1
|
Wilson LA, Pedroso MM, Peralta RA, Gahan LR, Schenk G. Biomimetics for purple acid phosphatases: A historical perspective. J Inorg Biochem 2023; 238:112061. [PMID: 36371912 DOI: 10.1016/j.jinorgbio.2022.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Biomimetics hold potential for varied applications in biotechnology and medicine but have also attracted particular interest as benchmarks for the functional study of their more complex biological counterparts, e.g. metalloenzymes. While many of the synthetic systems adequately mimic some structural and functional aspects of their biological counterparts the catalytic efficiencies displayed are mostly far inferior due to the smaller size and the associated lower complexity. Nonetheless they play an important role in bioinorganic chemistry. Numerous examples of biologically inspired and informed artificial catalysts have been reported, designed to mimic a plethora of chemical transformations, and relevant examples are highlighted in reviews and scientific reports. Herein, we discuss biomimetics of the metallohydrolase purple acid phosphatase (PAP), examples of which have been used to showcase synergistic research advances for both the biological and synthetic systems. In particular, we focus on the seminal contribution of our colleague Prof. Ademir Neves, and his group, pioneers in the design and optimization of suitable ligands that mimic the active site of PAP.
Collapse
Affiliation(s)
- Liam A Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
2
|
Feder D, Mohd-Pahmi SH, Hussein WM, Guddat LW, McGeary RP, Schenk G. Rational Design of Potent Inhibitors of a Metallohydrolase Using a Fragment-Based Approach. ChemMedChem 2021; 16:3342-3359. [PMID: 34331400 DOI: 10.1002/cmdc.202100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/08/2022]
Abstract
Metallohydrolases form a large group of enzymes that have fundamental importance in a broad range of biological functions. Among them, the purple acid phosphatases (PAPs) have gained attention due to their crucial role in the acquisition and use of phosphate by plants and also as a promising target for novel treatments of bone-related disorders and cancer. To date, no crystal structure of a mammalian PAP with drug-like molecules bound near the active site is available. Herein, we used a fragment-based design approach using structures of a mammalian PAP in complex with the MaybridgeTM fragment CC063346, the amino acid L-glutamine and the buffer molecule HEPES, as well as various solvent molecules to guide the design of highly potent and efficient mammalian PAP inhibitors. These inhibitors have improved aqueous solubility when compared to the clinically most promising PAP inhibitors available to date. Furthermore, drug-like fragments bound in newly discovered binding sites mapped out additional scaffolds for further inhibitor discovery, as well as scaffolds for the design of inhibitors with novel modes of action.
Collapse
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Siti H Mohd-Pahmi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Camargo TP, Oliveira JAF, Costa TG, Szpoganicz B, Bortoluzzi AJ, Marzano IM, Silva-Caldeira PP, Bucciarelli-Rodriguez M, Pereira-Maia EC, Castellano EE, Peralta RA, Neves A. New Al IIIZn II and Al IIICu II dinuclear complexes: Phosphatase-like activity and cytotoxicity. J Inorg Biochem 2021; 219:111392. [PMID: 33752123 DOI: 10.1016/j.jinorgbio.2021.111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 10/21/2022]
Abstract
Herein, we report the synthesis and characterization of the first two AlIII(μ-OH)MII (M = Zn (1) and Cu (2)) complexes with the unsymmetrical ligand H2L{2-[[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl]-6-bis(pyridylmethyl)aminomethyl}-4-methylphenol. The complexes were characterized through elemental analysis, X-ray crystallography, IR spectroscopy, mass spectrometry and potentiometric titration. In addition, complex 2 was characterized by electronic spectroscopy. Kinetics studies on the hydrolysis of the model substrate bis(2,4-dinitrophenyl)phosphate by 1 and 2 show Michaelis-Menten behavior, with 1 being slightly more active (8.31%) than 2 (at pH 7.0). The antimicrobial effect of the compounds was studied using four bacterial strains (Staphylococcus aureus, Pseudomonas aeuruginosa, Shigella sonnei and Shigella dysenteriae) and for both complexes the inhibition of bacterial growth was superior to that caused by sulfapyridine, but inferior to that of tetracycline. The dark cytotoxicity and photocytotoxicity (under UV-A light) of the complexes in a chronic myelogenous leukemia cell line were investigated. Complexes 1 and 2 exhibited significant cytotoxic activity against K562 cells, which undergoes a 2-fold increase on applying 5 min of irradiation with UV-A light. Complex 2 was more effective and a good correlation between cytotoxicity and intracellular concentration was observed, the intracellular copper concentration required to inhibit 50% of cell growth being 3.5 × 10-15 mol cell-1.
