1
|
Rao G, Yu X, Zhang Y, Rauchfuss TB, Britt RD. Fully Refined Semisynthesis of the [FeFe] Hydrogenase H-Cluster. Biochemistry 2023; 62:2868-2877. [PMID: 37691492 DOI: 10.1021/acs.biochem.3c00393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
[FeFe] hydrogenases contain a 6-Fe cofactor that serves as the active site for efficient redox interconversion between H2 and protons. The biosynthesis of the so-called H-cluster involves unusual enzymatic reactions that synthesize organometallic Fe complexes containing azadithiolate, CO, and CN- ligands. We have previously demonstrated that specific synthetic [Fe(CO)x(CN)y] complexes can be used to functionally replace proposed Fe intermediates in the maturation reaction. Here, we report the results from performing such cluster semisynthesis in the context of a recent fully defined cluster maturation procedure, which eliminates unknown components previously employed from Escherichia coli cell lysate and demonstrate this provides a concise route to H-cluster synthesis. We show that formaldehyde can be used as a simple reagent as the carbon source of the bridging adt ligand of H-cluster in lieu of serine/serine hydroxymethyltransferase. In addition to the actual H-cluster, we observe the formation of several H-cluster-like species, the identities of which are probed by cryogenic photolysis combined with EPR/ENDOR spectroscopy.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yu Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Morra S, Duan J, Winkler M, Ash PA, Happe T, Vincent KA. Electrochemical control of [FeFe]-hydrogenase single crystals reveals complex redox populations at the catalytic site. Dalton Trans 2021; 50:12655-12663. [PMID: 34545877 PMCID: PMC8453692 DOI: 10.1039/d1dt02219a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Elucidating the distribution of intermediates at the active site of redox metalloenzymes is vital to understanding their highly efficient catalysis. Here we demonstrate that it is possible to generate, and detect, the key catalytic redox states of an [FeFe]-hydrogenase in a protein crystal. Individual crystals of the prototypical [FeFe]-hydrogenase I from Clostridium pasteurianum (CpI) are maintained under electrochemical control, allowing for precise tuning of the redox potential, while the crystal is simultaneously probed via Fourier Transform Infrared (FTIR) microspectroscopy. The high signal/noise spectra reveal potential-dependent variation in the distribution of redox states at the active site (H-cluster) according to state-specific vibrational bands from the endogeneous CO and CN- ligands. CpI crystals are shown to populate the same H-cluster states as those detected in solution, including the oxidised species Hox, the reduced species Hred/HredH+, the super-reduced HsredH+ and the hydride species Hhyd. The high sensitivity and precise redox control offered by this approach also facilitates the detection and characterisation of low abundance species that only accumulate within a narrow window of conditions, revealing new redox intermediates.
Collapse
Affiliation(s)
- Simone Morra
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
| | - Jifu Duan
- Faculty of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Martin Winkler
- Faculty of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Philip A Ash
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
| | - Thomas Happe
- Faculty of Biology and Biotechnology, AG Photobiotechnology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Kylie A Vincent
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, United Kingdom.
| |
Collapse
|
5
|
Kisgeropoulos EC, Manesis AC, Shafaat HS. Ligand Field Inversion as a Mechanism to Gate Bioorganometallic Reactivity: Investigating a Biochemical Model of Acetyl CoA Synthase Using Spectroscopy and Computation. J Am Chem Soc 2021; 143:849-867. [PMID: 33415980 DOI: 10.1021/jacs.0c10135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biological global carbon cycle is largely regulated through microbial nickel enzymes, including carbon monoxide dehydrogenase (CODH), acetyl coenzyme A synthase (ACS), and methyl coenzyme M reductase (MCR). These systems are suggested to utilize organometallic intermediates during catalysis, though characterization of these species has remained challenging. We have established a mutant of nickel-substituted azurin as a scaffold upon which to develop protein-based models of enzymatic intermediates, including the organometallic states of ACS. In this work, we report the comprehensive investigation of the S = 1/2 Ni-CO and Ni-CH3 states using pulsed EPR spectroscopy and computational techniques. While the Ni-CO state shows conventional metal-ligand interactions and a classical ligand field, the Ni-CH3 hyperfine interactions between the methyl protons and the nickel indicate a closer distance than would be expected for an anionic methyl ligand. Structural analysis instead suggests a near-planar methyl ligand that can be best described as cationic. Consistent with this conclusion, the frontier molecular orbitals of the Ni-CH3 species indicate a ligand-centered LUMO, with a d9 population on the metal center, rather than the d7 population expected for a typical metal-alkyl species generated by oxidative addition. Collectively, these data support the presence of an inverted ligand field configuration for the Ni-CH3 Az species, in which the lowest unoccupied orbital is centered on the ligands rather than the more electropositive metal. These analyses provide the first evidence for an inverted ligand field within a biological system. The functional relevance of the electronic structures of both the Ni-CO and Ni-CH3 species are discussed in the context of native ACS, and an inverted ligand field is proposed as a mechanism by which to gate reactivity both within ACS and in other thiolate-containing metalloenzymes.
