1
|
Stoltzfus AT, Michel SLJ. Cysteine-rich zinc finger proteins and the nuclear factor kappa-B pathway. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1503390. [PMID: 40405983 PMCID: PMC12097756 DOI: 10.3389/fchbi.2024.1503390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Inflammation-related disorders, such as autoimmune diseases and cancer, impose a significant global health burden. Zinc finger proteins (ZFs) are ubiquitous metalloproteins which regulate inflammation and many biological signaling pathways related to growth, development, and immune function. Numerous ZFs are involved in the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway, associating them with inflammation-related diseases that feature chronically elevated pro-inflammatory cytokines. This review highlights the predominance of ZFs in NFκB-related signaling and summarizes the breadth of functions that these proteins perform. The cysteine-specific post-translational modification (PTM) of persulfidation is also discussed in the context of these cysteine-rich ZFs, including what is known from the few available reports on the functional implications of ZF persulfidation. Persulfidation, mediated by endogenously produced hydrogen sulfide (H2S), has a recently established role in signaling inflammation. This work will summarize the known connections between ZFs and persulfidation and has the potential to inform on the development of related therapies.
Collapse
Affiliation(s)
- Andrew T. Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| |
Collapse
|
2
|
Hwang Y, Mohammad Mydul Islam AK, Park S, Kang HG, Lee C, Lim MH, Lee SJ. Decoding the Parkinson's Symphony: PARIS, Maestro of Transcriptional Regulation and Metal Coordination for Dopamine Release. ACS Chem Neurosci 2024; 15:447-455. [PMID: 38241020 DOI: 10.1021/acschemneuro.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Parkin interacting substrate (PARIS) is a pivotal transcriptional regulator in the brain that orchestrates the activity of various enzymes through its intricate interactions with biomolecules, including nucleic acids. Notably, the binding of PARIS to insulin response sequences (IRSs) triggers a cascade of events that results in the functional loss in the substantia nigra, which impairs dopamine release and, subsequently, exacerbates the relentless neurodegeneration. Here, we report the details of the interactions of PARIS with IRSs via classical zinc finger (ZF) domains in PARIS, namely, PARIS(ZF2-4). Our biophysical studies with purified PARIS(ZF2-4) elucidated the binding partner of PARIS, which generates specific interactions with the IRS1 (5'-TATTTTT, Kd = 38.9 ± 2.4 nM) that is positioned in the promoter region of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). Mutational and metal-substitution studies demonstrated that Zn(II)-PARIS(ZF2-4) could recognize its binding partner selectively. Overall, our work provides submolecular details regarding PARIS and shows that it is a transcriptional factor that regulates dopamine release. Thus, PARIS could be a crucial target for therapeutic applications.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | | | - Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyun Goo Kang
- Department of Neurology and Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Chaemin Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Institute of Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Stoltzfus AT, Campbell CJ, Worth MM, Hom K, Stemmler TL, Michel SLJ. Pb(II) coordination to the nonclassical zinc finger tristetraprolin: retained function with an altered fold. J Biol Inorg Chem 2023; 28:85-100. [PMID: 36478265 DOI: 10.1007/s00775-022-01980-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical CCCH zinc finger (ZF) that plays a crucial role in regulating inflammation. TTP regulates cytokine mRNAs by specific binding of its two conserved ZF domains (CysX8CysX5CysX3His) to adenylate-uridylate-rich sequences (AREs) at the 3'-untranslated region, leading to degradation of the RNA. Dysregulation of TTP in animal models has demonstrated several cytokine-related syndromes, including chronic inflammation and autoimmune disorders. Exposure to Pb(II), a prevalent environmental toxin, is known to contribute to similar pathologies, in part by disruption of and/or competition with cysteine-rich metalloproteins. TTP's role during stress as a ubiquitous translational regulator of cell signaling (and dysfunction), which may underpin various phenotypes of Pb(II) toxicity, highlights the importance of understanding the interaction between TTP and Pb(II). The impact of Pb(II) binding on TTP's fold and RNA-binding function was analyzed via UV-Vis spectroscopy, circular dichroism, X-ray absorption spectroscopy, nuclear magnetic resonance spectroscopy, and fluorescence anisotropy. A construct containing the two ZF domains of TTP (TTP-2D) bound to Pb(II) with nanomolar affinity and exhibited a different geometry and fold in comparison to Zn2-TTP-2D. Despite the altered secondary structure, Pb(II)-substituted TTP-2D bound a canonical ARE sequence more selectively than Zn2-TTP-2D. Taken together, these data suggest that Pb(II) may interfere with proper TTP regulation and hinder the cell's ability to respond to inflammation.
