1
|
Duffus BR, Elvers BJ, Teutloff C, Schulzke C, Leimkühler S. In vitro sulfuration of Rhodobacter capsulatus formate dehydrogenase. J Biol Chem 2025; 301:108511. [PMID: 40246024 DOI: 10.1016/j.jbc.2025.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Metal-dependent formate dehydrogenases (FDHs) are of considerable interest as a bioinspired metalloenzyme target to efficiently reduce the greenhouse gas CO2 into the portable energy carrier formate under physiological conditions. These enzymes were shown to harbor an active site sulfido ligand that is essential for the formate oxidation and CO2 reduction activity and contributes to the oxygen sensitivity of the enzyme, since the ligand is rapidly lost in the presence of O2. Inhibitors like azide or nitrate are routinely employed to protect the active site from oxidative damage. The demonstrated unitary in vitro sulfido ligand incorporation to the active site bis metal-binding pterin guanine dinucleotide (bis-MGD) cofactor in FDH from Rhodobacter capsulatus of this study also completely reactivates the enzyme. Reductive treatment with either sulfide or bisulfite, or with sodium dithionite under weakly acidic conditions in the strict absence of O2 resulted in comparable enzymatic activity to FDH purified after heterologous expression in Escherichia coli. Confirmation of the inserted sulfido ligand was afforded by EPR spectroscopy of a MoV intermediate species associated with MoS6 coordination. Specific insertion of a 33S sulfido ligand to the bis-MGD Mo evidenced the chemical insertion of the sulfido ligand and confirmed its role to serve in defining the electronic character of the sulfurated bis-MGD MoV-SH state. The relevance of these results, in relation to known in vitro sulfuration assays described for other molybdoenzymes, is discussed.
Collapse
Affiliation(s)
- Benjamin R Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany.
| | - Benedict J Elvers
- Institute of Biochemistry, Department of Bioinorganic Chemistry, University of Greifswald, Greifswald, Germany
| | - Christian Teutloff
- Institute of Experimental Physics, EPR Spectroscopy of Biological Systems, Freie Universität Berlin, Berlin, Germany
| | - Carola Schulzke
- Institute of Biochemistry, Department of Bioinorganic Chemistry, University of Greifswald, Greifswald, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
2
|
Yu L, Min Z, Liu M, Xin Y, Liu A, Kuang J, Wu W, Wu J, He H, Xin J, Blankenship RE, Tian C, Xu X. A cytochrome c 551 mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii. PLANT COMMUNICATIONS 2024; 5:100715. [PMID: 37710959 PMCID: PMC10873879 DOI: 10.1016/j.xplc.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.
Collapse
Affiliation(s)
- Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Menghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
3
|
Abbott DF, Xu YZ, Kuznetsov DA, Kumar P, Müller CR, Fedorov A, Mougel V. Understanding the Synergy between Fe and Mo Sites in the Nitrate Reduction Reaction on a Bio-Inspired Bimetallic MXene Electrocatalyst. Angew Chem Int Ed Engl 2023:e202313746. [PMID: 37907396 DOI: 10.1002/anie.202313746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Mo- and Fe-containing enzymes catalyze the reduction of nitrate and nitrite ions in nature. Inspired by this activity, we study here the nitrate reduction reaction (NO3 RR) catalyzed by an Fe-substituted two-dimensional molybdenum carbide of the MXene family, viz., Mo2 CTx : Fe (Tx are oxo, hydroxy and fluoro surface termination groups). Mo2 CTx : Fe contains isolated Fe sites in Mo positions of the host MXene (Mo2 CTx ) and features a Faradaic efficiency (FE) and an NH3 yield rate of 41 % and 3.2 μmol h-1 mg-1 , respectively, for the reduction of NO3 - to NH4 + in acidic media and 70 % and 12.9 μmol h-1 mg-1 in neutral media. Regardless of the media, Mo2 CTx : Fe outperforms monometallic Mo2 CTx owing to a more facile reductive defunctionalization of Tx groups, as evidenced by in situ X-ray absorption spectroscopy (Mo K-edge). After surface reduction, a Tx vacancy site binds a nitrate ion that subsequently fills the vacancy site with O* via oxygen transfer. Density function theory calculations provide further evidence that Fe sites promote the formation of surface O vacancies, which are identified as active sites and that function in NO3 RR in close analogy to the prevailing mechanism of the natural Mo-based nitrate reductase enzymes.