Collapse
Affiliation(s)
- Effie C Kisgeropoulos
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anastasia C Manesis
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry and Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
7
|
Reijerse E, Birrell JA, Lubitz W. Spin Polarization Reveals the Coordination Geometry of the [FeFe] Hydrogenase Active Site in Its CO-Inhibited State. J Phys Chem Lett 2020; 11:4597-4602. [PMID: 32420744 PMCID: PMC7309315 DOI: 10.1021/acs.jpclett.0c01352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The active site of [FeFe] hydrogenase features a binuclear iron cofactor Fe2ADT(CO)3(CN)2, where ADT represents the bridging ligand aza-propane-dithiolate. The terminal diatomic ligands all coordinate in a basal configuration, and one CO bridges the two irons leaving an open coordination site at which the hydrogen species and the competitive inhibitor CO bind. Externally supplied CO is expected to coordinate in an apical configuration. However, an alternative configuration has been proposed in which, due to ligand rotation, the CN- bound to the distal Fe becomes apical. Using selective 13C isotope labeling of the CN- and COext ligands in combination with pulsed 13C electron-nuclear-nuclear triple resonance spectroscopy, spin polarization effects are revealed that, according to density functional theory calculations, are consistent with only the "unrotated" apical COext configuration.
Collapse
|
8
|
Reijerse EJ, Pelmenschikov V, Birrell JA, Richers CP, Kaupp M, Rauchfuss TB, Cramer SP, Lubitz W. Asymmetry in the Ligand Coordination Sphere of the [FeFe] Hydrogenase Active Site Is Reflected in the Magnetic Spin Interactions of the Aza-propanedithiolate Ligand. J Phys Chem Lett 2019; 10:6794-6799. [PMID: 31580680 PMCID: PMC6844125 DOI: 10.1021/acs.jpclett.9b02354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
[FeFe] hydrogenases are very active enzymes that catalyze the reversible conversion of molecular hydrogen into protons and electrons. Their active site, the H-cluster, contains a unique binuclear iron complex, [2Fe]H, with CN- and CO ligands as well as an aza-propane-dithiolate (ADT) moiety featuring a central amine functionality that mediates proton transfer during catalysis. We present a pulsed 13C-ENDOR investigation of the H-cluster in which the two methylene carbons of ADT are isotope labeled with 13C. We observed that the corresponding two 13C hyperfine interactions are of opposite sign and corroborated this finding using density functional theory calculations. The spin polarization in the ADT ligand is shown to be linked to the asymmetric coordination of the distal iron site with its terminal CN- and CO ligands. We propose that this asymmetry is relevant for the enzyme reactivity and is related to the (optimal) stabilization of the iron-hydride intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Edward J. Reijerse
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vladimir Pelmenschikov
- Institut
für Chemie, Technische Universität
Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - James A. Birrell
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casseday P. Richers
- School
of Chemical Sciences, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Martin Kaupp
- Institut
für Chemie, Technische Universität
Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas B. Rauchfuss
- School
of Chemical Sciences, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | | | - Wolfgang Lubitz
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
9
|
Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP, Winkler M, Haumann M. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorg Chem 2019; 58:4000-4013. [PMID: 30802044 DOI: 10.1021/acs.inorgchem.9b00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe]-hydrogenases are efficient biological hydrogen conversion catalysts and blueprints for technological fuel production. The relations between substrate interactions and electron/proton transfer events at their unique six-iron cofactor (H-cluster) need to be elucidated. The H-cluster comprises a four-iron cluster, [4Fe4S], linked to a diiron complex, [FeFe]. We combined 57Fe-specific X-ray nuclear resonance scattering experiments (NFS, nuclear forward scattering; NRVS, nuclear resonance vibrational spectroscopy) with quantum-mechanics/molecular-mechanics computations to study the [FeFe]-hydrogenase HYDA1 from a green alga. Selective 57Fe labeling at only [4Fe4S] or [FeFe], or at both subcomplexes was achieved by protein expression with a 57Fe salt and in vitro maturation with a synthetic diiron site precursor containing 57Fe. H-cluster states were populated under infrared spectroscopy control. NRVS spectral analyses facilitated assignment of the vibrational modes of the cofactor species. This approach revealed the H-cluster structure of the oxidized state (Hox) with a bridging carbon monoxide at [FeFe] and ligand rearrangement in the CO-inhibited state (Hox-CO). Protonation at a cysteine ligand of [4Fe4S] in the oxidized state occurring at low pH (HoxH) was indicated, in contrast to