Collapse
Affiliation(s)
- Tiago P Camargo
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - José A F Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago G Costa
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ivana M Marzano
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | | | | | - Elene C Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Eduardo E Castellano
- Instituto de Física, Universidade de São Paulo, São Carlos, SP 13360-979, Brazil
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
4
|
Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 2019; 24:675-691. [DOI: 10.1007/s00775-019-01680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
|
5
|
Erxleben A. Mechanistic Studies of Homo- and Heterodinuclear Zinc Phosphoesterase Mimics: What Has Been Learned? Front Chem 2019; 7:82. [PMID: 30847339 PMCID: PMC6393734 DOI: 10.3389/fchem.2019.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Phosphoesterases hydrolyze the phosphorus oxygen bond of phosphomono-, di- or triesters and are involved in various important biological processes. Carboxylate and/or hydroxido-bridged dizinc(II) sites are a widespread structural motif in this enzyme class. Much effort has been invested to unravel the mechanistic features that provide the enormous rate accelerations observed for enzymatic phosphate ester hydrolysis and much has been learned by using simple low-molecular-weight model systems for the biological dizinc(II) sites. This review summarizes the knowledge and mechanistic understanding of phosphoesterases that has been gained from biomimetic dizinc(II) complexes, showing the power as well as the limitations of model studies.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
6
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Synthesis and evaluation of novel purple acid phosphatase inhibitors. MEDCHEMCOMM 2018; 10:61-71. [PMID: 30774855 DOI: 10.1039/c8md00491a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
Abstract
Transgenic studies in animals have demonstrated a direct association between the level of expression of purple acid phosphatase (PAP; also known as tartrate-resistant acid phosphatase) and the progression of osteoporosis. Consequently, PAP has emerged as a promising target for the development of novel therapeutic agents to treat this debilitating disorder. PAPs are binuclear hydrolases that catalyse the hydrolysis of phosphorylated substrates under acidic to neutral conditions. A series of phenyltriazole carboxylic acids, prepared by the reactions of azide derivatives with propiolic acid through copper(i)-catalysed azide-alkyne cycloaddition click reactions, has been assessed for their inhibitory effect on the catalytic activity of pig and red kidney bean PAPs. The binding mode of most of these compounds is purely uncompetitive with K iuc values as low as ∼23 μM for the mammalian enzyme. Molecular modelling has been used to examine the binding modes of these triazole compounds in the presence of a substrate in the active site of the enzyme in order to rationalise their activities and to design more potent and specific derivatives.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,Helwan University , Pharmaceutical Organic Chemistry Department , Faculty of Pharmacy , Ein Helwan , Helwan , Egypt
| | - Daniel Feder
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Gerhard Schenk
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,The University of Queensland , Australian Centre for Ecogenomics , Brisbane , QLD 4072 , Australia
| | - Luke W Guddat
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Ross P McGeary
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| |
Collapse
|
7
|
Horn Jr. A, Englert D, Roberts AE, Comba P, Schenk G, Krenske EH, Gahan LR. Synthesis, Magnetic Properties, and Catalytic Properties of a Nickel(II)-Dependent Biomimetic of Metallohydrolases. Front Chem 2018; 6:441. [PMID: 30320072 PMCID: PMC6168013 DOI: 10.3389/fchem.2018.00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
A dinickel(II) complex of the ligand 1,3-bis(bis(pyridin-2-ylmethyl)amino)propan-2-ol (HL1) has been prepared and characterized to generate a functional model for nickel(II) phosphoesterase enzymes. The complex, [Ni2(L1)(μ-OAc)(H2O)2](ClO4)2·H2O, was characterized by microanalysis, X-ray crystallography, UV-visible, and IR absorption spectroscopy and solid state magnetic susceptibility measurements. Susceptibility studies show that the complex is antiferromagnetically coupled with the best fit parameters J = -27.4 cm-1, g = 2.29, D = 28.4 cm-1, comparable to corresponding values measured for the analogous dicobalt(II) complex [Co2(L1)(μ-OAc)](ClO4)2·0.5 H2O (J = -14.9 cm-1 and g = 2.16). Catalytic measurements with the diNi(II) complex using the substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) demonstrated activity toward hydrolysis of the phosphoester substrate with K m ~10 mM, and k cat ~0.025 s-1. The combination of structural and catalytic studies suggests that the likely mechanism involves a nucleophilic attack on the substrate by a terminal nucleophilic hydroxido moiety.
Collapse
Affiliation(s)
- Adolfo Horn Jr.