Collapse
Affiliation(s)
- Daniel F Abbott
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Yuan-Zi Xu
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Priyank Kumar
- School of Chemical Engineering, University of New South Wales Sydney, Sydney, Australia
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092, Zürich, Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
4
|
González PJ, Rivas MG, Ferroni FM, Rizzi AC, Brondino CD. Electron transfer pathways and spin–spin interactions in Mo- and Cu-containing oxidoreductases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Nazina TN, Abukova LA, Tourova TP, Babich TL, Bidzhieva SK, Filippova DS, Safarova EA. Diversity and Possible Activity of Microorganisms in Underground Gas Storage Aquifers. Microbiology (Reading) 2021. [DOI: 10.1134/s002626172105012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Rahman N, Muhammad I, Nayab GE, Khan H, Filosa R, Xiao J, Hassan STS. In-silico Subtractive Proteomic Analysis Approach for Therapeutic Targets in MDR Salmonella enterica subsp. enterica serovar Typhi str. CT18. Curr Top Med Chem 2019; 19:2708-2717. [PMID: 31702501 DOI: 10.2174/1568026619666191105102156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE In the present study, an attempt has been made for subtractive proteomic analysis approach for novel drug targets in Salmonella enterica subsp. enterica serover Typhi str.CT18 using computational tools. METHODS Paralogous, redundant and less than 100 amino acid protein sequences were removed by using CD-HIT. Further detection of bacterial proteins which are non-homologous to host and are essential for the survival of pathogens by using BLASTp against host proteome and DEG`s, respectively. Comparative Metabolic pathways analysis was performed to find unique and common metabolic pathways. The non-redundant, non-homologous and essential proteins were BLAST against approved drug targets for drug targets while Psortb and CELLO were used to predict subcellular localization. RESULTS There were 4473 protein sequences present in NCBI Database for Salmonella enterica subsp. enterica serover Typhi str. CT18 out of these 327 were essential proteins which were non-homologous to human. Among these essential proteins, 124 proteins were involved in 19 unique metabolic pathways. These proteins were further BLAST against approved drug targets in which 7 cytoplasmic proteins showed druggability and can be used as a therapeutic target. CONCLUSION Drug targets identification is the prime step towards drug discovery. We identified 7 cytoplasmic druggable proteins which are essential for the pathogen survival and non-homologous to human proteome. Further in vitro and in vivo validation is needed for the evaluation of these targets to combat against salmonellosis.
Collapse
Affiliation(s)
- Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, KP, Pakistan
| | - Rosanna Filosa
- Università della Campania Luigi Vanvitelli, Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Naples, Italy
- Consorzio Sannio Tech-AMP Biotec, Appia Str. 7, 82030 Apollosa, BN, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Taipa, Macao
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
7
|
Carreira C, Mestre O, Nunes RF, Moura I, Pauleta SR. Genomic organization, gene expression and activity profile of Marinobacter hydrocarbonoclasticus denitrification enzymes. PeerJ 2018; 6:e5603. [PMID: 30258713 PMCID: PMC6152468 DOI: 10.7717/peerj.5603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Denitrification is one of the main pathways of the N-cycle, during which nitrate is converted to dinitrogen gas, in four consecutive reactions that are each catalyzed by a different metalloenzyme. One of the intermediate metabolites is nitrous oxide, which has a global warming impact greater then carbon dioxide and which atmospheric concentration has been increasing in the last years. The four denitrification enzymes have been isolated and biochemically characterized from Marinobacter hydrocarbonoclasticus in our lab. Methods Bioinformatic analysis of the M. hydrocarbonoclasticus genome to identify the genes involved in the denitrification pathway. The relative gene expression of the gene encoding the catalytic subunits of those enzymes was analyzed during the growth under microoxic conditions. The consumption of nitrate and nitrite, and the reduction of nitric oxide and nitrous oxide by whole-cells was monitored during anoxic and microoxic growth in the presence of 10 mM sodium nitrate at pH 7.5. Results The bioinformatic analysis shows that genes encoding the enzymes and accessory factors required for each step of the denitrification pathway are clustered together. An unusual feature is the co-existence of genes encoding a q- and a c-type nitric oxide reductase, with only the latter being transcribed at similar levels as the ones encoding the catalytic subunits of the other denitrifying enzymes, when cells are grown in the presence of nitrate under microoxic conditions. Using either a batch- or a closed system, nitrate is completely consumed in the