1
|
Bak DW, Weerapana E. Proteomic strategies to interrogate the Fe-S proteome. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119791. [PMID: 38925478 PMCID: PMC11365765 DOI: 10.1016/j.bbamcr.2024.119791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Iron‑sulfur (Fe-S) clusters, inorganic cofactors composed of iron and sulfide, participate in numerous essential redox, non-redox, structural, and regulatory biological processes within the cell. Though structurally and functionally diverse, the list of all proteins in an organism capable of binding one or more Fe-S clusters is referred to as its Fe-S proteome. Importantly, the Fe-S proteome is highly dynamic, with continuous cluster synthesis and delivery by complex Fe-S cluster biogenesis pathways. This cluster delivery is balanced out by processes that can result in loss of Fe-S cluster binding, such as redox state changes, iron availability, and oxygen sensitivity. Despite continued expansion of the Fe-S protein catalogue, it remains a challenge to reliably identify novel Fe-S proteins. As such, high-throughput techniques that can report on native Fe-S cluster binding are required to both identify new Fe-S proteins, as well as characterize the in vivo dynamics of Fe-S cluster binding. Due to the recent rapid growth in mass spectrometry, proteomics, and chemical biology, there has been a host of techniques developed that are applicable to the study of native Fe-S proteins. This review will detail both the current understanding of the Fe-S proteome and Fe-S cluster biology as well as describing state-of-the-art proteomic strategies for the study of Fe-S clusters within the context of a native proteome.
Collapse
Affiliation(s)
- Daniel W Bak
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| | - Eranthie Weerapana
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States of America.
| |
Collapse
|
2
|
Matsui S, Noda S, Kuwata K, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y. Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin. Nat Commun 2024; 15:3762. [PMID: 38704378 PMCID: PMC11069567 DOI: 10.1038/s41467-024-48108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.
Collapse
Affiliation(s)
- Sayaka Matsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hidefumi Shinohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, 910-1195, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
3
|
Hagen WR. The Development of Tungsten Biochemistry-A Personal Recollection. Molecules 2023; 28:molecules28104017. [PMID: 37241758 DOI: 10.3390/molecules28104017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The development of tungsten biochemistry is sketched from the viewpoint of personal participation. Following its identification as a bio-element, a catalogue of genes, enzymes, and reactions was built up. EPR spectroscopic monitoring of redox states was, and remains, a prominent tool in attempts to understand tungstopterin-based catalysis. A paucity of pre-steady-state data remains a hindrance to overcome to this day. Tungstate transport systems have been characterized and found to be very specific for W over Mo. Additional selectivity is presented by the biosynthetic machinery for tungstopterin enzymes. Metallomics analysis of hyperthermophilic archaeon Pyrococcus furiosus indicates a comprehensive inventory of tungsten proteins.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
van Dijk MC, de Kruijff RM, Hagedoorn PL. The Role of Iron in Staphylococcus aureus Infection and Human Disease: A Metal Tug of War at the Host—Microbe Interface. Front Cell Dev Biol 2022; 10:857237. [PMID: 35399529 PMCID: PMC8986978 DOI: 10.3389/fcell.2022.857237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Iron deficiency anemia can be treated with oral or intravenous Fe supplementation. Such supplementation has considerable effects on the human microbiome, and on opportunistic pathogenic micro-organisms. Molecular understanding of the control and regulation of Fe availability at the host-microbe interface is crucial to interpreting the side effects of Fe supplementation. Here, we provide a concise overview of the regulation of Fe by the opportunistic pathogen Staphylococcus aureus. Ferric uptake regulator (Fur) plays a central role in controlling Fe uptake, utilization and storage in order to maintain a required value. The micro-organism has a strong preference for heme iron as an Fe source, which is enabled by the Iron-regulated surface determinant (Isd) system. The strategies it employs to overcome Fe restriction imposed by the host include: hijacking host proteins, replacing metal cofactors, and replacing functions by non-metal dependent enzymes. We propose that integrated omics approaches, which include metalloproteomics, are necessary to provide a comprehensive understanding of the metal tug of war at the host-microbe interface down to the molecular level.