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut and Interdisciplinary Center of Scientific Computing, Universität Heidelberg, Heidelberg, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Asha E. Roberts
- Anorganisch-Chemisches Institut and Interdisciplinary Center of Scientific Computing, Universität Heidelberg, Heidelberg, Germany
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Center of Scientific Computing, Universität Heidelberg, Heidelberg, Germany
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics. Eur J Med Chem 2018; 157:462-479. [DOI: 10.1016/j.ejmech.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022]
|
9
|
Heterodinuclear Zn(II)−Fe(III) and Homodinuclear M(II)−M(II) [M = Zn and Ni] complexes of a Bicompartmental [N 6 O] ligand as synthetic mimics of the hydrolase family of enzymes. J Inorg Biochem 2018; 185:30-42. [DOI: 10.1016/j.jinorgbio.2018.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 11/20/2022]
|
10
|
Pathak C, Gangwar MK, Ghosh P. Homodinuclear [Fe(III)−Fe(III)] and [Zn(II)−Zn(II)] complexes of a binucleating [N4O3] symmetrical ligand with purple acid phosphatase (PAP) and zinc phosphoesterase like activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Camargo TP, Neves A, Peralta RA, Chaves C, Maia ECP, Lizarazo-Jaimes EH, Gomes DA, Bortolotto T, Norberto DR, Terenzi H, Tierney DL, Schenk G. Second-Sphere Effects in Dinuclear FeIIIZnII Hydrolase Biomimetics: Tuning Binding and Reactivity Properties. Inorg Chem 2017; 57:187-203. [DOI: 10.1021/acs.inorgchem.7b02384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - David L. Tierney
- Department
of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States,
| | - Gerhard Schenk
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
12
|
Pathak C, Gupta SK, Gangwar MK, Prakasham AP, Ghosh P. Modeling the Active Site of the Purple Acid Phosphatase Enzyme with Hetero-Dinuclear Mixed Valence M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] Complexes Supported over a [N 6O] Unsymmetrical Ligand. ACS OMEGA 2017; 2:4737-4750. [PMID: 31457757 PMCID: PMC6641979 DOI: 10.1021/acsomega.7b00671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/08/2017] [Indexed: 05/13/2023]
Abstract
The active site of the purple acid phosphatase enzyme has been successfully modeled by a series of hetero-dinuclear M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] type complexes of an unsymmetrical [N6O] ligand that contained a bridging phenoxide moiety and one imidazoyl and three pyridyl moieties as the terminal N-binding sites. In particular, the hetero-dinuclear complexes, {L[MII(μ-OAc)2FeIII]}(ClO4)2 [M = Zn (3a), Ni (3b), Co (4a), and Cu (4b)], were obtained directly from the phenoxy-bridged ligand (HL), namely 2-{[bis(2-methylpyridyl)amino]methyl}-6-{[((1-methylimidazol-2-yl)methyl)(2-pyridylmethyl)amino]methyl}-4-t-butylphenol (2), upon sequential addition of Fe(ClO4)3·XH2O and M(ClO4)2·6H2O (M = Zn and Ni) or M(OAc)2·XH2O (M = Co and Cu), in a low-to-moderate (ca. 32-53%) yield. The temperature-dependent magnetic susceptibility measurements indicated weak antiferromagnetic coupling interactions occurring between the two metal centers in their high-spin states. All of the 3(a-b) and 4(a-b) complexes successfully carried out the hydrolysis of the bis(2,4-dinitrophenyl)phosphate (2,4-BDNPP) substrate in a mixed CH3CN/H2O (v/v 1:1) medium in the pH range of 5.5-10.5 at room temperature, thereby mimicking the functional activity of the native enzyme. The spectrophotometric titration suggested a monoaquated and dihydroxo species of the type {L[(H2O)MII(μ-OH)FeIII(OH)]}2+ to be the catalytically active species for the phosphodiester hydrolysis reaction within the pH range of ca. 5.80-7.15. Last, the kinetic studies on the hydrolysis of the model substrate, 2,4-BDNPP, divulge a Michaelis-Menten-type behavior for all complexes.
Collapse
|
13
|
Selleck C, Larrabee JA, Harmer J, Guddat LW, Mitić N, Helweh W, Ollis DL, Craig WR, Tierney DL, Monteiro Pedroso M, Schenk G. AIM-1: An Antibiotic-Degrading Metallohydrolase That Displays Mechanistic Flexibility. Chemistry 2016; 22:17704-17714. [DOI: 10.1002/chem.201602762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher Selleck
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - James A. Larrabee
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - Jeffrey Harmer
- Centre for Advanced Imaging; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Nataša Mitić
- Department of Chemistry; Maynooth University; Maynooth, Co. Kildare Ireland
| | - Waleed Helweh
- Department of Chemistry and Biochemistry; Middlebury College; Middlebury Vermont 05753 USA
| | - David L. Ollis
- Research School of Chemistry; Australian National University of Canberra; ACT 0200 Australia
| | - Whitney R. Craig
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - David L. Tierney
- Department of Chemistry and Biochemistry; Miami University, Oxford; Ohio 45056 USA
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences; The University of Queensland; St. Lucia Queensland 4072 Australia
| |
Collapse
|
14
|
Bosch S, Comba P, Gahan LR, Schenk G. Asymmetric mono- and dinuclear Ga III and Zn II complexes as models for purple acid phosphatases. J Inorg Biochem 2016; 162:343-355. [DOI: 10.1016/j.jinorgbio.2015.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/18/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
15
|
Mendes LL, Englert D, Fernandes C, Gahan LR, Schenk G, Horn A. Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans 2016; 45:18510-18521. [DOI: 10.1039/c6dt03200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phosphatase activity of zinc complexes containing six- and seven-dentate ligands was evaluated through kinetic and31P NMR studies.