bridging hydride binding at [FeFe] in a one-electron reduced state (Hred). These findings are direct evidence for differential protonation either at the four-iron or diiron subcomplex of the H-cluster. NFS time-traces provided Mössbauer parameters such as the quadrupole splitting energy, which differ among cofactor states, thereby supporting selective protonation at either subcomplex. In combination with data for reduced states showing similar [4Fe4S] protonation as HoxH without (Hred') or with (Hhyd) a terminal hydride at [FeFe], our results imply that coordination geometry dynamics at the diiron site and proton-coupled electron transfer to either the four-iron or the diiron subcomplex discriminate catalytic and regulatory functions of [FeFe]-hydrogenases. We support a reaction cycle avoiding diiron site geometry changes during rapid H2 turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulf-Peter Apfel
- Fraunhofer UMSICHT , Osterfelder Straße 3 , 46047 Oberhausen , Germany
| | | | | |
Collapse
|
10
|
Rao G, Britt RD. Electronic Structure of Two Catalytic States of the [FeFe] Hydrogenase H-Cluster As Probed by Pulse Electron Paramagnetic Resonance Spectroscopy. Inorg Chem 2018; 57:10935-10944. [PMID: 30106575 DOI: 10.1021/acs.inorgchem.8b01557] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The active site of the [FeFe] hydrogenase (HydA1), the H-cluster, is a 6-Fe cofactor that contains CO and CN- ligands. It undergoes several different oxidation and protonation state changes in its catalytic cycle to metabolize H2. Among them, the well-known Hox state and the recently identified Hhyd state are thought to be directly involved in H2 activation and evolution, and they are both EPR active with net spin S = 1/2. Herein, we report the pulse electronic paramagnetic spectroscopic investigation of these two catalytic states in Chlamydomonas reinhardtii HydA1 ( CrHydA1). Using an in vitro biosynthetic maturation approach, we site-specifically installed 13C into the CO or CN- ligands and 57Fe into the [2Fe]H subcluster of the H-cluster in order to measure the hyperfine couplings to these magnetic nuclei. For Hox, we measured 13C hyperfine couplings (13CO aiso of 25.5, 5.8, and 4.5 MHz) corresponding to all three CO ligands in the H-cluster. We also observed two 57Fe hyperfine couplings (57Fe aiso of ∼17 and 5.7 MHz) arising from the two Fe atoms in the [2Fe]H subcluster. For Hhyd, we only observed two distinct 13CO hyperfine interactions (13CO aiso of 0.16 and 0.08 MHz) and only one for 13CN- (13CN aiso of 0.16 MHz); the couplings to the 13CO/13CN- on the distal Fe of [2Fe]H may be too small to detect. We also observed a very small (<0.3 MHz) 57Fe HFI from the labeled [2Fe]H subcluster and four 57Fe HFI from the labeled [4Fe-4S]H subcluster (57Fe aiso of 7.2, 16.6, 28.2, and 35.3 MHz). These hyperfine coupling constants are consistent with the previously proposed electronic structure of the H-cluster at both Hox and Hhyd states and provide a basis for more detailed analysis.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| |
Collapse
|
11
|
Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. J Biol Inorg Chem 2018; 23:481-491. [PMID: 29627860 PMCID: PMC5940705 DOI: 10.1007/s00775-018-1558-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/30/2018] [Indexed: 11/25/2022]
Abstract
[FeFe] Hydrogenases catalyze the reversible conversion of H2 into electrons and protons. Their catalytic site, the H-cluster, contains a generic [4Fe–4S]H cluster coupled to a [2Fe]H subsite [Fe2(ADT)(CO)3(CN)2]2−, ADT = µ(SCH2)2NH. Heterologously expressed [FeFe] hydrogenases (apo-hydrogenase) lack the [2Fe]H unit, but this can be incorporated through artificial maturation with a synthetic precursor [Fe2(ADT)(CO)4(CN)2]2−. Maturation with a [2Fe] complex in which the essential ADT amine moiety has been replaced by CH2 (PDT = propane-dithiolate) results in a low activity enzyme with structural and spectroscopic properties similar to those of the native enzyme, but with simplified redox behavior. Here, we study the effect of sulfur-to-selenium (S-to-Se) substitution in the bridging PDT ligand incorporated in the [FeFe] hydrogenase HydA1 from Chlamydomonas reinhardtii using magnetic resonance (EPR, NMR), FTIR and spectroelectrochemistry. The resulting HydA1-PDSe enzyme shows the same redox behavior as the parent HydA1-PDT. In addition, a state is observed in which extraneous CO is bound to the open coordination site of the [2Fe]H unit. This state was previously observed only in the native enzyme HydA1-ADT and not in HydA1-PDT. The spectroscopic features and redox behavior of HydA1-PDSe, resulting from maturation with [Fe2(PDSe)(CO)4(CN)2]2−, are discussed in terms of spin and charge density shifts and provide interesting insight into the electronic structure of the H-cluster. We also studied the effect of S-to-Se substitution in the [4Fe–4S] subcluster. The reduced form of HydA1 containing only the [4Fe–4Se]H cluster shows a characteristic S = 7/2 spin state which converts back into the S = 1/2 spin state upon maturation with a [2Fe]–PDT/ADT complex.
