1
|
Shu T, Wang J, Li X, Wang X, Wang S. Cytochrome P450 2D6 biosensor for perphenazine based on multi-walled carbon nanotube/ionic liquid and tetrathiafulvalene-tetracyanoquinodimethane salt/ionic liquid gels. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
2
|
Yazgan NN, Bulat T, Topcu A, Dudak FC, Boyaci IH, Tamer U. Surface-enhanced Raman scattering-based detection of plasmin activity by specific peptide substrate. Food Chem 2022; 372:131235. [PMID: 34624781 DOI: 10.1016/j.foodchem.2021.131235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023]
Abstract
In this study, a new surface-enhanced Raman scattering (SERS)-based method has been developed for the detection of plasmin activity. Firstly, different peptide sequences, which are specific to plasmin, were examined. Then, SERS substrates were prepared by chosen peptide substrate. Enzyme activity was determined by pursuing the reduction of DTNB band at 1331 cm-1 with Raman spectroscopy. The reduction in SERS intensity was related to the plasmin activity, and changes in SERS intensity vs. plasmin concentration graph was obtained. Limit of detection (LOD) and limit of quantification (LOQ) values were calculated as 2.14 U/mL and 6.42 U/mL, respectively. Intra- and inter-day repeatability results were determined as 1.45% and 1.47% relative standard deviation (RSD). Also, recovery of the method was determined for the plasmin spiked milk samples. The results demonstrated that the proposed method could be successfully used to detect the plasmin activity in milk samples.
Collapse
Affiliation(s)
- Nazife Nur Yazgan
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Tugba Bulat
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Ali Topcu
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey.
| | - Fahriye Ceyda Dudak
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Ismail Hakki Boyaci
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| |
Collapse
|
3
|
Gaughan SJH, Hirst JD, Croft AK, Jäger CM. Effect of Oriented Electric Fields on Biologically Relevant Iron-Sulfur Clusters: Tuning Redox Reactivity for Catalysis. J Chem Inf Model 2022; 62:591-601. [PMID: 35045248 DOI: 10.1021/acs.jcim.1c00791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-based iron-sulfur clusters, exemplified in families such as hydrogenases, nitrogenases, and radical S-adenosylmethionine enzymes, feature in many essential biological processes. The functionality of biological iron-sulfur clusters extends beyond simple electron transfer, relying primarily on the redox activity of the clusters, with a remarkable diversity for different enzymes. The active-site structure and the electrostatic environment in which the cluster resides direct this redox reactivity. Oriented electric fields in enzymatic active sites can be significantly strong, and understanding the extent of their effect on iron-sulfur cluster reactivity can inform first steps toward rationally engineering their reactivity. An extensive systematic density functional theory-based screening approach using OPBE/TZP has afforded a simple electric field-effect representation. The results demonstrate that the orientation of an external electric field of strength 28.8 MV cm-1 at the center of the cluster can have a significant effect on its relative stability in the order of 35 kJ mol-1. This shows clear implications for the reactivity of iron-sulfur clusters in enzymes. The results also demonstrate that the orientation of the electric field can alter the most stable broken-symmetry state, which further has implications on the directionality of initiated electron-transfer reactions. These insights open the path for manipulating the enzymatic redox reactivity of iron-sulfur cluster-containing enzymes by rationally engineering oriented electric fields within the enzymes.