Collapse
Affiliation(s)
- Luisa L. Mendes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Adolfo Horn
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| |
Collapse
|
16
|
Sugrue E, Hartley CJ, Scott C, Jackson CJ. The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Aust J Chem 2016. [DOI: 10.1071/ch16426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of bacterial metalloenzymes have been shown to catalyse the breakdown of xenobiotics in the environment, while others exhibit a variety of promiscuous xenobiotic-degrading activities. Several different evolutionary processes have allowed these enzymes to gain or enhance xenobiotic-degrading activity. In this review, we have surveyed the range of xenobiotic-degrading metalloenzymes, and discuss the molecular and catalytic basis for the development of new activities. We also highlight how our increased understanding of the natural evolution of xenobiotic-degrading metalloenzymes can be been applied to laboratory enzyme design.
Collapse
|
17
|
Bosch S, Comba P, Gahan LR, Hanson GR, Noble C, Schenk G, Wadepohl H. Selective Coordination of Gallium(III), Zinc(II), and Copper(II) by an Asymmetric Dinucleating Ligand: A Model for Metallophosphatases. Chemistry 2015; 21:18269-79. [DOI: 10.1002/chem.201503348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 01/09/2023]
|
18
|
Miraula M, Whitaker JJ, Schenk G, Mitić N. β-Lactam antibiotic-degrading enzymes from non-pathogenic marine organisms: a potential threat to human health. J Biol Inorg Chem 2015; 20:639-51. [PMID: 25773168 DOI: 10.1007/s00775-015-1250-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Metallo-β-lactamases (MBLs) are a family of Zn(II)-dependent enzymes that inactivate most of the commonly used β-lactam antibiotics. They have emerged as a major threat to global healthcare. Recently, we identified two novel MBL-like proteins, Maynooth IMipenemase-1 (MIM-1) and Maynooth IMipenemase-2 (MIM-2), in the marine organisms Novosphingobium pentaromativorans and Simiduia agarivorans, respectively. Here, we demonstrate that MIM-1 and MIM-2 have catalytic activities comparable to those of known MBLs, but from the pH dependence of their catalytic parameters it is evident that both enzymes differ with respect to their mechanisms, with MIM-1 preferring alkaline and MIM-2 acidic conditions. Both enzymes require Zn(II) but activity can also be reconstituted with other metal ions including Co(II), Mn(II), Cu(II) and Ca(II). Importantly, the substrate preference of MIM-1 and MIM-2 appears to be influenced by their metal ion composition. Since neither N. pentaromativorans nor S. agarivorans are human pathogens, the precise biological role(s) of MIM-1 and MIM-2 remains to be established. However, due to the similarity of at least some of their in vitro functional properties to those of known MBLs, MIM-1 and MIM-2 may provide essential structural insight that may guide the design of as of yet elusive clinically useful MBL inhibitors.
Collapse
Affiliation(s)
- Manfredi Miraula
- Department of Chemistry, Maynooth University, Maynooth, Co., Kildare, Ireland
| | | | | | | |
Collapse
|
19
|
The effect of chain size on the modeling of second sphere effects in biomimetic complexes. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2014.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
21
|
Carruthers TJ, Carr PD, Loh CT, Jackson CJ, Otting G. Iron(III) Located in the Dinuclear Metallo-β-Lactamase IMP-1 by Pseudocontact Shifts. Angew Chem Int Ed Engl 2014; 53:14269-72. [DOI: 10.1002/anie.201408693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Indexed: 11/07/2022]
|
22
|
Carruthers TJ, Carr PD, Loh CT, Jackson CJ, Otting G. Pseudokontaktverschiebungen lokalisieren Eisen(III) in der zweikernigen Metallo-β-Laktamase IMP-1. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Daumann LJ, Schenk G, Gahan LR. Metallo-β-lactamases and Their Biomimetic Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Dalle KE, Daumann LJ, Schenk G, McGeary RP, Hanton LR, Gahan LR. Ligand modifications modulate the mechanism of binuclear phosphatase biomimetics. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
|
26
|
Schenk G, Mitić N, Gahan LR, Ollis DL, McGeary RP, Guddat LW. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 2012; 45:1593-603. [PMID: 22698580 DOI: 10.1021/ar300067g] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-β-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear metallohydrolases and use PAP, the OP-degrading enzyme from Agrobacterium radiobacter (OPDA), and GpdQ as representative systems because they illustrate both the diversity and similarity of the reactions catalyzed by this family of enzymes. The majority of binuclear metallohydrolases utilize metal ion-activated water molecules as nucleophiles to initiate hydrolysis, while some, such as alkaline phosphatase, employ an intrinsic polar amino acid. Here we only focus on catalytic strategies applied by the former group.