beginning of the growth, with transient formation of nitrite, and whole-cells can reduce nitric oxide and nitrous oxide from mid-exponential phase until being collected (time-point 50 h). Discussion M. hydrocarbonoclasticus cells can reduce nitric and nitrous oxide in vivo, indicating that the four denitrification steps are active. Gene expression profile together with promoter regions analysis indicates the involvement of a cascade regulatory mechanism triggered by FNR-type in response to low oxygen tension, with nitric oxide and nitrate as secondary effectors, through DNR and NarXL, respectively. This global characterization of the denitrification pathway of a strict marine bacterium, contributes to the understanding of the N-cycle and nitrous oxide release in marine environments.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
8
|
Rendon J, Biaso F, Ceccaldi P, Toci R, Seduk F, Magalon A, Guigliarelli B, Grimaldi S. Elucidating the Structures of the Low- and High-pH Mo(V) Species in Respiratory Nitrate Reductase: A Combined EPR, 14,15N HYSCORE, and DFT Study. Inorg Chem 2017; 56:4423-4435. [DOI: 10.1021/acs.inorgchem.6b03129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julia Rendon
- Aix Marseille Univ, CNRS, BIP, Marseille, France
| | | | - Pierre Ceccaldi
- Aix Marseille Univ, CNRS, BIP, Marseille, France
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - René Toci
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Farida Seduk
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | - Axel Magalon
- Aix Marseille Univ, CNRS, LCB, Marseille, France
| | | | | |
Collapse
|
9
|
Maia LB, Moura I, Moura JJ. EPR Spectroscopy on Mononuclear Molybdenum-Containing Enzymes. FUTURE DIRECTIONS IN METALLOPROTEIN AND METALLOENZYME RESEARCH 2017. [DOI: 10.1007/978-3-319-59100-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Coelho C, Romão MJ. Structural and mechanistic insights on nitrate reductases. Protein Sci 2015; 24:1901-11. [PMID: 26362109 DOI: 10.1002/pro.2801] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/04/2015] [Indexed: 01/31/2023]
Abstract
Nitrate reductases (NR) belong to the DMSO reductase family of Mo-containing enzymes and perform key roles in the metabolism of the nitrogen cycle, reducing nitrate to nitrite. Due to variable cell location, structure and function, they have been divided into periplasmic (Nap), cytoplasmic, and membrane-bound (Nar) nitrate reductases. The first crystal structure obtained for a NR was that of the monomeric NapA from Desulfovibrio desulfuricans in 1999. Since then several new crystal structures were solved providing novel insights that led to the revision of the commonly accepted reaction mechanism for periplasmic nitrate reductases. The two crystal structures available for the NarGHI protein are from the same organism (Escherichia coli) and the combination with electrochemical and spectroscopic studies also lead to the proposal of a reaction mechanism for this group of enzymes. Here we present an overview on the current advances in structural and functional aspects of bacterial nitrate reductases, focusing on the mechanistic implications drawn from the crystallographic data.
Collapse
Affiliation(s)
- Catarina Coelho
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO@REQUIMTE, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| | - Maria João Romão
- Departamento de Química, Faculdade de Ciências e Tecnologia, UCIBIO@REQUIMTE, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
11
|
Ceccaldi P, Rendon J, Léger C, Toci R, Guigliarelli B, Magalon A, Grimaldi S, Fourmond V. Reductive activation of E. coli respiratory nitrate reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1055-63. [PMID: 26073890 DOI: 10.1016/j.bbabio.2015.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/07/2015] [Indexed: 11/25/2022]
Abstract
Over the past decades, a number of authors have reported the presence of inactive species in as-prepared samples of members of the Mo/W-bisPGD enzyme family. This greatly complicated the spectroscopic studies of these enzymes, since it is impossible to discriminate between active and inactive species on the basis of the spectroscopic signatures alone. Escherichia coli nitrate reductase A (NarGHI) is a member of the Mo/W-bisPGD family that allows anaerobic respiration using nitrate as terminal electron acceptor. Here, using protein film voltammetry on NarGH films, we show that the enzyme is purified in a functionally heterogeneous form that contains between 20 and 40% of inactive species that activate the first time they are reduced. This activation proceeds in two steps: a non-redox reversible reaction followed by an irreversible reduction. By carefully correlating electrochemical and EPR spectroscopic data, we show that neither the two major Mo(V) signals nor those of the two FeS clusters that are the closest to the Mo center are associated with the two inactive species. We also conclusively exclude the possibility that the major "low-pH" and "high-pH" Mo(V) EPR signatures correspond to species in acid-base equilibrium.