Collapse
Affiliation(s)
- Samuel J H Gaughan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
4
|
Ranieri A, Bortolotti CA, Di Rocco G, Battistuzzi G, Sola M, Borsari M. Electrocatalytic Properties of Immobilized Heme Proteins: Basic Principles and Applications. ChemElectroChem 2019. [DOI: 10.1002/celc.201901178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Antonio Ranieri
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Carlo Augusto Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Giulia Di Rocco
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Marco Sola
- Department of Life SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| | - Marco Borsari
- Department of Chemical and Geological SciencesUniversity of Modena and Reggio Emilia Via Campi 103 41125 Modena Italy
| |
Collapse
|
5
|
Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E. Advancing Techniques for Investigating the Enzyme-Electrode Interface. Acc Chem Res 2019; 52:1439-1448. [PMID: 31042353 PMCID: PMC6533600 DOI: 10.1021/acs.accounts.9b00087] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Enzymes are the essential catalytic components of biology and adsorbing
redox-active enzymes on electrode surfaces enables the direct probing
of their function. Through standard electrochemical measurements,
catalytic activity, reversibility and stability, potentials of redox-active
cofactors, and interfacial electron transfer rates can be readily
measured. Mechanistic investigations on the high electrocatalytic
rates and selectivity of enzymes may yield inspiration for the design
of synthetic molecular and heterogeneous electrocatalysts. Electrochemical
investigations of enzymes also aid in our understanding of their activity
within their biological environment and why they evolved in their
present structure and function. However, the conventional array of
electrochemical techniques (e.g., voltammetry and chronoamperometry)
alone offers a limited picture of the enzyme–electrode interface. How many enzymes are loaded onto an electrode? In which orientation(s)
are they bound? What fraction is active, and are single or multilayers
formed? Does this static picture change over time, applied voltage,
or chemical environment? How does charge transfer through various
intraprotein cofactors contribute to the overall performance and catalytic
bias? What is the distribution of individual enzyme activities within
an ensemble of active protein films? These are central questions for
the understanding of the enzyme–electrode interface, and a
multidisciplinary approach is required to deliver insightful answers. Complementing standard electrochemical experiments with an orthogonal
set of techniques has recently allowed to provide a more complete
picture of enzyme–electrode systems. Within this framework,
we first discuss a brief history of achievements and challenges in
enzyme electrochemistry. We subsequently describe how the aforementioned
challenges can be overcome by applying advanced electrochemical techniques,
quartz-crystal microbalance measurements, and spectroscopic, namely,
resonance Raman and infrared, analysis. For example, rotating ring
disk electrochemistry permits the simultaneous determination of reaction
kinetics and quantification of generated products. In addition, recording
changes in frequency and dissipation in a quartz crystal microbalance
allows to shed light into enzyme loading, relative orientation, clustering,
and denaturation at the electrode surface. Resonance Raman spectroscopy
yields information on ligation and redox state of enzyme cofactors,
whereas infrared spectroscopy provides insights into active site states
and the protein secondary and tertiary structure. The development
of these emerging methods for the analysis of the enzyme–electrode
interface is the primary focus of this Account. We also take a critical
look at the remaining gaps in our understanding and challenges lying
ahead toward attaining a complete mechanistic picture of the enzyme–electrode
interface.
Collapse
Affiliation(s)
- Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec H3C 3J7, Canada
| | - Khoa H. Ly
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Fakultät für Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - William E. Robinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Nina Heidary
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Department of Chemistry, Université de Montréal, Roger-Gaudry Building, Montreal, Quebec H3C 3J7, Canada
| | - Jenny Z. Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
6
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
7
|
Millo D. An Electrochemical Strategy to Measure the Thickness of Electroactive Microbial Biofilms. ChemElectroChem 2015; 2:288-291. [PMID: 27525209 PMCID: PMC4964880 DOI: 10.1002/celc.201402425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Indexed: 11/11/2022]
Abstract
The study of electroactive microbial biofilms often requires knowledge of the biofilm thickness. Unfortunately, this parameter is, nowadays, only accessible through expensive microscopic techniques. This work overcomes this limitation by presenting a new strategy, exploiting the use of chronoamperometry (CA) alone. A mixed-culture biofilm is exposed to an O2-saturated solution during anode respiration to suppress its catalytic activity. Assuming that inactivation of the electrocatalytic process is caused by O2 diffusion through the biofilm, a simple relation allows the use of the time constant extracted from the fitting of the curve of the CA trace during inactivation for the straightforward and quantitative determination of biofilm thickness. The biofilm thickness obtained with this method obeys the expected trend reported for biofilm growth and is in agreement with optical measurements. Contrary to the techniques usually employed to determine biofilm thickness, this new strategy is very rapid, nondisruptive, inexpensive, and may become a convenient alternative with respect to expensive and time-consuming microscopic techniques.