Collapse
Affiliation(s)
- Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
27
|
Daumann LJ, Gahan LR, Comba P, Schenk G. Cadmium(II) Complexes: Mimics of Organophosphate Pesticide Degrading Enzymes and Metallo-β-lactamases. Inorg Chem 2012; 51:7669-81. [DOI: 10.1021/ic300687y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lena J. Daumann
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lawrence. R. Gahan
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universitat Heidelberg, Im Neuenheimer Feld 270, 69120
Heidelberg, Germany
| | - Gerhard Schenk
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemistry, National University of Ireland, Maynooth, County Kildare,
Ireland
| |
Collapse
|
28
|
Daumann LJ, McCarthy BY, Hadler KS, Murray TP, Gahan LR, Larrabee JA, Ollis DL, Schenk G. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:425-32. [PMID: 22366468 DOI: 10.1016/j.bbapap.2012.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
The glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) is a highly promiscuous dinuclear metallohydrolase with respect to both substrate specificity and metal ion composition. While this promiscuity may adversely affect the enzyme's catalytic efficiency its ability to hydrolyse some organophosphates (OPs) and by-products of OP degradation have turned GpdQ into a promising candidate for bioremedial applications. Here, we investigated both metal ion binding and the effect of the metal ion composition on catalysis. The prevalent in vivo metal ion composition for GpdQ is proposed to be of the type Fe(II)Zn(II), a reflection of natural abundance rather than catalytic optimisation. The Fe(II) appears to have lower binding affinity than other divalent metal ions, and the catalytic efficiency of this mixed metal center is considerably smaller than that of Mn(II), Co(II) or Cd(II)-containing derivatives of GpdQ. Interestingly, metal ion replacements do not only affect catalytic efficiency but also the optimal pH range for the reaction, suggesting that different metal ion combinations may employ different mechanistic strategies. These metal ion-triggered modulations are likely to be mediated via an extensive hydrogen bond network that links the two metal ion binding sites via residues in the substrate binding pocket. The observed functional diversity may be the cause for the modest catalytic efficiency of wild-type GpdQ but may also be essential to enable the enzyme to evolve rapidly to alter substrate specificity and enhance k(cat) values, as has recently been demonstrated in a directed evolution experiment. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.
Collapse
Affiliation(s)
- Lena J Daumann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith SJ, Peralta RA, Jovito R, Horn A, Bortoluzzi AJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Gahan LR, Schenk G, Nascimento OR, Cavalett A, Bortolotto T, Razzera G, Terenzi H, Neves A, Riley MJ. Spectroscopic and Catalytic Characterization of a Functional FeIIIFeII Biomimetic for the Active Site of Uteroferrin and Protein Cleavage. Inorg Chem 2012; 51:2065-78. [DOI: 10.1021/ic201711p] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Vidura Jayaratne
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Germán Cavigliasso
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | | | - Gerhard Schenk
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth County, Kildare, Ireland
| | - Otaciro R. Nascimento
- Instituto de Física, Universidade de São Paulo, 13560-970 São
Carlos, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Comba P, Gahan LR, Hanson GR, Westphal M. Phosphatase reactivity of a dicopper(ii) complex of a patellamide derivative – possible biological functions of cyclic pseudopeptides. Chem Commun (Camb) 2012; 48:9364-6. [DOI: 10.1039/c2cc34836e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Daumann LJ, Dalle KE, Schenk G, McGeary RP, Bernhardt PV, Ollis DL, Gahan LR. The role of Zn–OR and Zn–OH nucleophiles and the influence of para-substituents in the reactions of binuclear phosphatase mimetics. Dalton Trans 2012; 41:1695-708. [DOI: 10.1039/c1dt11187f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Bioinspired FeIIICdII and FeIIIHgII complexes: Synthesis, characterization and promiscuous catalytic activity evaluation. J Inorg Biochem 2011; 105:1740-52. [DOI: 10.1016/j.jinorgbio.2011.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/20/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022]
|
33
|
Zee YLM, Gahan LR, Schenk G. A Potentially Polymerizable Heterodinuclear FeIIIZnII Purple Acid Phosphatase Mimic. Synthesis, Characterization, and Phosphate Ester Hydrolysis Studies. Aust J Chem 2011. [DOI: 10.1071/ch10424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An analogue of the purple acid phosphatase biomimetic 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol has been synthesized. The analogue, 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxy-4-(4-vinylbenzyloxy)benzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (H2BPBPMPV) possesses a pendant olefin suitable for copolymerization. Complexation with FeIII/ZnII resulted in the complex [FeIIIZnII(BPBPMPV)(CH3COO)2](ClO4), characterized with mass spectrometry, microanalysis, UV/vis, and IR spectrometry. The catalytic activity of the complex toward bis-(2,4-dinitrophenyl) phosphate was determined, resulting in Km of 4.1 ± 0.6 mM, with kcat 3.8 ± 0.2 × 10–3 s–1 and a bell-shaped pH–rate profile with pKa values of 4.31, 5.66, 8.96, the profile exhibiting residual activity above pH 9.5.