Collapse
Affiliation(s)
- Pierre Ceccaldi
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - Julia Rendon
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - Christophe Léger
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - René Toci
- Aix-Marseille Université, CNRS, LCB UMR 7283, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - Bruno Guigliarelli
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - Axel Magalon
- Aix-Marseille Université, CNRS, LCB UMR 7283, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - Stéphane Grimaldi
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France
| | - Vincent Fourmond
- Aix-Marseille Université, CNRS, BIP UMR 7281, 31 chemin J. Aiguier, F-13402 Marseille cedex 20, France.
| |
Collapse
|
12
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
13
|
Ferroni FM, Marangon J, Neuman NI, Cristaldi JC, Brambilla SM, Guerrero SA, Rivas MG, Rizzi AC, Brondino CD. Pseudoazurin from Sinorhizobium meliloti as an electron donor to copper-containing nitrite reductase: influence of the redox partner on the reduction potentials of the enzyme copper centers. J Biol Inorg Chem 2014; 19:913-21. [DOI: 10.1007/s00775-014-1124-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
14
|
Handley KM, Lloyd JR. Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Front Microbiol 2013; 4:136. [PMID: 23734151 PMCID: PMC3660661 DOI: 10.3389/fmicb.2013.00136] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022] Open
Abstract
The Marinobacter genus comprises widespread marine bacteria, found in localities as diverse as the deep ocean, coastal seawater and sediment, hydrothermal settings, oceanic basalt, sea-ice, sand, solar salterns, and oil fields. Terrestrial sources include saline soil and wine-barrel-decalcification wastewater. The genus was designated in 1992 for the Gram-negative, hydrocarbon-degrading bacterium Marinobacter hydrocarbonoclasticus. Since then, a further 31 type strains have been designated. Nonetheless, the metabolic range of many Marinobacter species remains largely unexplored. Most species have been classified as aerobic heterotrophs, and assessed for limited anaerobic pathways (fermentation or nitrate reduction), whereas studies of low-temperature hydrothermal sediments, basalt at oceanic spreading centers, and phytoplankton have identified species that possess a respiratory repertoire with significant biogeochemical implications. Notable physiological traits include nitrate-dependent Fe(II)-oxidation, arsenic and fumarate redox cycling, and Mn(II) oxidation. There is also evidence for Fe(III) reduction, and metal(loid) detoxification. Considering the ubiquity and metabolic capabilities of the genus, Marinobacter species may perform an important and underestimated role in the biogeochemical cycling of organics and metals in varied marine habitats, and spanning aerobic-to-anoxic redox gradients.
Collapse
Affiliation(s)
- Kim M. Handley
- Searle Chemistry Laboratory, Computation Institute, University of ChicagoChicago, IL, USA
- Computing, Environment and Life Sciences, Argonne National LaboratoryChicago, IL, USA
| | - Jonathan R. Lloyd
- School of Earth, Atmospheric, and Environmental Sciences, University of ManchesterManchester, UK
| |
Collapse
|
15
|
Induced peroxidase activity of haem containing nitrate reductases revealed by protein film electrochemistry. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
17
|
Substrate-dependent modulation of the enzymatic catalytic activity: reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1072-82. [PMID: 22561116 DOI: 10.1016/j.bbabio.2012.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/23/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
The respiratory nitrate reductase complex (NarGHI) from Marinobacter hydrocarbonoclasticus 617 (Mh, formerly Pseudomonas nautica 617) catalyzes the reduction of nitrate to nitrite. This reaction is the first step of the denitrification pathway and is coupled to the quinone pool oxidation and proton translocation to the periplasm, which generates the proton motive force needed for ATP synthesis. The Mh NarGH water-soluble heterodimer has been purified and the kinetic and redox properties have been studied through in-solution enzyme kinetics, protein film voltammetry and spectropotentiometric redox titration. The kinetic parameters of Mh NarGH toward substrates and inhibitors are consistent with those reported for other respiratory nitrate reductases. Protein film voltammetry showed that at least two catalytically distinct forms of the enzyme, which depend on the applied potential, are responsible for substrate reduction. These two forms are affected differentially by the oxidizing substrate, as well as by pH and inhibitors. A new model for the potential dependence of the catalytic efficiency of Nars is proposed.