Collapse
Affiliation(s)
- Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Courtney J Campbell
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Madison M Worth
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Yoon C, Lee SJ. Selective coordination of cobalt ions by zinc fingers in
Escherichia coli
. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry and Institute for Molecular Biology and Genetics Jeonbuk National University Jeonju Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics Jeonbuk National University Jeonju Republic of Korea
| |
Collapse
|
5
|
Li X, Chen T, Jiang H, Huang J, Huang M, Xu R, Xie Q, Zhu H, Su S. Effects of methyl farnesoate on Krüppel homolog 1 (Kr-h1) during vitellogenesis in the Chinese mitten crab (Eriocheir sinensis). Anim Reprod Sci 2020; 224:106653. [PMID: 33249353 DOI: 10.1016/j.anireprosci.2020.106653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Methyl farnesoate (MF), a de-epoxidized form of juvenile hormone (JH) Ⅲ in insects, may regulate developmental processes such as reproduction and ovarian maturation in crustaceans. Krüppel homolog 1 (Kr-h1) is a target response gene for the methoprene-tolerant (Met) protein that is a component of the JH signaling pathway in insects. In the present study, Es-Kr-h1 was cloned from E. sinensis and characterized to ascertain whether JH/MF signaling in insects is conserved in crustaceans. The findings with molecular structure analysis indicated Es-Kr-h1 contains seven zinc finger motifs (Zn2-Zn8) commonly conserved in other crustaceans, but the Zn1 motif was not detected to be present. The PCR results indicated that relative abundance of Es-Kr-h1 mRNA transcript in the hepatopancreas was greatest in the Stage Ⅱ, followed by the Stage Ⅳ ovarian developmental categories. The relative abundance of Es-Kr-h1 mRNA transcript in vitro was greater after MF addition to the hepatopancreas, however, not the ovarian tissues. The results from in vivo and eyestalk ablation experiments indicated the relative abundance of Es-Kr-h1 mRNA transcript was greater after MF treatment and bilateral eyestalk removal in the hepatopancreas, however, not ovarian tissues. Notably, there were effects of MF on relative abundance of Es-Kr-h1 mRNA transcript pattern. The Es-Kr-h1 protein, therefore, may be involved in MF-mediated vitellogenesis resulting from the response to Es-Met in E. sinensis, and the JH/MF signaling pathway is potentially conserved in crustaceans.
Collapse
Affiliation(s)
- Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Tiantian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, China
| | - Jiawei Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruihan Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qiming Xie
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Haojie Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Yoon C, Lee D, Lee SJ. Regulation of the Central Dogma through Bioinorganic Events with Metal Coordination for Specific Interactions. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chungwoon Yoon
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Dong‐Heon Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Seung Jae Lee
- Department of Chemistry Institute for Molecular Biology and Genetics, Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
7
|
Abstract
Zinc ion binding is a principal event in the achievement of the correct fold in classical zinc finger domains since the motif is largely unfolded in the absence of metal. In the case of a prokaryotic zinc finger, the larger βββαα domain contributes to the folding mechanism with a larger hydrophobic core. For these reasons, following the great amount of attention devoted to unveiling the effect of xenobiotic metal ion replacement in zinc fingers and in zinc-containing proteins in general, the prokaryotic zinc finger domain appears to be an interesting model for studying metal ion interaction with metalloproteins. Here, we explore the binding of Ni(II), Hg(II), and Pb(II) to Ros87, the DNA binding domain of the prokaryotic zinc finger protein Ros. We measured Ros87-metal ion dissociation constants and monitored the effects on the structure and function of the domain. Interestingly, we found that the protein folds in the presence of Ni(II) with important structural perturbations, while in the presence of Pb(II) and Hg(II) it does not appear to be significantly folded. Accordingly, an overall strong reduction in the DNA binding capability is observed for all of the examined proteins. Our data integrate and complement the information collected in the past few years concerning the functional and structural effects of metal ion substitution in classical zinc fingers in order to contribute to a better comprehension of the toxicity of these metals in biological systems.
