1
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
2
|
Alshiekh A, Clausén M, Elmroth SKC. Kinetics of cisplatin binding to short r(GG) containing miRNA mimics - influence of Na(+)versus K(+), temperature and hydrophobicity on reactivity. Dalton Trans 2016; 44:12623-32. [PMID: 26079627 DOI: 10.1039/c5dt00663e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acids are well recognized targets for platinum-based anticancer drugs, with RNA and DNA being kinetically comparable. In the case of RNA, previous studies have shown that the reaction between small duplex RNAs (dsRNAs) and monoaquated cisplatin (cis-Pt(NH3)2Cl(OH2)(+), ) can be followed by the metal induced hyperchromicity occurring directly after addition of to e.g. microRNA mimics. In the present study, we have used this approach to compare thermal stability and reactivity between intracellularly- and extracellularly relevant salt concentration (CNa(+) and CK(+)ca. 0.1 M), and also as a function of increased hydrophobicity (10% v/v EtOH). In addition, reactivity was studied as a function of temperature in the interval ca. 5-20 °C below the respective dsRNA melting temperatures (Tms). Four different 13- to 20-mer dsRNAs with two different central sequence motifs were used as targets containing either a central r(GG)·r(CC)- or r(GG)·r(UAU)-sequence. The reactions exhibited half-lives in the minute- to hour range at 38 °C in the presence of excess in the μM range. Further, a linear dependence was found between C and the observed pseudo-first-order rate constants. The resulting apparent second-order rate constants were significantly larger for the lower melting r(GG)·r(UAU)-containing sequences compared with that of the fully complementary ones; the higher and lower reactivities represented by RNA-1-3 and RNA-1-1 with k2,appca. 30 and 8 M(-1) s(-1) respectively at CNa(+) = 122 mM. For all RNAs a common small, but significant, trend was observed with increased reactivity in the presence of K(+) compared with Na(+), and decreased reactivity in the presence of EtOH. Finally, the temperature dependence of k2,app was evaluated using the Eyring equation. The retrieved activation parameters reveal positive values for both ΔH(≠) and ΔS(≠) for all dsRNAs, in the range ca. 23-34 kcal mol(-1) and 22-57 cal K(-1) mol(-1) respectively. These values indicate solvational effects to be important for the rate determining step of the reaction, and thus in support of a structural change of the dsRNA to take place in parallel with the adduct formation step.
Collapse
Affiliation(s)
- Alak Alshiekh
- Biochemistry and Structural Biology, KILU, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | | | |
Collapse
|
3
|
Melnikov SV, Söll D, Steitz TA, Polikanov YS. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Nucleic Acids Res 2016; 44:4978-87. [PMID: 27079977 PMCID: PMC4889946 DOI: 10.1093/nar/gkw246] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin-RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome-the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA Howard Hughes Medical Institute at Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
4
|
Osborn MF, White JD, Haley MM, DeRose VJ. Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping. ACS Chem Biol 2014; 9:2404-11. [PMID: 25055168 PMCID: PMC4201330 DOI: 10.1021/cb500395z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
With
the importance of RNA-based regulatory pathways, the potential
for targeting noncoding and coding RNAs by small molecule therapeutics
is of great interest. Platinum(II) complexes including cisplatin (cis-diamminedichloroplatinum(II)) are widely prescribed
anticancer compounds that form stable adducts on nucleic acids. In
tumors, DNA damage from Pt(II) initiates apoptotic signaling, but
this activity is not necessary for cytotoxicity (e.g., Yu et al., 2008), suggesting accumulation and consequences
of Pt(II) lesions on non-DNA targets. We previously reported an azide-functionalized
compound, picazoplatin, designed for post-treatment click labeling
that enables detection of Pt complexes (White et al., 2013). Here, we report in-gel fluorescent detection of Pt-bound
rRNA and tRNA extracted from picazoplatin-treated S. cerevisiae and labeled using Cu-free click chemistry. These data provide the
first evidence that cellular tRNA is a platinum drug substrate. We
assess Pt(II) binding sites within rRNA from cisplatin-treated S. cerevisiae, in regions where damage is linked to significant
downstream consequences including the sarcin-ricin loop (SRL) Helix
95. Pt-RNA adducts occur on the nucleotide substrates of ribosome-inactivating
proteins, as well as on the bulged-G motif critical for elongation
factor recognition of the loop. At therapeutically relevant concentrations,
Pt(II) also binds robustly within conserved cation-binding pockets
in Domains V and VI rRNA at the peptidyl transferase center. Taken
together, these results demonstrate a convenient click chemistry methodology
that can be applied to identify other metal or covalent modification-based
drug targets and suggest a ribotoxic mechanism for cisplatin cytotoxicity.