Collapse
|
18
|
Biaso F, Burlat B, Guigliarelli B. DFT Investigation of the Molybdenum Cofactor in Periplasmic Nitrate Reductases: Structure of the Mo(V) EPR-Active Species. Inorg Chem 2012; 51:3409-19. [DOI: 10.1021/ic201533p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frédéric Biaso
- Unité de Bioénergétique
et Ingénierie des Protéines, UMR 7281, Centre National
de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée,
and Aix-Marseille University, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Bénédicte Burlat
- Unité de Bioénergétique
et Ingénierie des Protéines, UMR 7281, Centre National
de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée,
and Aix-Marseille University, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Bruno Guigliarelli
- Unité de Bioénergétique
et Ingénierie des Protéines, UMR 7281, Centre National
de la Recherche Scientifique, Institut de Microbiologie de la Méditerranée,
and Aix-Marseille University, 31 Chemin
Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
19
|
Timóteo CG, Pereira AS, Martins CE, Naik SG, Duarte AG, Moura JJG, Tavares P, Huynh BH, Moura I. Low-spin heme b(3) in the catalytic center of nitric oxide reductase from Pseudomonas nautica. Biochemistry 2011; 50:4251-62. [PMID: 21452843 PMCID: PMC3096747 DOI: 10.1021/bi101605p] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mössbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mössbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g ∼ 6 and g ∼ 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g ∼ 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.
Collapse
Affiliation(s)
| | - Alice S. Pereira
- Authors of correspondence: ; ; Phone: 351-212948345; Fax: 351-212948550; Departamento de Química, Faculdade de Ciências e Tecnologia, UNL, 2829-516 Caparica. PORTUGAL
| | | | | | | | | | | | | | - Isabel Moura
- Authors of correspondence: ; ; Phone: 351-212948345; Fax: 351-212948550; Departamento de Química, Faculdade de Ciências e Tecnologia, UNL, 2829-516 Caparica. PORTUGAL
| |
Collapse
|
20
|
Ferroni FM, Rivas MG, Rizzi AC, Lucca ME, Perotti NI, Brondino CD. Nitrate reduction associated with respiration in Sinorhizobium meliloti 2011 is performed by a membrane-bound molybdoenzyme. Biometals 2011; 24:891-902. [PMID: 21432624 DOI: 10.1007/s10534-011-9442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
The purification and biochemical characterization of the respiratory membrane-bound nitrate reductase from Sinorhizobium meliloti 2011 (Sm NR) is reported together with the optimal conditions for cell growth and enzyme production. The best biomass yield was obtained under aerobic conditions in a fed-batch system using Luria-Bertani medium with glucose as carbon source. The highest level of Sm NR production was achieved using microaerobic conditions with the medium supplemented with both nitrate and nitrite. Sm NR is a mononuclear Mo-protein belonging to the DMSO reductase family isolated as a heterodimeric enzyme containing two subunits of 118 and 45 kDa. Protein characterization by mass spectrometry showed homology with respiratory nitrate reductases. UV-Vis spectra of as-isolated and dithionite reduced Sm NR showed characteristic absorption bands of iron-sulfur and heme centers. Kinetic studies indicate that Sm NR follows a Michaelis-Menten mechanism (K (m) = 97 ± 11 μM, V = 9.4 ± 0.5 μM min(-1), and k (cat) = 12.1 ± 0.6 s(-1)) and is inhibited by azide, chlorate, and cyanide with mixed inhibition patterns. Physiological and kinetic studies indicate that molybdenum is essential for NR activity and that replacement of this metal for tungsten inhibits the enzyme. Although no narGHI gene cluster has been annotated in the genome of rhizobia, the biochemical characterization indicates that Sm NR is a Mo-containing NR enzyme with molecular organization similar to NarGHI.
Collapse
Affiliation(s)
- Felix M Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|