Collapse
|
8
|
Shimberg GD, Ok K, Neu HM, Splan KE, Michel SLJ. Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP). Inorg Chem 2017; 56:6838-6848. [PMID: 28557421 DOI: 10.1021/acs.inorgchem.7b00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Collapse
Affiliation(s)
- Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kathryn E Splan
- Department of Chemistry, Macalester College , 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
9
|
Metal binding mediated conformational change of XPA protein:a potential cytotoxic mechanism of nickel in the nucleotide excision repair. J Mol Model 2016; 22:156. [PMID: 27307058 DOI: 10.1007/s00894-016-3017-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn(2+)-chelated Zn-finger domain of XPA center core portion (i.e., XPA98-210) is the foundation of its biological functionality, while the displacement of the Zn(2+) by toxic metal ions (such as Ni(2+), a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98-210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98-210 Zn-finger after the substitution of Zn(2+) by Ni(2+). The results showed that Ni(2+) dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98-210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98-210's Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported structural biology information. Thus, we derived a putative cytotoxic mechanism associated with the nickel ion, where the Ni(2+) disrupts the conformation of the XPA Zn-finger, directly weakening its interaction with RPA70N, and thus lowering the effectiveness of the NER process. In sum, this work not only provides a theoretical insight into the multi-protein interactions involved in the NER process and potential cytotoxic mechanism associated with Ni(2+) binding in XPA, but may also facilitate rational anti-cancer drug design based on the NER mechanism.
Collapse
|
10
|
Malgieri G, Palmieri M, Russo L, Fattorusso R, Pedone PV, Isernia C. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. FEBS J 2015; 282:4480-96. [PMID: 26365095 DOI: 10.1111/febs.13503] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/23/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Classical zinc finger (ZF) domains were thought to be confined to the eukaryotic kingdom until the transcriptional regulator Ros protein was identified in Agrobacterium tumefaciens. The Ros Cys2 His2 ZF binds DNA in a peculiar mode and folds in a domain significantly larger than its eukaryotic counterpart consisting of 58 amino acids (the 9-66 region) arranged in a βββαα topology, and stabilized by a conserved, extensive, 15-residue hydrophobic core. The prokaryotic ZF domain, then, shows some intriguing new features that make it interestingly different from its eukaryotic counterpart. This review will focus on the prokaryotic ZFs, summarizing and discussing differences and analogies with the eukaryotic domains and providing important insights into their structure/function relationships.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Maddalena Palmieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Science and Technology, II University of Naples, Caserta, Italy.,Interuniversity Research Centre on Bioactive Peptides, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
11
|
Recognition Code of ZNF191(243-368) and Its Interaction with DNA. Bioinorg Chem Appl 2015; 2015:416751. [PMID: 26457075 PMCID: PMC4592708 DOI: 10.1155/2015/416751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/02/2015] [Indexed: 02/05/2023] Open
Abstract
ZNF191(243-368) is the C-terminal region of ZNF191 which contains a putative DNA-binding domain of four Cys2His2 zinc finger motifs. In this study, an expression vector of a fusion protein of ZNF191(243-368) with glutathione-S-transferase (GST) was constructed and transformed into Escherichia coli BL21. The fusion protein GST-ZNF191(243-368) was expressed using this vector to investigate the protein-DNA binding reaction through an affinity selection strategy on the basis of the binding quality of the zinc finger domain. Results showed that ZNF191(243-368) can selectively bind with sequences and react with genes which contain an AGGG core. However, the recognition mechanism of Cys2His2 zinc finger proteins to DNA warrants further investigation.