Collapse
Affiliation(s)
- Madeleine C. van Dijk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands
- *Correspondence: Robin M. de Kruijff, ; Peter-Leon Hagedoorn,
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
- *Correspondence: Robin M. de Kruijff, ; Peter-Leon Hagedoorn,
| |
Collapse
|
5
|
Abstract
Metalloproteins play diverse and critical functions in all living systems, and their dysfunctional forms are closely related to many human diseases. The development of methods that enable comprehensive mapping of metalloproteome is of great interest to help elucidate crucial roles of metalloproteins in both physiology and pathology, as well as to discover new metalloproteins. We herein briefly review recent progress in the field of metalloproteomics and provide future outlooks.
Collapse
Affiliation(s)
- Xin Zeng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yao Cheng
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Budhraja R, Karande S, Ding C, Ullrich MK, Wagner S, Reemtsma T, Adrian L. Characterization of membrane-bound metalloproteins in the anaerobic ammonium-oxidizing bacterium "Candidatus Kuenenia stuttgartiensis" strain CSTR1. Talanta 2020; 223:121711. [PMID: 33298257 DOI: 10.1016/j.talanta.2020.121711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023]
Abstract
Membrane-bound metalloproteins are the basis of biological energy conservation via respiratory processes, however, their biochemical characterization is difficult. Here, we followed a gel-based proteomics and metallomics approach to identify membrane-associated metalloproteins in the anaerobic ammonium-oxidizing "Candidatus Kuenenia stuttgartiensis" strain CSTR1. Membrane-associated protein complexes were separated by two dimensional Blue Native/SDS gel electrophoresis and subunits were identified by mass spectrometry; protein-bound metal ions were quantified from the gel by connecting either a desolvating nebulizer system or laser ablation to inductively coupled plasma triple quadrupole mass spectrometry (ICP-QqQ-MS). We identified most protein complexes predicted to be involved in anaerobic ammonium oxidation and carbon fixation. The ICP-QqQ-MS data showed the presence of Fe and Zn in a wide range of high molecular weight protein complexes (230-800 kDa). Mo was prominently found in gel slices with proteins of a size of 500-650 kDa, whereas Ni was only found using the desolvating nebulizer system in the protein range of 350-500 kDa. The detected protein complexes and their metal content were consistent with genome annotations. Gel-based metalloproteomics is a sensitive and reliable approach for the characterization of metalloproteins and could be used to characterize many multimeric metalloprotein complexes in biological systems.
Collapse
Affiliation(s)
- Rohit Budhraja
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Shubhangi Karande
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany
| | - Chang Ding
- Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Leipzig, Germany
| | - Maria K Ullrich
- Helmholtz Centre for Environmental Research - UFZ, Analytical Chemistry, Leipzig, Germany
| | - Stephan Wagner
- Helmholtz Centre for Environmental Research - UFZ, Analytical Chemistry, Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Analytical Chemistry, Leipzig, Germany
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
Investigation of an optimal cell lysis method for the study of the zinc metalloproteome of Histoplasma capsulatum. Anal Bioanal Chem 2017; 409:6163-6172. [PMID: 28801743 DOI: 10.1007/s00216-017-0556-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