Collapse
|
12
|
Rumpel S, Ravera E, Sommer C, Reijerse E, Farès C, Luchinat C, Lubitz W. 1H NMR Spectroscopy of [FeFe] Hydrogenase: Insight into the Electronic Structure of the Active Site. J Am Chem Soc 2018; 140:131-134. [PMID: 29211457 PMCID: PMC5765528 DOI: 10.1021/jacs.7b11196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The [FeFe] hydrogenase
HydA1 from Chlamydomonas reinhardtii has been studied
using 1H NMR spectroscopy identifying
the paramagnetically shifted 1H resonances associated with
both the [4Fe-4S]H and the
[2Fe]H subclusters of the active site “H-cluster”.
The signal pattern of the unmaturated HydA1 containing only [4Fe-4S]H is reminiscent of bacterial-type ferredoxins. The spectra
of maturated HydA1, with a complete H-cluster in the active Hox and the CO-inhibited Hox–CO state, reveal
additional upfield and downfield shifted 1H resonances
originating from the four methylene protons of the azadithiolate ligand
in the [2Fe]H subsite. The two axial protons are affected
by positive spin density, while the two equatorial protons experience
negative spin density. These protons can be used as important probes
sensing the effects of ligand-binding to the catalytic site of the
H-cluster.
Collapse
Affiliation(s)
- Sigrun Rumpel
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Enrico Ravera
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Claudio Luchinat
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Mebs S, Kositzki R, Duan J, Kertess L, Senger M, Wittkamp F, Apfel UP, Happe T, Stripp ST, Winkler M, Haumann M. Hydrogen and oxygen trapping at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:28-41. [DOI: 10.1016/j.bbabio.2017.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
|
14
|
Rodríguez-Maciá P, Pawlak K, Rüdiger O, Reijerse EJ, Lubitz W, Birrell JA. Intercluster Redox Coupling Influences Protonation at the H-cluster in [FeFe] Hydrogenases. J Am Chem Soc 2017; 139:15122-15134. [DOI: 10.1021/jacs.7b08193] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Kositzki R, Mebs S, Schuth N, Leidel N, Schwartz L, Karnahl M, Wittkamp F, Daunke D, Grohmann A, Apfel UP, Gloaguen F, Ott S, Haumann M. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans 2017; 46:12544-12557. [PMID: 28905949 DOI: 10.1039/c7dt02720f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds.
Collapse
Affiliation(s)
- Ramona Kositzki
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Birrell JA, Wrede K, Pawlak K, Rodriguez-Maciá P, Rüdiger O, Reijerse EJ, Lubitz W. Artificial Maturation of the Highly Active Heterodimeric [FeFe] Hydrogenase from Desulfovibrio desulfuricans
ATCC 7757. Isr J Chem 2016. [DOI: 10.1002/ijch.201600035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- James A. Birrell
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Kathrin Wrede
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Patricia Rodriguez-Maciá
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion; Stiftstraße 34-36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
17
|
Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Proc Natl Acad Sci U S A 2016; 113:8454-9. [PMID: 27432985 DOI: 10.1073/pnas.1606178113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN(-)) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of (13)CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN(-) at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective (13)CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle.
Collapse
|
18
|
Morra S, Maurelli S, Chiesa M, Mulder DW, Ratzloff MW, Giamello E, King PW, Gilardi G, Valetti F. The effect of a C298D mutation in CaHydA [FeFe]-hydrogenase: Insights into the protein-metal cluster interaction by EPR and FTIR spectroscopic investigation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:98-106. [PMID: 26482707 DOI: 10.1016/j.bbabio.2015.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/17/2023]
Abstract
A conserved cysteine located in the signature motif of the catalytic center (H-cluster) of [FeFe]-hydrogenases functions in proton transfer. This residue corresponds to C298 in Clostridium acetobutylicum CaHydA. Despite the chemical and structural difference, the mutant C298D retains fast catalytic activity, while replacement with any other amino acid causes significant activity loss. Given the proximity of C298 to the H-cluster, the effect of the C298D mutation on the catalytic center was studied by continuous wave (CW) and pulse electron paramagnetic resonance (EPR) and by Fourier transform infrared (FTIR) spectroscopies. Comparison of the C298D mutant with the wild type CaHydA by CW and pulse EPR showed that the electronic structure of the center is not altered. FTIR spectroscopy confirmed that absorption peak values observed in the mutant are virtually identical to those observed in the wild type, indicating that the H-cluster is not generally affected by the mutation. Significant differences were observed only in the inhibited state Hox-CO: the vibrational modes assigned to the COexo and Fed-CO in this state are shifted to lower values in C298D, suggesting different interaction of these ligands with the protein moiety when C298 is changed to D298. More relevant to the catalytic cycle, the redox equilibrium between the Hox and Hred states is modified by the mutation, causing a prevalence of the oxidized state. This work highlights how the interactions between the protein environment and the H-cluster, a dynamic closely interconnected system, can be engineered and studied in the perspective of designing bio-inspired catalysts and mimics.