Collapse
|
12
|
Besold AN, Michel SLJ. Neural Zinc Finger Factor/Myelin Transcription Factor Proteins: Metal Binding, Fold, and Function. Biochemistry 2015; 54:4443-52. [DOI: 10.1021/bi501371a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Angelique N. Besold
- Department of Pharmaceutical
Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical
Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
13
|
Kobayashi T, Nishizawa NK. Intracellular iron sensing by the direct binding of iron to regulators. FRONTIERS IN PLANT SCIENCE 2015; 6:155. [PMID: 25815002 PMCID: PMC4356067 DOI: 10.3389/fpls.2015.00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/26/2015] [Indexed: 05/18/2023]
Affiliation(s)
- Takanori Kobayashi
- Japan Science and Technology Agency, PRESTOKawaguchi, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural UniversityNonoichi, Japan
| | - Naoko K. Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural UniversityNonoichi, Japan
- *Correspondence: Naoko K. Nishizawa,
| |
Collapse
|
14
|
Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA. Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. PLANT PHYSIOLOGY 2015; 167:273-86. [PMID: 25452667 PMCID: PMC4281009 DOI: 10.1104/pp.114.250837] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/27/2014] [Indexed: 05/18/2023]
Abstract
Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response.
Collapse
Affiliation(s)
- Devarshi Selote
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Rozalynne Samira
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Anna Matthiadis
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Jeffrey W Gillikin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Terri A Long
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
15
|
Lee SJ, Michel SLJ. Structural metal sites in nonclassical zinc finger proteins involved in transcriptional and translational regulation. Acc Chem Res 2014; 47:2643-50. [PMID: 25098749 DOI: 10.1021/ar500182d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc finger (ZF) proteins are a large family of metalloproteins that utilize zinc for structural purposes. Zinc coordinates to a combination of cysteine thiol and histidine imidazole residues within the ZF polypeptide sequence resulting in a folded and functional protein. Initially, a single class of ZFs were identified. These ZFs, now referred to as the "classical" ZFs, utilize a Cys2His2 (CCHH) ligand set to bind zinc. Upon Zn coordination, the classical ZFs fold into a structure made up of an α helix and an antiparallel β sheet. When folded, classical ZFs recognize and bind to specific DNA targets and function as transcription factors. With the advent of genome sequencing and proteomics, many additional classes of ZFs were identified based upon their primary amino acid sequences. At least 13 additional classes of ZFs are known, and collectively these "nonclassical" ZFs differ in the ligand set involved in Zn(II) coordination, the organization of the ligands within the polypeptide sequence and the macromolecular targets. Some nonclassical ZFs are DNA binding "transcription factors", while others are involved in RNA regulation and protein recognition. Much less is known about these nonclassical ZFs with regards to the roles of metal coordination in fold and function. This Account focuses on our laboratory's efforts to characterize two families of "nonclassical" ZFs: the Cys3His (or CCCH) ZF family and the Cys2His2Cys (or CCHHC) ZF family. Our work on the CCCH ZF family has focused on the protein Tristetraprolin (TTP), which is a key protein in regulating inflammation. TTP contains two CCCH domains that were proposed to be ZFs based upon their sequence. We have shown that while this protein can coordinate Zn(II) at the CCCH sites, it can also coordinate Fe(II) and Fe(III). Moreover, the zinc and iron bound forms of TTP are equally adept at discriminating between RNA targets, which we have demonstrated via a fluorescence anisotropy based approach. Thus, CCCH type ZFs appear to be promiscuous with respect to metal preference and a role for iron coordination in CCCH ZF function is proposed. The CCHHC family of ZFs is a small family of nonclassical ZFs that are essential for the development of the central nervous system. There are three ZFs in this family: neural zinc finger factor-1 (NZF-1), myelin transcription factor-1 (MyT1), and suppressor of tumorgenicity 18 (ST18). All three proteins contain multiple clusters of "CCHHC" domains, which are all predicted to be Zn binding domains. We have focused on a tandem-CCHHC domain construct of NZF-1, which recognizes β-RARE DNA, and we have identified key residues required for DNA recognition. Unlike classical ZFs, for which a few conserved residues are required for DNA recognition, the CCHHC class of ZFs utilize a few nonconserved residues to drive DNA recognition leading us to propose a new paradigm for ZF/DNA binding.