This work sought to assess optimal extraction conditions in the study of the metalloproteome of the dimorphic fungus Histoplasma capsulatum. One of the body's responses to H. capsulatum infection is sequestration of zinc within host macrophage (MØ), as reported by Vignesh et al. (Immunity 39:697-710, 2013) and Vignesh et al. (PLOS Pathog 9:E1003815, 2013). Thus, metalloproteins containing zinc were of greatest interest as it plays a critical role in survival of the fungus. One challenge in metalloproteomics is the preservation of the native structure of proteins to retain non-covalently bound metals. Many of the conventional cell lysis, separation, and identification techniques in proteomics are carried out under conditions that could lead to protein denaturation. Various cell lysis techniques were investigated in an effort to both maintain the metalloproteins during lysis and subsequent analysis while, at the same time, serving to be strong enough to break the cell wall, allowing access to cytosolic metalloproteins. The addition of 1% Triton x-100, a non-ionic detergent, to the lysis buffer was also studied. Seven lysis methods were considered and these included: Glass Homogenizer (H), Bead Beater (BB), Sonication Probe (SP), Vortex with 1% Triton x-100 (V, T), Vortex with no Triton x-100 (V, NT), Sonication Bath, Vortex, and 1% Triton x-100 (SB, V, T) and Sonication Bath, Vortex, and no Triton x-100 (SB, V, NT). A Qubit® Assay was used to compare total protein concentration and inductively coupled plasma-mass spectrometry (ICP-MS) was utilized for total metal analysis of cell lysates. Size exclusion chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS) was used for separation of the metalloproteins in the cell lysate and the concentration of Zn over a wide molecular weight range was examined. Additional factors such as potential contamination sources were also considered. A cell lysis method involving vortexing H. capsulatum yeast cells with 500 μm glass beads in a 1% Triton x-100 lysis buffer (V, T) was found to be most advantageous to extract intact zinc metalloproteins as demonstrated by the highest Zn to protein ratio, 1.030 ng Zn/μg protein, and Zn distribution among high, mid, and low molecular weights suggesting the least amount of protein denaturation. Graphical abstract In this work, several cell lysis techniques and two lysis buffers were investigated to evaluate the preservation of the zinc metalloproteome of H. capsulatum while maintaining compatibility with the analytical techniques employed.
Collapse
|
8
|
Barwinska-Sendra A, Waldron KJ. The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Adv Microb Physiol 2017; 70:315-379. [PMID: 28528650 DOI: 10.1016/bs.ampbs.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The metals manganese, iron, cobalt, nickel, copper and zinc are essential for almost all bacteria, but their precise metal requirements vary by species, by ecological niche and by growth condition. Bacteria thus must acquire each of these essential elements in sufficient quantity to satisfy their cellular demand, but in excess these same elements are toxic. Metal toxicity has been exploited by humanity for centuries, and by the mammalian immune system for far longer, yet the mechanisms by which these elements cause toxicity to bacteria are not fully understood. There has been a resurgence of interest in metal toxicity in recent decades due to the problematic spread of antibiotic resistance amongst bacterial pathogens, which has led to an increased research effort to understand these toxicity mechanisms at the molecular level. A recurring theme from these studies is the role of intermetal competition in bacterial metal toxicity. In this review, we first survey biological metal usage and introduce some fundamental chemical concepts that are important for understanding bacterial metal usage and toxicity. Then we introduce a simple model by which to understand bacterial metal homeostasis in terms of the distribution of each essential metal ion within cellular 'pools', and dissect how these pools interact with each other and with key proteins of bacterial metal homeostasis. Finally, using a number of key examples from the recent literature, we look at specific metal toxicity mechanisms in model bacteria, demonstrating the role of metal-metal competition in the toxicity mechanisms of diverse essential metals.