Collapse
Affiliation(s)
- Simone Morra
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10133, Italy
| | - Sara Maurelli
- Department of Chemistry, University of Torino, Torino 10133, Italy
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Torino 10133, Italy
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael W Ratzloff
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Elio Giamello
- Department of Chemistry, University of Torino, Torino 10133, Italy
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10133, Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10133, Italy.
| |
Collapse
|
19
|
Adamska-Venkatesh A, Simmons TR, Siebel JF, Artero V, Fontecave M, Reijerse E, Lubitz W. Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Phys Chem Chem Phys 2015; 17:5421-30. [PMID: 25613229 DOI: 10.1039/c4cp05426a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenases are enzymes that catalyze the oxidation of H2 as well as the reduction of protons to form H2. The active site of [FeFe] hydrogenase is referred to as the "H-cluster" and consists of a "classical" [4Fe-4S] cluster connected via a bridging cysteine thiol group to a unique [2Fe]H sub-cluster, containing CN(-) and CO ligands as well as a bidentate azadithiolate ligand. It has been recently shown that the biomimetic [Fe2(adt)(CO)4(CN)2](2-) (adt(2-) = azadithiolate) complex resembling the diiron sub-cluster can be inserted in vitro into the apo-protein of [FeFe] hydrogenase, which contains only the [4Fe-4S] part of the H-cluster, resulting in a fully active enzyme. This synthetic tool allows convenient incorporation of a variety of diiron mimics, thus generating hydrogenases with artificial active sites. [FeFe] hydrogenase from Chlamydomonas reinhardtii maturated with the biomimetic complex [Fe2(pdt)(CO)4(CN)2](2-) (pdt(2-) = propanedithiolate), in which the bridging adt(2-) ligand is replaced by pdt(2-), can be stabilized in a state strongly resembling the active oxidized (Hox) state of the native protein. This state is EPR active and the signal originates from the mixed valence Fe(I)Fe(II) state of the diiron sub-cluster. Taking advantage of the variant with (15)N and (13)C isotope labeled CN(-) ligands we performed HYSCORE and ENDOR studies on this hybrid protein. The (13)C hyperfine couplings originating from both CN(-) ligands were determined and assigned. Only the (15)N coupling from the CN(-) ligand bound to the terminal iron was observed. Detailed orientation selective ENDOR and HYSCORE experiments at multiple field positions enabled the extraction of accurate data for the relative orientations of the nitrogen and carbon hyperfine tensors. These data are consistent with the crystal structure assuming a g-tensor orientation following the local symmetry of the binuclear sub-cluster.
Collapse
Affiliation(s)
- Agnieszka Adamska-Venkatesh
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Morra S, Mongili B, Maurelli S, Gilardi G, Valetti F. Isolation and characterization of a new [FeFe]-hydrogenase from Clostridium perfringens. Biotechnol Appl Biochem 2015; 63:305-11. [PMID: 25851509 DOI: 10.1002/bab.1382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/07/2015] [Indexed: 12/23/2022]
Abstract
This paper reports the first characterization of an [FeFe]-hydrogenase from a Clostridium perfringens strain previously isolated in our laboratory from a pilot-scale bio-hydrogen plant that efficiently produces H2 from waste biomasses. On the basis of sequence analysis, the enzyme is a monomer formed by four domains hosting various iron-sulfur centres involved in electron transfer and the catalytic center H-cluster. After recombinant expression in Escherichia coli, the purified protein catalyzes H2 evolution at high rate of 1645 ± 16 s(-1) . The optimal conditions for catalysis are in the pH range 6.5-8.0 and at the temperature of 50 °C. EPR spectroscopy showed that the H-cluster of the oxidized enzyme displays a spectrum coherent with the Hox state, whereas the CO-inhibited enzyme has a spectrum coherent with the Hox -CO state. FTIR spectroscopy showed that the purified enzyme is composed of a mixture of redox states, with a prevalence of the Hox ; upon reduction with H2 , vibrational modes assigned to the Hred state were more abundant, whereas binding of exogenous CO resulted in a spectrum assigned to the Hox -CO state. The spectroscopic features observed are similar to those of the [FeFe]-hydrogenases class, but relevant differences were observed given the different protein environment hosting the H-cluster.