Collapse
|
34
|
Peralta RA, Bortoluzzi AJ, de Souza B, Jovito R, Xavier FR, Couto RAA, Casellato A, Nome F, Dick A, Gahan LR, Schenk G, Hanson GR, de Paula FCS, Pereira-Maia EC, de P. Machado S, Severino PC, Pich C, Bortolotto T, Terenzi H, Castellano EE, Neves A, Riley MJ. Electronic Structure and Spectro-Structural Correlations of FeIIIZnII Biomimetics for Purple Acid Phosphatases: Relevance to DNA Cleavage and Cytotoxic Activity. Inorg Chem 2010; 49:11421-38. [DOI: 10.1021/ic101433t] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rosely A. Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Adailton J. Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Bernardo de Souza
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Rafael Jovito
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Fernando R. Xavier
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Ricardo A. A. Couto
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Annelise Casellato
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Faruk Nome
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Andrew Dick
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lawrence. R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Graeme R. Hanson
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Flávia C. S. de Paula
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Elene C. Pereira-Maia
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Sergio de P. Machado
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Patricia C. Severino
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Claus Pich
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Tiago Bortolotto
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Hernán Terenzi
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Eduardo E. Castellano
- Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, South Carolina 88040-900, Brazil
| | - Mark J. Riley
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
35
|
Kantacha A, Buchholz R, Smith SJ, Schenk G, Gahan LR. Phosphate ester cleavage promoted by a tetrameric iron(III) complex. J Biol Inorg Chem 2010; 16:25-32. [DOI: 10.1007/s00775-010-0696-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/12/2010] [Indexed: 11/28/2022]
|
36
|
Mitić N, Hadler KS, Gahan LR, Hengge AC, Schenk G. The divalent metal ion in the active site of uteroferrin modulates substrate binding and catalysis. J Am Chem Soc 2010; 132:7049-54. [PMID: 20433174 DOI: 10.1021/ja910583y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purple acid phosphatases (PAP) are binuclear metallohydrolases that catalyze the hydrolysis of a broad range of phosphomonoester substrates. The mode of substrate binding during catalysis and the identity of the nucleophile is subject to debate. Here, we used native Fe(3+)-Fe(2+) pig PAP (uteroferrin; Uf) and its Fe(3+)-Mn(2+) derivative to investigate the effect of metal ion substitution on the mechanism of catalysis. Replacement of the Fe(2+) by Mn(2+) lowers the reactivity of Uf. However, using stopped-flow measurements it could be shown that this replacement facilitates approximately a ten-fold faster reaction between both substrate and inorganic phosphate with the chromophoric Fe(3+) site. These data also indicate that in both metal forms of Uf, phenyl phosphate hydrolysis occurs faster than formation of a mu-1,3 phosphate complex. The slower rate of interaction between substrate and the Fe(3+) site relative to catalysis suggests that the substrate is hydrolyzed while coordinated only to the divalent metal ion. The likely nucleophile is a water molecule in the second coordination sphere, activated by a hydroxide terminally coordinated to Fe(3+). The faster rates of interaction with the Fe(3+) site in the Fe(3+)-Mn(2+) derivative than the native Fe(3+)-Fe(2+) form are likely mediated via a hydrogen bond network connecting the first and second coordination spheres, and illustrate how the selection of metal ions may be important in fine-tuning the function of this enzyme.
Collapse
Affiliation(s)
- Natasa Mitić
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
37
|
Coleman F, Hynes MJ, Erxleben A. GaIII Complexes as Models for the MIII Site of Purple Acid Phosphatase: Ligand Effects on the Hydrolytic Reactivity Toward Bis(2,4-dinitrophenyl) phosphate. Inorg Chem 2010; 49:6725-33. [DOI: 10.1021/ic100722w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fergal Coleman
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Michael J. Hynes
- School of Chemistry, National University of Ireland, Galway, Ireland
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
38
|
Camargo MA, Neves A, Bortoluzzi AJ, Szpoganicz B, Fischer FL, Terenzi H, Serra OA, Santos VG, Vaz BG, Eberlin MN. Efficient Phosphodiester Hydrolysis by Luminescent Terbium(III) and Europium(III) Complexes. Inorg Chem 2010; 49:6013-25. [DOI: 10.1021/ic100549u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Maryene A. Camargo
- Laboratório de Bioinorgânica e Crystalografia (LABINC), Departamento de Química
| | - Ademir Neves
- Laboratório de Bioinorgânica e Crystalografia (LABINC), Departamento de Química
| | | | - Bruno Szpoganicz
- Laboratório de Bioinorgânica e Crystalografia (LABINC), Departamento de Química
| | | | - Hernán Terenzi
- Centro de Biologia Molecular Estrutural, Departamento de Bioquímica, CCB
| | - Osvaldo A. Serra
- Laboratório de Terras Raras (FFCLRP-USP), Departamento de Química, Universidade de São Paulo, Avenue Bandeirantes 3900, 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa G. Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| | - Boniek G. Vaz
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| | - Marcos N. Eberlin
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil
| |
Collapse
|
39
|
Danford JJ, Dobrowolski P, Berreau LM. Thioester Hydrolysis Reactivity of an Fe(III)Zn(II) Complex. Inorg Chem 2009; 48:11352-61. [DOI: 10.1021/ic901890d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- James J. Danford