Collapse
Affiliation(s)
- Anna Barwinska-Sendra
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Waldron
- Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
9
|
Stolle P, Hou B, Brüser T. The Tat Substrate CueO Is Transported in an Incomplete Folding State. J Biol Chem 2016; 291:13520-8. [PMID: 27129241 DOI: 10.1074/jbc.m116.729103] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, cytoplasmic copper ions are toxic to cells even at the lowest concentrations. As a defense strategy, the cuprous oxidase CueO is secreted into the periplasm to oxidize the more membrane-permeable and toxic Cu(I) before it can enter the cytoplasm. CueO itself is a multicopper oxidase that requires copper for activity. Because it is transported by the twin-arginine translocation (Tat) pathway, which transports folded proteins, a requirement for cofactor assembly before translocation has been discussed. Here we show that CueO is transported as an apo-protein. Periplasmic CueO was readily activated by the addition of copper ions in vitro or under copper stress conditions in vivo Cytoplasmic CueO did not contain copper, even under copper stress conditions. In vitro Tat transport proved that the cofactor assembly was not required for functional Tat transport of CueO. Due to the post-translocational activation of CueO, this enzyme contributes to copper resistance not only by its cuprous oxidase activity but also by chelation of copper ions before they can enter the cytoplasm. Apo-CueO was indistinguishable from holo-CueO in terms of secondary structural elements. Importantly, the binding of copper to apo-CueO greatly stabilized the protein, indicating a transformation from an open or flexible domain arrangement with accessible copper sites to a closed structure with deeply buried copper ions. CueO is thus the first example for a natural Tat substrate of such incomplete folding state. The Tat system may need to transport flexibly folded proteins in any case when cofactor assembly or quaternary structure formation occurs after transport.
Collapse
Affiliation(s)
- Patrick Stolle
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Bo Hou
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
10
|
Hagedoorn PL. Microbial Metalloproteomics. Proteomes 2015; 3:424-439. [PMID: 28248278 PMCID: PMC5217388 DOI: 10.3390/proteomes3040424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer a comprehensive overview of the research involving approaches that can be categorized as inductively coupled plasma (ICP)-MS based methods, X-ray absorption/fluorescence, radionuclide based methods and bioinformatics. Important discoveries in microbial proteomics will be reviewed, as well as the outlook to new emerging approaches and research areas.
Collapse
Affiliation(s)
- Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, Delft 2628 BC, The Netherlands.
| |
Collapse
|
11
|
Fang C, Zhang L, Zhang X, Lu H. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations. Analyst 2015; 140:4197-205. [PMID: 25913209 DOI: 10.1039/c5an00599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.
Collapse
Affiliation(s)
- Caiyun Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | | | |
Collapse
|
12
|
Hagège A, Huynh TNS, Hébrant M. Separative techniques for metalloproteomics require balance between separation and perturbation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Fu D, Finney L. Metalloproteomics: challenges and prospective for clinical research applications. Expert Rev Proteomics 2014; 11:13-9. [PMID: 24433146 DOI: 10.1586/14789450.2014.876365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metals are essential cofactors, utilized in many critical cellular processes. For example, zinc is important in insulin biosynthesis and may play a role in Alzheimer's disease, but much of how the zinc-mediated process remains unknown. Knowing which metal is in which protein at a given point in time would lead to new insights into how metals work in biological systems. New tools are being developed to investigate the biochemistry and cell biology of metals, with potential for biomedical applications. In this report, we consider the promise and limitations of metalloproteins detection techniques. We provide a brief overview of the techniques available and a discussion of the technical challenges to biomedical applications, with particular focus on what must be overcome for the potential of these approaches to be achieved.