Collapse
Affiliation(s)
- Simone Morra
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Beatrice Mongili
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Sara Maurelli
- Department of Chemistry, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
21
|
Bachmeier A, Esselborn J, Hexter SV, Krämer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA. How Formaldehyde Inhibits Hydrogen Evolution by [FeFe]-Hydrogenases: Determination by ¹³C ENDOR of Direct Fe-C Coordination and Order of Electron and Proton Transfers. J Am Chem Soc 2015; 137:5381-9. [PMID: 25871921 DOI: 10.1021/ja513074m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Formaldehyde (HCHO), a strong electrophile and a rapid and reversible inhibitor of hydrogen production by [FeFe]-hydrogenases, is used to identify the point in the catalytic cycle at which a highly reactive metal-hydrido species is formed. Investigations of the reaction of Chlamydomonas reinhardtii [FeFe]-hydrogenase with formaldehyde using pulsed-EPR techniques including electron-nuclear double resonance spectroscopy establish that formaldehyde binds close to the active site. Density functional theory calculations support an inhibited super-reduced state having a short Fe-(13)C bond in the 2Fe subsite. The adduct forms when HCHO is available to compete with H(+) transfer to a vacant, nucleophilic Fe site: had H(+) transfer already occurred, the reaction of HCHO with the Fe-hydrido species would lead to methanol, release of which is not detected. Instead, Fe-bound formaldehyde is a metal-hydrido mimic, a locked, inhibited form analogous to that in which two electrons and only one proton have transferred to the H-cluster. The results provide strong support for a mechanism in which the fastest pathway for H2 evolution involves two consecutive proton transfer steps to the H-cluster following transfer of a second electron to the active site.
Collapse
Affiliation(s)
- Andreas Bachmeier
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julian Esselborn
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Suzannah V Hexter
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tobias Krämer
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kathrin Klein
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Thomas Happe
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - John E McGrady
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - William K Myers
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Fraser A Armstrong
- †Inorganic Chemistry Laboratory and ‡Centre for Advanced Electron Spin Resonance, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom.,§Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie and ∥Lehrstuhl für Anorganische Chemie I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
22
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
23
|
Myers WK, Stich TA, Suess DLM, Kuchenreuther JM, Swartz JR, Britt RD. The cyanide ligands of [FeFe] hydrogenase: pulse EPR studies of (13)C and (15)N-labeled H-cluster. J Am Chem Soc 2014; 136:12237-40. [PMID: 25133957 PMCID: PMC4156861 DOI: 10.1021/ja507046w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The
two cyanide ligands in the assembled cluster of [FeFe] hydrogenase
originate from exogenous l-tyrosine. Using selectively labeled
tyrosine substrates, the cyanides were isotopically labeled via a
recently developed in vitro maturation procedure
allowing advanced electron paramagnetic resonance techniques to probe
the electronic structure of the catalytic core of the enzyme. The
ratio of the isotropic 13C hyperfine interactions for the
two CN– ligands—a reporter of spin density
on their respective coordinating iron ions—collapses from ≈5.8
for the Hox form of hydrogenase to <2 for the CO-inhibited
form. Additionally, when the maturation was carried out using [15N]-tyrosine, no features previously ascribed to the nitrogen
of the bridging dithiolate ligand were observed suggesting that this
bridge is not sourced from tyrosine.
Collapse
Affiliation(s)
- William K Myers
- Department of Chemistry, University of California, Davis , Davis, California 95616 United States
| | | | | | | | | | | |
Collapse
|
24
|
Wang W, Oldfield E. Biometallorganische Chemie mit IspG und IspH: Struktur, Funktion und Hemmung der an der Isoprenoid-Biosynthese beteiligten [Fe 4S 4]-Proteine. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201306712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
26
|
Wang W, Oldfield E. Bioorganometallic chemistry with IspG and IspH: structure, function, and inhibition of the [Fe(4)S(4)] proteins involved in isoprenoid biosynthesis. Angew Chem Int Ed Engl 2014; 53:4294-310. [PMID: 24481599 DOI: 10.1002/anie.201306712] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 11/12/2022]
Abstract
Enzymes of the methylerythritol phosphate pathway of isoprenoid biosynthesis are attractive anti-infective drug targets. The last two enzymes of this pathway, IspG and IspH, are [Fe4 S4 ] proteins that are not produced by humans and catalyze 2 H(+) / 2 e(-) reductions with novel mechanisms. In this Review, we summarize recent advances in structural, mechanistic, and inhibitory studies of these two enzymes. In particular, mechanistic proposals involving bioorganometallic intermediates are presented, and compared with other mechanistic possibilities. In addition, inhibitors based on substrate analogues as well as developed by rational design and compound-library screening, are discussed. The results presented support bioorganometallic catalytic mechanisms for IspG and IspH, and open up new routes to anti-infective drug design targeting [Fe4 S4 ] clusters in proteins.