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300
| | - Piotr Dobrowolski
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300
| | - Lisa M. Berreau
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322-0300
| |
Collapse
|
40
|
Smith SJ, Riley MJ, Noble CJ, Hanson GR, Stranger R, Jayaratne V, Cavigliasso G, Schenk G, Gahan LR. Structural and Catalytic Characterization of a Heterovalent Mn(II)Mn(III) Complex That Mimics Purple Acid Phosphatases. Inorg Chem 2009; 48:10036-48. [DOI: 10.1021/ic9005086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Christopher J. Noble
- Centre for Magnetic Resonance, The University of Queensland, Brisbane 4072, Australia
| | - Graeme R. Hanson
- Centre for Magnetic Resonance, The University of Queensland, Brisbane 4072, Australia
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Vidura Jayaratne
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Germán Cavigliasso
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | | | | |
Collapse
|
41
|
Xavier FR, Neves A, Casellato A, Peralta RA, Bortoluzzi AJ, Szpoganicz B, Severino PC, Terenzi H, Tomkowicz Z, Ostrovsky S, Haase W, Ozarowski A, Krzystek J, Telser J, Schenk G, Gahan LR. Unsymmetrical FeIIICoII and GaIIICoII Complexes as Chemical Hydrolases: Biomimetic Models for Purple Acid Phosphatases (PAPs). Inorg Chem 2009; 48:7905-21. [DOI: 10.1021/ic900831q] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Fernando R. Xavier
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Annelise Casellato
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rosely A. Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adailton J. Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patricia C. Severino
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Hernán Terenzi
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Zbigniew Tomkowicz
- Institute of Physics, Reymonta 4, Jagiellonian University, PL-30-059 Kraków, Poland
- Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany
| | - Sergei Ostrovsky
- Institute of Applied Physics, Academy of Sciences of Moldova, Academy Str. 5, 2028 Chisinau, Moldava
- Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany
| | - Wolfgang Haase
- Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstrasse 20, D-64287 Darmstadt, Germany
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Jerzy Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605
| | - Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lawrence R. Gahan
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
42
|
Gahan LR, Smith SJ, Neves A, Schenk G. Phosphate Ester Hydrolysis: Metal Complexes As Purple Acid Phosphatase and Phosphotriesterase Analogues. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900231] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lawrence R. Gahan
- School of Chemistry and Molecular BioSciences, The University of Queensland, 4072 Brisbane, Australia
| | - Sarah J. Smith
- School of Chemistry and Molecular BioSciences, The University of Queensland, 4072 Brisbane, Australia
| | - Ademir Neves
- Laboratorio de Bioinorgânica e Cristalografica, Departamento de Química, Universidade Federal de Santa Catarina, 88040‐900, Florianópolis, SC, Brazil
| | - Gerhard Schenk
- School of Chemistry and Molecular BioSciences, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
43
|
Mitić N, Noble CJ, Gahan LR, Hanson GR, Schenk G. Metal-Ion Mutagenesis: Conversion of a Purple Acid Phosphatase from Sweet Potato to a Neutral Phosphatase with the Formation of an Unprecedented Catalytically Competent MnIIMnII Active Site. J Am Chem Soc 2009; 131:8173-9. [DOI: 10.1021/ja900797u] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nataša Mitić
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Christopher J. Noble
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Graeme R. Hanson
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, and Centre of Magnetic Resonance, The University of Queensland, Queensland, Australia, 4072
| |
Collapse
|
44
|
Hadler KS, Tanifum EA, Yip SHC, Mitić N, Guddat LW, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G. Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes. J Am Chem Soc 2008; 130:14129-38. [PMID: 18831553 PMCID: PMC4887195 DOI: 10.1021/ja803346w] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a promiscuous binuclear metallohydrolase that catalyzes the hydrolysis of mono-, di-, and triester substrates, including some organophosphate pesticides and products of the degradation of nerve agents. GpdQ has attracted recent attention as a promising enzymatic bioremediator. Here, we have investigated the catalytic mechanism of this versatile enzyme using a range of techniques. An improved crystal structure (1.9 A resolution) illustrates the presence of (i) an extended hydrogen bond network in the active site, and (ii) two possible nucleophiles, i.e., water/hydroxide ligands, coordinated to one or both metal ions. While it is at present not possible to unambiguously distinguish between these two possibilities, a reaction mechanism is proposed whereby the terminally bound H2O/OH(-) acts as the nucleophile, activated via hydrogen bonding by the bridging water molecule. Furthermore, the presence of substrate promotes the formation of a catalytically competent binuclear center by significantly enhancing the binding affinity of one of the metal ions in the active site. Asn80 appears to display coordination flexibility that may modulate enzyme activity. Kinetic data suggest that the rate-limiting step occurs after hydrolysis, i.e., the release of the phosphate moiety and the concomitant dissociation of one of the metal ions and/or associated conformational changes. Thus, it is proposed that GpdQ employs an intricate regulatory mechanism for catalysis, where coordination flexibility in one of the two metal binding sites is essential for optimal activity.