Collapse
Affiliation(s)
- Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, 202 Physiology Building, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
14
|
Sevcenco AM, Hagen WR, Hagedoorn PL. Microbial Metalloproteomes Explored Using MIRAGE. Chem Biodivers 2012; 9:1967-80. [DOI: 10.1002/cbdv.201100412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Protein fractionation and detection for metalloproteomics: challenges and approaches. Anal Bioanal Chem 2012; 402:3311-22. [DOI: 10.1007/s00216-012-5743-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/12/2012] [Indexed: 12/17/2022]
|
16
|
Raimunda D, Khare T, Giometti C, Vogt S, Argüello JM, Finney L. Identifying metalloproteins through X-ray fluorescence mapping and mass spectrometry. Metallomics 2012; 4:921-7. [DOI: 10.1039/c2mt20095c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Abstract
Although successful iron acquisition by pathogens within a host is a prerequisite for the establishment of infection, surprisingly little is known about the intracellular distribution of iron within bacterial pathogens. We have used a combination of anaerobic native liquid chromatography, inductively coupled plasma mass spectrometry, principal-component analysis, and peptide mass fingerprinting to investigate the cytosolic iron distribution in the pathogen Bacillus anthracis. Our studies identified three of the major iron pools as being associated with the electron transfer protein ferredoxin, the miniferritin Dps2, and the superoxide dismutase (SOD) enzymes SodA1 and SodA2. Although both SOD isozymes were predicted to utilize manganese cofactors, quantification of the metal ions associated with SodA1 and SodA2 in cell extracts established that SodA1 is associated with both manganese and iron, whereas SodA2 is bound exclusively to iron in vivo. These data were confirmed by in vitro assays using recombinant protein preparations, showing that SodA2 is active with an iron cofactor, while SodA1 is cambialistic, i.e., active with manganese or iron. Furthermore, we observe that B. anthracis cells exposed to superoxide stress increase their total iron content more than 2-fold over 60 min, while the manganese and zinc contents are unaffected. Notably, the acquired iron is not localized to the three identified cytosolic iron pools.
Collapse
|
18
|
Schmidt AC, Störr B, Kummer NA. Influence of one- and two-dimensional gel electrophoresis procedure on metal–protein bindings examined by electrospray ionization mass spectrometry, inductively coupled plasma mass spectrometry, and ultrafiltration. Talanta 2011; 85:1118-28. [DOI: 10.1016/j.talanta.2011.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/06/2011] [Accepted: 05/17/2011] [Indexed: 11/16/2022]
|
19
|
Sun X, Xiao CL, Ge R, Yin X, Li H, Li N, Yang X, Zhu Y, He X, He QY. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry. Proteomics 2011; 11:3288-98. [PMID: 21751346 DOI: 10.1002/pmic.201000396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 05/04/2011] [Accepted: 05/11/2011] [Indexed: 11/09/2022]
Abstract
The aim of metalloproteomics is to identify and characterize putative metal-binding proteins and metal-binding motifs. In this study, we performed a systematical metalloproteomic analysis on Streptococcus pneumoniae through the combined use of efficient immobilized metal affinity chromatography enrichment and high-accuracy linear ion trap-Orbitrap MS to identify metal-binding proteins and metal-binding peptides. In total, 232 and 166 putative metal-binding proteins were respectively isolated by Cu- and Zn-immobilized metal affinity chromatography columns, in which 133 proteins were present in both preparations. The putative metalloproteins are mainly involved in protein, nucleotide and carbon metabolisms, oxidation and cell cycle regulation. Based on the sequence of the putative Cu- and Zn-binding peptides, putative Cu-binding motifs were identified: H(X)mH (m=0-11), C(X)(2) C, C(X)nH (n=2-4, 6, 9), H(X)iM (i=0-10) and M(X)tM (t=8 or 12), while putative Zn-binding motifs were identified as follows: H(X)mH (m=1-12), H(X)iM (i=0-12), M(X)tM (t=0, 3 and 4), C(X)nH (n=1, 2, 7, 10 and 11). Equilibrium dialysis and inductively coupled plasma-MS experiments confirmed that the artificially synthesized peptides harboring differential identified metal-binding motifs interacted directly with the metal ions. The metalloproteomic study presented here suggests that the comparably large size and diverse functions of the S. pneumoniae metalloproteome may play important roles in various biological processes and thus contribute to the bacterial pathologies.