Collapse
Affiliation(s)
- Weixue Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | | |
Collapse
|
27
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Silakov A, Olsen MT, Sproules S, Reijerse EJ, Rauchfuss TB, Lubitz W. EPR/ENDOR, Mössbauer, and quantum-chemical investigations of diiron complexes mimicking the active oxidized state of [FeFe]hydrogenase. Inorg Chem 2012; 51:8617-28. [PMID: 22800196 PMCID: PMC3420818 DOI: 10.1021/ic3013766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding the catalytic process of the heterolytic splitting and formation of molecular hydrogen is one of the key topics for the development of a future hydrogen economy. With an interest in elucidating the enzymatic mechanism of the [Fe(2)(S(2)C(2)H(4)NH)(CN)(2)(CO)(2)(μ-CO)] active center uniquely found in [FeFe]hydrogenases, we present a detailed spectroscopic and theoretical analysis of its inorganic model [Fe(2)(S(2)X)(CO)(3)(dppv)(PMe(3))](+) [dppv = cis-1,2-bis(diphenylphosphino)ethylene] in two forms with S(2)X = ethanedithiolate (1edt) and azadithiolate (1adt). These complexes represent models for the oxidized mixed-valent Fe(I)Fe(II) state analogous to the active oxidized "H(ox)" state of the native H-cluster. For both complexes, the (31)P hyperfine interactions were determined by pulse electron paramagnetic resonance and electron nuclear double resonance (ENDOR) methods. For 1edt, the (57)Fe parameters were measured by electron spin-echo envelope modulation and Mössbauer spectroscopy, while for 1adt, (14)N and selected (1)H couplings could be obtained by ENDOR and hyperfine sublevel correlation spectroscopy. The spin density was found to be predominantly localized on the Fe(dppv) site. This spin distribution is different from that of the H-cluster, where both the spin and charge densities are delocalized over the two Fe centers. This difference is attributed to the influence of the "native" cubane subcluster that is lacking in the inorganic models. The degree and character of the unpaired spin delocalization was found to vary from 1edt, with an abiological dithiolate, to 1adt, which features the authentic cofactor. For 1adt, we find two (14)N signals, which are indicative for two possible isomers of the azadithiolate, demonstrating its high flexibility. All interaction parameters were also evaluated through density functional theory calculations at various levels.
Collapse
Affiliation(s)
- Alexey Silakov
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim a.d. Ruhr, 45470, Germany
| | - Matthew T. Olsen
- Department of Chemistry, University of Illinois, A328 Chemical & Life Sciences Lab, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Stephen Sproules
- School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Eduard J. Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim a.d. Ruhr, 45470, Germany
| | - Thomas B. Rauchfuss
- Department of Chemistry, University of Illinois, A328 Chemical & Life Sciences Lab, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34–36, Mülheim a.d. Ruhr, 45470, Germany
| |
Collapse
|
29
|
Fugate CJ, Stich TA, Kim EG, Myers WK, Britt RD, Jarrett JT. 9-Mercaptodethiobiotin is generated as a ligand to the [2Fe-2S]+ cluster during the reaction catalyzed by biotin synthase from Escherichia coli. J Am Chem Soc 2012; 134:9042-5. [PMID: 22607542 PMCID: PMC3418058 DOI: 10.1021/ja3012963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biotin synthase catalyzes formation of the thiophane ring through stepwise substitution of a sulfur atom for hydrogen atoms at the C9 and C6 positions of dethiobiotin. Biotin synthase is a radical S-adenosylmethionine (SAM) enzyme that reductively cleaves S-adenosylmethionine, generating 5'-deoxyadenosyl radicals that initially abstract a hydrogen atom from the C9 position of dethiobiotin. We have proposed that the resulting dethiobiotinyl radical is quenched by the μ-sulfide of the nearby [2Fe-2S](2+) cluster, resulting in coupled formation of 9-mercaptodethiobiotin and a reduced [2Fe-2S](+) cluster. This reduced FeS cluster is observed by electron paramagnetic resonance spectroscopy as a mixture of two orthorhombic spin systems. In the present work, we use isotopically labeled 9-mercaptodethiobiotin and enzyme to probe the ligand environment of the [2Fe-2S](+) cluster in this reaction intermediate. Hyperfine sublevel correlation spectroscopy (HYSCORE) spectra exhibit strong cross-peaks demonstrating strong isotropic coupling of the nuclear spin with the paramagnetic center. The hyperfine coupling constants are consistent with a structural model for the reaction intermediate in which 9-mercaptodethiobiotin is covalently coordinated to the remnant [2Fe-2S](+) cluster.
Collapse
Affiliation(s)
- Corey J. Fugate
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawai’i 96822, United States
| | - Troy A. Stich
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Esther G. Kim
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - William K. Myers
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Joseph T. Jarrett
- Department of Chemistry, University of Hawai’i at Manoa, Honolulu, Hawai’i 96822, United States
| |
Collapse
|
30
|
Reijerse E, Lendzian F, Isaacson R, Lubitz W. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:237-43. [PMID: 22196894 DOI: 10.1016/j.jmr.2011.11.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/11/2011] [Accepted: 11/12/2011] [Indexed: 05/22/2023]
Abstract
We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the resonator are presented.