Collapse
Affiliation(s)
- Seung Jae Lee
- Department
of Chemistry and Research Institute of Physics and Chemistry, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sarah L. J. Michel
- Department
of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
16
|
Malgieri G, Palmieri M, Esposito S, Maione V, Russo L, Baglivo I, de Paola I, Milardi D, Diana D, Zaccaro L, Pedone PV, Fattorusso R, Isernia C. Zinc to cadmium replacement in the prokaryotic zinc-finger domain. Metallomics 2014; 6:96-104. [PMID: 24287553 DOI: 10.1039/c3mt00208j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Given the similar chemical properties of zinc and cadmium, zinc finger domains have been often proposed as mediators of the toxic and carcinogenic effects exerted by this xenobiotic metal. The effects of zinc replacement by cadmium in different eukaryotic zinc fingers have been reported. In the present work, to evaluate the effects of such substitution in the prokaryotic zinc finger, we report a detailed study of its functional and structural consequences on the Ros DNA binding domain (Ros87). We show that this protein, which bears important structural differences with respect to the eukaryotic domains, appears to structurally tolerate the zinc to cadmium substitution and the presence of cadmium does not affect the DNA binding activity of the protein. Moreover, we show for the first time how zinc to cadmium replacement can also take place in a cellular context. Our findings both complement and extend previous results obtained for different eukaryotic zinc fingers, suggesting that metal substitution in zinc fingers may be of relevance to the toxicity and/or carcinogenicity mechanisms of this metal.
Collapse
Affiliation(s)
- Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Via Vivaldi 43, 81100 Caserta, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Besold AN, Amick DL, Michel SLJ. A role for hydrogen bonding in DNA recognition by the non-classical CCHHC type zinc finger, NZF-1. MOLECULAR BIOSYSTEMS 2014; 10:1753-6. [PMID: 24820620 DOI: 10.1039/c4mb00246f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The non-classical zinc finger protein, Neural Zinc Finger Factor-1, contains six Cys2His2Cys domains. All three cysteines and the second histidine directly bind Zn(II). Using a combination of mutagenesis, metal coordination and DNA binding studies, we report that the first histidine is involved in a functionally important hydrogen bonding interaction.
Collapse
Affiliation(s)
- Angelique N Besold
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
18
|
Gamsjaeger R, O'Connell MR, Cubeddu L, Shepherd NE, Lowry JA, Kwan AH, Vandevenne M, Swanton MK, Matthews JM, Mackay JP. A structural analysis of DNA binding by myelin transcription factor 1 double zinc fingers. J Biol Chem 2013; 288:35180-91. [PMID: 24097990 DOI: 10.1074/jbc.m113.482075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development.
Collapse
Affiliation(s)
- Roland Gamsjaeger
- From the School of Molecular Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Besold AN, Oluyadi AA, Michel SLJ. Switching metal ion coordination and DNA Recognition in a Tandem CCHHC-type zinc finger peptide. Inorg Chem 2013; 52:4721-8. [PMID: 23521535 PMCID: PMC3671583 DOI: 10.1021/ic4003516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neural Zinc Finger Factor-1 (NZF-1) and Myelin Transcription Factor 1 (MyT1) are two homologous nonclassical zinc finger (ZF) proteins that are involved in the development of the central nervous system (CNS). Both NZF-1 and MyT1 contain multiple ZF domains, each of which contains an absolutely conserved Cys2His2Cys motif. All three cysteines and the second histidine have been shown to coordinate Zn(II); however, the role of the first histidine remains unresolved. Using a functional form of NZF-1 that contains two ZF domains (NZF-1-F2F3), mutant proteins in which each histidine was sequentially mutated to a phenylalanine were prepared to determine the role(s) of the histidine residues in DNA recognition. When the first histidine is mutated, the protein binds Zn(II) in an analogous manner to the native protein. Surprisingly, this mutant does not bind to target DNA (β-RAR), suggesting that the noncoordinating histidine is critical for sequence selective DNA recognition. The first histidine will coordinate Zn(II) when the second histidine is mutated; however, the overall fold of the protein is perturbed leading to abrogation of DNA binding. NZF-1-F2F3 selectively binds to a specific DNA target sequence (from β-RAR) with high affinity (nM); while its homologue MyT1 (MyT1-F2F3), which is 92% identical to NZF-1-F2F3, binds to this same DNA sequence nonspecifically. A single, nonconserved amino acid residue in NZF-1-F2F3 is shown to be responsible for this high affinity DNA binding to β-RAR. When this residue (arginine) is engineered into the MyT1-F2F3 sequence, the affinity for β-RAR DNA increases.