Collapse
Affiliation(s)
- Xuesong Sun
- Institute of Life and Health Engineering/National Engineering and Research Center of Genetic Medicine, Jinan University, Guangzhou, P R China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hiseni A, Arends IWCE, Otten LG. Biochemical characterization of the carotenoid 1,2-hydratases (CrtC) from Rubrivivax gelatinosus and Thiocapsa roseopersicina. Appl Microbiol Biotechnol 2011; 91:1029-36. [PMID: 21590288 PMCID: PMC3145076 DOI: 10.1007/s00253-011-3324-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/03/2011] [Accepted: 04/09/2011] [Indexed: 11/28/2022]
Abstract
Two carotenoid 1,2-hydratase (CrtC) genes from the photosynthetic bacteria Rubrivivax gelatinosus and Thiocapsa roseopersicina were cloned and expressed in Escherichia coli in an active form and purified by affinity chromatography. The biochemical properties of the recombinant enzymes and their substrate specificities were studied. The purified CrtCs catalyze cofactor independently the conversion of lycopene to 1-HO- and 1,1′-(HO)2-lycopene. The optimal pH and temperature for hydratase activity was 8.0 and 30°C, respectively. The apparent Km and Vmax values obtained for the hydration of lycopene were 24 μM and 0.31 nmol h−1 mg−1 for RgCrtC and 9.5 μM and 0.15 nmol h−1 mg−1 for TrCrtC, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed two protein bands of 44 and 38 kDa for TrCrtC, which indicate protein processing. Both hydratases are also able to convert the unnatural substrate geranylgeraniol (C20 substrate), which functionally resembles the natural substrate lycopene.
Collapse
Affiliation(s)
- Aida Hiseni
- Biocatalysis and Organic Chemistry, Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | | |
Collapse
|
21
|
Lancaster WA, Praissman JL, Poole FL, Cvetkovic A, Menon AL, Scott JW, Jenney FE, Thorgersen MP, Kalisiak E, Apon JV, Trauger SA, Siuzdak G, Tainer JA, Adams MWW. A computational framework for proteome-wide pursuit and prediction of metalloproteins using ICP-MS and MS/MS data. BMC Bioinformatics 2011; 12:64. [PMID: 21356119 PMCID: PMC3058030 DOI: 10.1186/1471-2105-12-64] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 02/28/2011] [Indexed: 12/02/2022] Open
Abstract
Background Metal-containing proteins comprise a diverse and sizable category within the proteomes of organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid sequence is not currently possible. We recently developed a generally-applicable experimental technique for finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these limitations and complement the metal-directed protein purification, we developed a computational infrastructure and statistical methodology to aid in the pursuit and identification of novel metalloproteins. Results We demonstrate that our methodology enables predictions of metal-protein interactions using an experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10 metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum, nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5 undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based purification or recombinant approaches to validate these predictions. Conclusions We conclude that the largely uncharacterized extent of native metalloproteomes can be revealed through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for bioremediation, medicine and other fields.
Collapse
Affiliation(s)
- W Andrew Lancaster
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Högbom M. Metal use in ribonucleotide reductase R2, di-iron, di-manganese and heterodinuclear—an intricate bioinorganic workaround to use different metals for the same reaction. Metallomics 2011; 3:110-20. [DOI: 10.1039/c0mt00095g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Dresler J, Klimentova J, Stulik J. Bacterial protein complexes investigation using blue native PAGE. Microbiol Res 2011; 166:47-62. [DOI: 10.1016/j.micres.2010.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/05/2010] [Accepted: 01/14/2010] [Indexed: 01/01/2023]
|
24
|
Sevcenco AM, Pinkse MWH, Wolterbeek HT, Verhaert PDEM, Hagen WR, Hagedoorn PL. Exploring the microbial metalloproteome using MIRAGE. Metallomics 2011; 3:1324-30. [DOI: 10.1039/c1mt00154j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 2010; 67:2563-89. [PMID: 20333435 PMCID: PMC11115773 DOI: 10.1007/s00018-010-0330-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/27/2010] [Accepted: 02/22/2010] [Indexed: 01/01/2023]
Abstract
Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.
