-Merghany A, Ramadan AM, Abd El-Kaway MY. Thermal studies of some purine compounds and their metal complexes. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2010; 101:839-847. [DOI: 10.1007/s10973-010-0722-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
X-ray structural characterizations of the reaction products between ZnCl2 and 6-benzylaminopurine derivatives in different acidic conditions. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zamora F, Pilar Amo-Ochoa M, Sanz Miguel PJ, Castillo O. From metal-nucleobase chemistry towards molecular wires. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Lippert B. Coordinative Bond Formation Between Metal Ions and Nucleic Acid Bases. NUCLEIC ACID–METAL ION INTERACTIONS 2008. [DOI: 10.1039/9781847558763-00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bernhard Lippert
- Fakultät für Chemie, Technische Universität Dortmund Otto-Hahn-Strasse 6 D-44227 Dortmund Germany
| |
Collapse
|
15
|
Amo-Ochoa P, Castillo O, Sanz Miguel PJ, Zamora F. Unusual Dimeric Zn(II)-cytosine complexes: New models of the interaction of Zn(II) with DNA and RNA. J Inorg Biochem 2008; 102:203-8. [PMID: 17870174 DOI: 10.1016/j.jinorgbio.2007.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.
Collapse
Affiliation(s)
- Pilar Amo-Ochoa
- Departamento de Tecnología Industrial, Universidad Alfonso X El Sabio, 28691 Villanueva de la Cañada, Madrid, Spain
| | | | | | | |
Collapse
|