Collapse
Affiliation(s)
- Angelique N. Besold
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Abdulafeez A. Oluyadi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
20
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
21
|
Michalek JL, Lee SJ, Michel SL. Cadmium coordination to the zinc binding domains of the non-classical zinc finger protein Tristetraprolin affects RNA binding selectivity. J Inorg Biochem 2012; 112:32-8. [DOI: 10.1016/j.jinorgbio.2012.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 12/22/2011] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
|
22
|
Michalek JL, Besold AN, Michel SLJ. Cysteine and histidine shuffling: mixing and matching cysteine and histidine residues in zinc finger proteins to afford different folds and function. Dalton Trans 2011; 40:12619-32. [PMID: 21952363 DOI: 10.1039/c1dt11071c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Zinc finger proteins utilize zinc for structural purposes: zinc binds to a combination of cysteine and histidine ligands in a tetrahedral coordination geometry facilitating protein folding and function. While much is known about the classical zinc finger proteins, which utilize a Cys(2)His(2) ligand set to coordinate zinc and fold into an anti-parallel beta sheet/alpha helical fold, there are thirteen other families of 'non-classical' zinc finger proteins for which relationships between metal coordination and protein structure/function are less defined. This 'Perspective' article focuses on two classes of these non-classical zinc finger proteins: Cys(3)His type zinc finger proteins and Cys(2)His(2)Cys type zinc finger proteins. These proteins bind zinc in a tetrahedral geometry, like the classical zinc finger proteins, yet they adopt completely different folds and target different oligonucleotides. Our current understanding of the relationships between ligand set, metal ion, fold and function for these non-classical zinc fingers is discussed.
Collapse
Affiliation(s)
- Jamie L Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, USA
| | | | | |
Collapse
|
23
|
Lee SJ, Michalek JL, Besold AN, Rokita SE, Michel SLJ. Classical Cys2His2 Zinc Finger Peptides Are Rapidly Oxidized by Either H2O2 or O2 Irrespective of Metal Coordination. Inorg Chem 2011; 50:5442-50. [DOI: 10.1021/ic102252a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Seung Jae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Jamie L. Michalek
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Angelique N. Besold
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| | - Steven E. Rokita
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-4454, United States
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
24
|
Lu J, Wang W, Tan G, Landry AP, Yi P, Si F, Ren Y, Ding H. Escherichia coli topoisomerase I is an iron and zinc binding protein. Biometals 2011; 24:729-36. [PMID: 21347852 DOI: 10.1007/s10534-011-9425-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/11/2011] [Indexed: 01/13/2023]
Abstract
Escherichia coli topoisomerase I (TopA) cleaves and rejoins one strand of double-stranded DNA to relax the negatively supercoiled DNA. Structurally, TopA contains an N-terminal catalytic fragment and a C-terminal zinc-binding region that is required for relaxation of the negatively supercoiled DNA. Here we report that E. coli TopA is an iron and zinc binding protein. The UV-Vis absorption measurements and metal content analyses reveal that TopA purified from E. coli cells grown in the rich LB medium contains both iron and zinc. However, TopA purified from E. coli cells grown in the M9 minimal medium has negligible amounts of zinc or iron and no topoisomerase activity. Nevertheless, supplement of exogenous zinc or iron in E. coli cells grown in the M9 minimal medium produces the zinc- or iron-bound TopA, respectively. Whereas the zinc-bound TopA is fully active to relax the negatively supercoiled DNA, the iron-bound TopA has little or no enzyme activity. Furthermore, excess iron in the M9 minimal medium is able to compete with the zinc binding in TopA in E. coli cells and attenuate the topoisomerase activity, suggesting that E. coli TopA may be modulated by iron and zinc binding in vivo.
Collapse
Affiliation(s)
- Jianxin Lu
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|