Collapse
Affiliation(s)
- Lucia Banci
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Ivano Bertini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Francesca Cantini
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| | - Simone Ciofi-Baffoni
- Department of Chemistry, Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence Italy
| |
Collapse
|
26
|
Döker S, Mounicou S, Doğan M, Lobinski R. Probing the metal-homeostatis effects of the administration of chromium(vi) to mice by ICP MS and size-exclusion chromatography-ICP MS. Metallomics 2010; 2:549-55. [PMID: 21072339 DOI: 10.1039/c004508j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Concentrations of chromium, copper, iron, manganese and zinc were determined in liver, kidney, brain, lung, heart and testis of mouse following intraperitoneal injection of hexavalent chromium [Cr(vi)] at a single dose of 8.0 mg Cr/kg. As result, chromium concentrations increased ca. 40-fold in liver and kidney and by a factor of 3-5 in all the other tissues. The homeostasis of Cu, Fe, Mn and Zn was also affected. The element molecular weight distribution was evaluated in the cytosols of the different mouse organs by size-exclusion chromatography (Superdex-75) with UV-VIS and ICP-MS detection. The administration of Cr(vi) resulted in differences in the elution profiles of Fe, Mn, Cu and Zn-protein complexes. Bioinduced Mn, Fe and Zn-binding proteins could be detected in some tissues, especially in liver and kidney. Different molecular weight fractions containing chromium were heartcut and submitted to tryptic digestion prior to MALDI MS analysis. Cr-peptide complexes could be obtained both in non-denaturing and in denaturing (in the presence of urea and DTT) conditions. They were isolated by size-exclusion chromatography with a smaller separation range (Superdex Peptide) but could not be identified by MALDI MS.
Collapse
Affiliation(s)
- Serhat Döker
- Hacettepe University, Chemistry Department, Analytical Chemistry Division, Beytepe, Ankara, Turkey.
| | | | | | | |
Collapse
|
27
|
Molybdenum incorporation in tungsten aldehyde oxidoreductase enzymes from Pyrococcus furiosus. J Bacteriol 2010; 192:4143-52. [PMID: 20562313 DOI: 10.1128/jb.00270-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The hyperthermophilic archaeon Pyrococcus furiosus expresses five aldehyde oxidoreductase (AOR) enzymes, all containing a tungsto-bispterin cofactor. The growth of this organism is fully dependent on the presence of tungsten in the growth medium. Previous studies have suggested that molybdenum is not incorporated in the active site of these enzymes. Application of the radioisotope (99)Mo in metal isotope native radioautography in gel electrophoresis (MIRAGE) technology to P. furiosus shows that molybdenum can in fact be incorporated in all five AOR enzymes. Mo(V) signals characteristic for molybdopterin were observed in formaldehyde oxidoreductase (FOR) in electron paramagnetic resonance (EPR)-monitored redox titrations. Our finding that the aldehyde oxidation activity of FOR and WOR5 (W-containing oxidoreductase 5) correlates only with the residual tungsten content suggests that the Mo-containing AORs are most likely inactive. An observed W/Mo antagonism is indicative of tungstate-dependent negative feedback of the expression of the tungstate/molybdate ABC transporter. An intracellular selection mechanism for tungstate and molybdate processing has to be present, since tungsten was found to be preferentially incorporated into the AORs even under conditions with comparable intracellular concentrations of tungstate and molybdate. Under the employed growth conditions of starch as the main carbon source in a rich medium, no tungsten- and/or molybdenum-associated proteins are detected in P. furiosus other than the high-affinity transporter, the proteins of the metallopterin insertion machinery, and the five W-AORs.
Collapse
|
28
|
Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond. J Bacteriol 2009; 191:5010-2. [PMID: 19465645 DOI: 10.1128/jb.00306-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2.1.53) from Elizabethkingia meningoseptica.
Collapse
|
29
|
Sevcenco AM, Pinkse MWH, Bol E, Krijger GC, Wolterbeek HT, Verhaert PDEM, Hagedoorn PL, Hagen WR. The tungsten metallome of Pyrococcus furiosus. Metallomics 2009; 1:395-402. [DOI: 10.1039/b908175e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|