Collapse
Affiliation(s)
- Edward Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Stiftstr. 34-36, Germany.
| | | | | | | |
Collapse
|
31
|
Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed Engl 2011; 51:1124-37. [PMID: 22105807 DOI: 10.1002/anie.201103110] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 01/10/2023]
Abstract
Terpenes are the largest class of small-molecule natural products on earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are six main building blocks or modules (α, β, γ, δ, ε, and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C(5) precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri- and tetraterpene precursors of sterols, hopanoids, and carotenoids; the βγ di- and triterpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis; and finally the α, αβ, and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C(5) diphosphates in many bacteria, where again, highly modular structures are found.
Collapse
Affiliation(s)
- Eric Oldfield
- Department of Chemistry and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
32
|
|
33
|
Wang W, Wang K, Li J, Nellutla S, Smirnova TI, Oldfield E. An ENDOR and HYSCORE investigation of a reaction intermediate in IspG (GcpE) catalysis. J Am Chem Soc 2011; 133:8400-3. [PMID: 21574560 DOI: 10.1021/ja200763a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IspG is a 4Fe-4S protein that carries out an essential reduction step in isoprenoid biosynthesis. Using electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies on labeled samples, we have specifically assigned the hyperfine interactions in a reaction intermediate. These results help clarify the nature of the reaction intermediate, supporting a direct interaction between the unique fourth Fe in the cluster and C2 and O3 of the ligand.
Collapse
Affiliation(s)
- Weixue Wang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 607 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
34
|
Greco C, Silakov A, Bruschi M, Ryde U, De Gioia L, Lubitz W. Magnetic Properties of [FeFe]-Hydrogenases: A Theoretical Investigation Based on Extended QM and QM/MM Models of the H-Cluster and Its Surroundings. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Silakov A, Reijerse EJ, Lubitz W. Unraveling the Electronic Properties of the Photoinduced States of the H-Cluster in the [FeFe] Hydrogenase from D. desulfuricans. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Silakov A, Shaw JL, Reijerse EJ, Lubitz W. Advanced Electron Paramagnetic Resonance and Density Functional Theory Study of a {2Fe3S} Cluster Mimicking the Active Site of [FeFe] Hydrogenase. J Am Chem Soc 2010; 132:17578-87. [DOI: 10.1021/ja107793e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexey Silakov
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Jennifer L. Shaw
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Eduard J. Reijerse
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr, 45470, Germany
| |
Collapse
|
37
|
Bertini L, Greco C, Bruschi M, Fantucci P, De Gioia L. CO Affinity and Bonding Properties of [FeFe] Hydrogenase Active Site Models. A DFT Study. Organometallics 2010. [DOI: 10.1021/om900658b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luca Bertini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Maurizio Bruschi
- Department of Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza, 2, 20126 Milan, Italy
| |
Collapse
|
38
|
Silakov A, Wenk B, Reijerse E, Lubitz W. (14)N HYSCORE investigation of the H-cluster of [FeFe] hydrogenase: evidence for a nitrogen in the dithiol bridge. Phys Chem Chem Phys 2009; 11:6592-9. [PMID: 19639134 DOI: 10.1039/b905841a] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenases are enzymes catalyzing the reversible heterolytic splitting of molecular hydrogen. Despite extensive investigations of this class of enzymes its catalytic mechanism is not yet well understood. In this paper spectroscopic investigations of the active site of [FeFe] hydrogenase are presented. The so-called H-cluster consists of a bi-nuclear catalytically active subcluster connected to a [4Fe4S] ferredoxin-like unit via a Cys-thiol bridge. An important feature of the H-cluster is that both irons in the bi-nuclear subcluster are coordinated by CN and CO ligands. The bi-nuclear site also carries a dithiol bridge, whose central atom has not yet been identified. Nitrogen and oxygen are the most probable candidates from a mechanistic point of view. Here we present a study of the (14)N nuclear quadrupole and hyperfine interactions of the active oxidized state of the H-cluster using advanced EPR methods. In total three (14)N nuclei with quadrupole couplings of 0.95 MHz, 0.35 MHz and 1.23 MHz were detected using hyperfine sublevel correlation spectroscopy (HYSCORE). The assignment of the signals is based on their (14)N quadrupole couplings in combination with DFT calculations. One signal is assigned to the CN ligand of the distal iron, one to a Lys side chain nitrogen and one to the putative nitrogen of the dithiol bridge. Hence, these results provide the first experimental evidence for a di-(thiomethyl)amine ligand (-S-CH(2)-NH-CH(2)-S-) in the bi-nuclear subcluster. This finding is important for understanding the mechanism of [FeFe] hydrogenases, since the nitrogen is likely to act as an internal base facilitating the heterolytic splitting/formation of H(2).
Collapse
Affiliation(s)
- Alexey Silakov
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim a. d. Ruhr, Germany.
| | | | | | | |
Collapse
|