Collapse
Affiliation(s)
- Kieran S. Hadler
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eric A. Tanifum
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - Sylvia Hsu-Chen Yip
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Nataša Mitić
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Luke W. Guddat
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Lawrence R. Gahan
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Kelly Nguyen
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Paul D. Carr
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322, USA
| | - James A. Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
45
|
Mirams RE, Smith SJ, Hadler KS, Ollis DL, Schenk G, Gahan LR. Cadmium(II) complexes of the glycerophosphodiester-degrading enzyme GpdQ and a biomimetic N,O ligand. J Biol Inorg Chem 2008; 13:1065-72. [PMID: 18535849 DOI: 10.1007/s00775-008-0392-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 05/23/2008] [Indexed: 11/30/2022]
Abstract
The glycerophosphodiester-degrading enzyme GpdQ from Enterobacter aerogenes is a promising bioremediator owing to its ability to degrade some organophosphate pesticides and diester products originating from the hydrolysis of nerve agents such as VX. Here, the cadmium derivative of GpdQ was prepared by reconstituting the apoenzyme. Catalytic measurements with (Cd(2+))(2)-GpdQ and the phosphodiester substrate bis(4-nitrophenyl)phosphate yield k(cat) = 15 s(-1). The pK(a) of 9.4, determined from the pH dependence of the catalytic activity, implicates a hydroxide ligand as the catalytic nucleophile. Also prepared was the cadmium-containing biomimetic [Cd(2)((HP)(2)B)(OAc)(2)(OH(2))](PF(6)) (where (HP)(2)B is [2,6-bis([(2-pyridylmethyl)(2-hydroxyethyl)amino]methyl)-4-methylphenol]), which mimics the asymmetry of the metal ion coordination in the active site of GpdQ. The phosphoesterase-like activity of [Cd(2)((HP)(2)B)(OAc)(2)(OH(2))](PF(6)) was studied using the substrate bis(2,4-dinitrophenyl)phosphate, yielding a kinetically relevant pK(a) of 8.9, with k(cat) = 0.004 s(-1). In summary, the model is both an adequate structural and a reasonable functional mimic of GpdQ.
Collapse
Affiliation(s)
- Ruth E Mirams
- School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | | | | | | | | |
Collapse
|
46
|
Schenk G, Elliott TW, Leung E, Carrington LE, Mitić N, Gahan LR, Guddat LW. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle. BMC STRUCTURAL BIOLOGY 2008; 8:6. [PMID: 18234116 PMCID: PMC2267794 DOI: 10.1186/1472-6807-8-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 01/31/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Purple acid phosphatases belong to the family of binuclear metallohydrolases and are involved in a multitude of biological functions, ranging from bacterial killing and bone metabolism in animals to phosphate uptake in plants. Due to its role in bone resorption purple acid phosphatase has evolved into a promising target for the development of anti-osteoporotic chemotherapeutics. The design of specific and potent inhibitors for this enzyme is aided by detailed knowledge of its reaction mechanism. However, despite considerable effort in the last 10 years various aspects of the basic molecular mechanism of action are still not fully understood. RESULTS Red kidney bean purple acid phosphatase is a heterovalent enzyme with an Fe(III)Zn(II) center in the active site. Two new structures with bound sulfate (2.4 A) and fluoride (2.2 A) provide insight into the pre-catalytic phase of its reaction cycle and phosphorolysis. The sulfate-bound structure illustrates the significance of an extensive hydrogen bonding network in the second coordination sphere in initial substrate binding and orientation prior to hydrolysis. Importantly, both metal ions are five-coordinate in this structure, with only one nucleophilic mu-hydroxide present in the metal-bridging position. The fluoride-bound structure provides visual support for an activation mechanism for this mu-hydroxide whereby substrate binding induces a shift of this bridging ligand towards the divalent metal ion, thus increasing its nucleophilicity. CONCLUSION In combination with kinetic, crystallographic and spectroscopic data these structures of red kidney bean purple acid phosphatase facilitate the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general.
Collapse
Affiliation(s)
- Gerhard Schenk
- School of Molecular and Microbial Sciences, The University of Queensland, St, Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Structural and spectroscopic studies of a model for catechol oxidase. J Biol Inorg Chem 2008; 13:499-510. [DOI: 10.1007/s00775-007-0334-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
48
|
Buchholz RR, Etienne ME, Dorgelo A, Mirams RE, Smith SJ, Chow SY, Hanton LR, Jameson GB, Schenk G, Gahan LR. A structural and catalytic model for zinc phosphoesterases. Dalton Trans 2008:6045-54. [DOI: 10.1039/b806391e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|