Collapse
Affiliation(s)
- Diego Millo
- Department of Physics and Astronomy, VU University Amsterdam De Boelelaan 1081, 1081 HV, Amsterdam (The Netherlands) E-mail:
| |
Collapse
|
8
|
Ranieri A, Millo D, Di Rocco G, Battistuzzi G, Bortolotti CA, Borsari M, Sola M. Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen. J Biol Inorg Chem 2015; 20:531-40. [PMID: 25627142 DOI: 10.1007/s00775-015-1238-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/27/2014] [Indexed: 11/26/2022]
Abstract
Mitochondrial cytochrome c (cytc) plays an important role in programmed cell death upon binding to cardiolipin (CL), a negatively charged phospholipid of the inner mitochondrial membrane (IMM). Although this binding has been thoroughly investigated in solution, little is known on the nature and reactivity of the adduct (cytc-CL) immobilized at IMM. In this work, we have studied electrochemically cytc-CL immobilized on a hydrophobic self-assembled monolayer (SAM) of decane-1-thiol. This construct would reproduce the motional restriction and the nonpolar environment experienced by cytc-CL at IMM. Surface-enhanced resonance Raman (SERR) studies allowed the axial heme iron ligands to be identified, which were found to be oxidation state dependent and differ from those of cytc-CL in solution. In particular, immobilized cytc-CL experiences an equilibrium between a low-spin (LS) 6c His/His and a high-spin (HS) 5c His/- coordination states. The former prevails in the oxidized and the latter in the reduced form. Axial coordination of the ferric heme thus differs from the (LS) 6c His/Lys and (LS) 6c His/OH(-) states observed in solution. Moreover, a relevant finding is that the immobilized ferrous cytc-CL is able to catalytically reduce dioxygen, likely to superoxide ion. These findings indicate that restriction of motional freedom due to interaction with the membrane is an additional factor playing in the mechanism of cytc unfolding and cytc-mediated peroxidation functional to the apoptosis cascade.
Collapse
Affiliation(s)
- Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 183, 41125, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Schneider E, Clark DS. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 2013; 39:1-13. [DOI: 10.1016/j.bios.2012.05.043] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
10
|
Gonzálvez AG, González Ureña Á, Lewis RJ, van der Zwan G. Spectroscopy and kinetics of tyrosinase catalyzed trans-resveratrol oxidation. J Phys Chem B 2012; 116:2553-60. [PMID: 22300300 DOI: 10.1021/jp209753q] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The spectroscopy and kinetics of the tyrosinase catalyzed trans-resveratrol oxidation were investigated by measuring both UV-vis absorption spectra over the 200-500 nm range and Raman spectra over the 600-1800 cm(-1) region. Room temperature UV-vis absorption spectra, as a function of time, showed the presence of two isosbestic points located at λ(1) = 270 nm and λ(2) = 345.5 nm delimiting two different regions: the reactant region around 300 nm, where the absorption decreased with time, and the product region over the low wavelength (λ < 260 nm) and high wavelength (λ > 390 nm) wavelength zone in which the absorption increased with time until, in both cases, constant values were achieved. A first-order kinetics was deduced with a rate coefficient of k(1) = (0.10 ± 0.001) min(-1), which turned out to be independent of substrate concentration over the 50-5 μM range; a feature that was rationalized by invoking the limiting case of the Michaelis-Menten scheme appropriate for substrate concentration much lower than the respective Michaelis constant. The observation of the distinct resonance enhanced Raman lines, specifically those peaking at 830 cm(-1), 753 cm(-1), and 642 cm(-1) together with their time evolution, permitted us to gain insight into some crucial features and steps of the catalytic reaction. Namely, that the formation of the so-called trans-resveratrol and tyrosinase (S)P complex with its O-O bridge plays a crucial role in the first steps of this enzymatic reaction and that the hydroxylation of the ortho C-H bond of the trans-resveratrol OH group occurs after O-O bond cleavage in the tyrosinase active site. The present study makes clear that a class of potential inhibitors of tyrosinase can be found in compounds able to bind the two Cu (II) ions of the enzyme bidentate form.
Collapse
Affiliation(s)
- Alicia G Gonzálvez
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Millo D, Bonifacio A, Moncelli MR, Sergo V, Gooijer C, van der Zwan G. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane–protein interactions. Colloids Surf B Biointerfaces 2010; 81:212-6. [DOI: 10.1016/j.colsurfb.2010.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/07/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
|
12
|
Larmour IA, Faulds K, Graham D. The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chem Sci 2010. [DOI: 10.1039/c0sc00226g] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|