Collapse
Affiliation(s)
- Maire F. Osborn
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jonathan D. White
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael M. Haley
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
5
|
Hedman HK, Kirpekar F, Elmroth SKC. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity. J Am Chem Soc 2011; 133:11977-84. [DOI: 10.1021/ja111082e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hanna K. Hedman
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sofi K. C. Elmroth
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Chapman EG, Hostetter AA, Osborn MF, Miller AL, DeRose VJ. Binding of kinetically inert metal ions to RNA: the case of platinum(II). Met Ions Life Sci 2011; 9:347-77. [PMID: 22010278 PMCID: PMC4080900 DOI: 10.1039/9781849732512-00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter several aspects of Pt(II) are highlighted that focus on the properties of Pt(II)-RNA adducts and the possibility that they influence RNA-based processes in cells. Cellular distribution of Pt(II) complexes results in significant platination of RNA, and localization studies find Pt(II) in the nucleus, nucleolus, and a distribution of other sites in cells. Treatment with Pt(II) compounds disrupts RNA-based processes including enzymatic processing, splicing, and translation, and this disruption may be indicative of structural changes to RNA or RNA-protein complexes. Several RNA-Pt(II) adducts have been characterized in vitro by biochemical and other methods. Evidence for Pt(II) binding in non-helical regions and for Pt(II) cross-linking of internal loops has been found. Although platinated sites have been identified, there currently exists very little in the way of detailed structural characterization of RNA-Pt(II) adducts. Some insight into the details of Pt(II) coordination to RNA, especially RNA helices, can be gained from DNA model systems. Many RNA structures, however, contain complex tertiary folds and common, purine-rich structural elements that present suitable Pt(II) nucleophiles in unique arrangements which may hold the potential for novel types of platinum-RNA adducts. Future research aimed at structural characterization of platinum-RNA adducts may provide further insights into platinum-nucleic acid binding motifs, and perhaps provide a rationale for the observed inhibition by Pt(II) complexes of splicing, translation, and enzymatic processing.
Collapse
Affiliation(s)
- Erich G. Chapman
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | | | - Maire F. Osborn
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | - Amanda L. Miller
- Department of Chemistry University of Oregon Eugene OR 97403 USA
| | | |
Collapse
|
7
|
Abstract
The broadly prescribed antitumor drug cisplatin coordinates to DNA, altering the activity of cellular proteins whose functions rely upon sensing DNA structure. Cisplatin is also known to coordinate to RNA, but the effects of RNA-Pt adducts on the large number of proteins that process the transcriptome are currently unknown. In an effort to address how platination of an RNA alters the function of RNA processing enzymes, we have determined the influence of [Pt(NH(3))(2)](2+)-RNA adducts on the activities of 3'-->5' and 5'-->3' phosphodiesterases, a purine-specific endoribonuclease, and a reverse transcriptase. Single Pt(II) adducts on RNA oligonucleotides of the form (5'-U(6)-XY-U(5)-3': XY = GG, GA, AG, GU) are found to block exonucleolytic digestion. Similar disruption of endonucleolytic cleavage is observed, except for the platinated XY = GA RNA where RNase U2 uniquely tolerates platinum modification. Platinum adducts formed with a more complex RNA prevent reverse transcription, providing evidence that platination is capable of interfering with RNA's role in relaying sequence information. The observed disruptions in enzymatic activity point to the possibility that cellular RNA processing may be similarly affected, which could contribute to the cell-wide effects of platinum antitumor drugs. Additionally, we show that thiourea reverses cisplatin-RNA adducts, providing a chemical tool for use in future studies regarding cisplatin targeting of cellular RNAs.
Collapse
Affiliation(s)
- Erich G Chapman
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
8
|
Hostetter AA, Chapman EG, DeRose VJ. Rapid cross-linking of an RNA internal loop by the anticancer drug cisplatin. J Am Chem Soc 2009; 131:9250-7. [PMID: 19566097 PMCID: PMC2822432 DOI: 10.1021/ja809637e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cisplatin is the most prominent member of a series of platinum(II) antitumor drugs that demonstrate activity based on binding to adjacent purines on genomic DNA. The interactions between cisplatin and alternate biomolecules, including chemically similar RNA, are less understood than are those for DNA. In order to investigate potential implications of platinum(II) drug binding to a structurally complex RNA, we have characterized the reaction between cisplatin and the internal loop of a 41-nucleotide subdomain derived from the U2:U6 spliceosomal RNAs. This "BBD" RNA subdomain consists of a hairpin structure containing a purine-rich asymmetric internal loop. Aquated cisplatin is found to cross-link G nucleobases on opposing sides of the internal loop, forming an intramolecular internal loop cross-link in BBD and an analogous intermolecular cross-link in a two-piece construct containing the same internal loop sequence. The two opposing guanine residues involved in the cross-link were identified via limited alkaline hydrolysis. The kinetics of aquated cisplatin binding to the BBD RNA, a related RNA hairpin, and its DNA hairpin analogue were investigated in an ionic background of 0.1 M NaNO(3) and 1 mM Mg(NO(3))(2). Both BBD and the RNA hairpin react 5-6-fold faster than the DNA hairpin, with calculated second-order rate constants of 2.0(2), 1.7(3), and 0.33(3) M(-1) s(-1), respectively, at 37 degrees C, pH 7.8. MALDI-MS data corroborate the biochemical studies and support a model in which kinetically preferred platinum binding sites compete with less reactive sites in these oligonucleotides. Taken together, these data indicate that cisplatin treatment has potential to create internal loop and other unusual cross-links in structurally complex RNAs, on a time scale that is relevant for RNA-dependent biological processes.
Collapse
Affiliation(s)
| | - Erich G. Chapman
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403
| | | |
Collapse
|
9
|
Snygg ÅS, Elmroth SK. Expanding the chemical nature of siRNAs: Oxaliplatin as metalation reagent. Biochem Biophys Res Commun 2009; 379:186-90. [DOI: 10.1016/j.bbrc.2008.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/24/2023]
|