1
|
Tesoriero MA, Wheate NJ. What happened to BBR3464 and where to from here for multinuclear platinum-based anticancer drugs? Dalton Trans 2025; 54:2199-2208. [PMID: 39692098 DOI: 10.1039/d4dt02868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of the trinuclear platinum(II) complex BBR3464 (also known as triplatin) in the late 1990s was meant to be a revolution in the field of platinum chemotherapy. What made it remarkable was that it defied many of the known structure-activity rules for platinums; it is cationic, has a single labile trans leaving group on each terminal platinum, and it binds DNA in ways different to mononuclear platinum drugs, like cisplatin and oxaliplatin. The flexible, long-range adducts the drug forms with DNA means that it showed activity in cancers not typically sensitive to platinums, and more importantly, BBR3464 demonstrated an ability to overcome acquired resistance to platinum drugs. But while preclinical and phase I testing showed promise, its more severe side effects which greatly limited the deliverable dose when compared with standard platinums, combined with its lack of biostability, led to a lack of activity in phase II trials and its development was halted. But, from its ashes have risen 4th generation complexes which target the phosphate backbone of DNA. These, and the original BBR3464 drug, could potentially be further developed and gain regulatory approval through formulation with macrocycle-based drug delivery vehicles.
Collapse
Affiliation(s)
- Mia A Tesoriero
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia
| | - Nial J Wheate
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia.
| |
Collapse
|
2
|
He L, Fu Y, Tian Y, Wang X, Zhou X, Ding RB, Qi X, Bao J. Antidepressants as Autophagy Modulators for Cancer Therapy. Molecules 2023; 28:7594. [PMID: 38005316 PMCID: PMC10673223 DOI: 10.3390/molecules28227594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a major global public health problem with high morbidity. Depression is known to be a high-frequency complication of cancer diseases that decreases patients' life quality and increases the mortality rate. Therefore, antidepressants are often used as a complementary treatment during cancer therapy. During recent decades, various studies have shown that the combination of antidepressants and anticancer drugs increases treatment efficiency. In recent years, further emerging evidence has suggested that the modulation of autophagy serves as one of the primary anticancer mechanisms for antidepressants to suppress tumor growth. In this review, we introduce the anticancer potential of antidepressants, including tricyclic antidepressants (TCAs), tetracyclic antidepressants (TeCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). In particular, we focus on their autophagy-modulating mechanisms for regulating autophagosome formation and lysosomal degradation. We also discuss the prospect of repurposing antidepressants as anticancer agents. It is promising to repurpose antidepressants for cancer therapy in the future.
Collapse
Affiliation(s)
- Leping He
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Yuxi Tian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Xiaofeng Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; (X.W.); (X.Z.)
| | - Xuejun Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; (X.W.); (X.Z.)
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; (L.H.); (Y.F.); (Y.T.); (R.-B.D.); (X.Q.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| |
Collapse
|
3
|
Asensi-Cantó A, López-Abellán MD, Castillo-Guardiola V, Hurtado AM, Martínez-Penella M, Luengo-Gil G, Conesa-Zamora P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers (Basel) 2022; 14:cancers14133248. [PMID: 35805019 PMCID: PMC9265090 DOI: 10.3390/cancers14133248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tricyclic antidepressants (TCAs) are old and known therapeutic agents whose good safety profile makes them good candidates for drug repurposing. As the relevance of nerves in cancer development and progression is being unveiled, attention now turns to the use of nerve-targeting drugs, such as TCAs, as an interesting approach to combat cancer. In this review, we discuss current evidence about the safety of TCAs, their application to treat neuropathic pain in cancer patients, and in vitro and in vivo demonstrations of the antitumoral effects of TCAs. Finally, the results of ongoing clinical trials and future directions are discussed. Abstract Growing evidence shows that nerves play an active role in cancer development and progression by altering crucial molecular pathways and cell functions. Conversely, the use of neurotropic drugs, such as tricyclic antidepressants (TCAs), may modulate these molecular signals with a therapeutic purpose based on a direct antitumoral effect and beyond the TCA use to treat neuropathic pain in oncology patients. In this review, we discuss the TCAs’ safety and their central effects against neuropathic pain in cancer, and the antitumoral effects of TCAs in in vitro and preclinical studies, as well as in the clinical setting. The current evidence points out that TCAs are safe and beneficial to treat neuropathic pain associated with cancer and chemotherapy, and they block different molecular pathways used by cancer cells from different locations for tumor growth and promotion. Likewise, ongoing clinical trials evaluating the antineoplastic effects of TCAs are discussed. TCAs are very biologically active compounds, and their repurposing as antitumoral drugs is a promising and straightforward approach to treat specific cancer subtypes and to further define their molecular targets, as well as an interesting starting point to design analogues with increased antitumoral activity.
Collapse
Affiliation(s)
- Antonio Asensi-Cantó
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - María Dolores López-Abellán
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Verónica Castillo-Guardiola
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Ana María Hurtado
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Grupo de Investigación en Inmunobiología para la Acuicultura, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Mónica Martínez-Penella
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
| | - Ginés Luengo-Gil
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| | - Pablo Conesa-Zamora
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| |
Collapse
|
4
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
5
|
Köberle B, Schoch S. Platinum Complexes in Colorectal Cancer and Other Solid Tumors. Cancers (Basel) 2021; 13:cancers13092073. [PMID: 33922989 PMCID: PMC8123298 DOI: 10.3390/cancers13092073] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cisplatin is successfully used for the treatment of various solid cancers. Unfortunately, it shows no activity in colorectal cancer. The resistance phenotype of colorectal cancer cells is mainly caused by alterations in p53-controlled DNA damage signaling and/or defects in the cellular mismatch repair pathway. Improvement of platinum-based chemotherapy in cisplatin-unresponsive cancers, such as colorectal cancer, might be achieved by newly designed cisplatin analogues, which retain activity in unresponsive tumor cells. Moreover, a combination of cisplatin with biochemical modulators of DNA damage signaling might sensitize cisplatin-resistant tumor cells to the drug, thus providing another strategy to improve cancer therapy. Abstract Cisplatin is one of the most commonly used drugs for the treatment of various solid neoplasms, including testicular, lung, ovarian, head and neck, and bladder cancers. Unfortunately, the therapeutic efficacy of cisplatin against colorectal cancer is poor. Various mechanisms appear to contribute to cisplatin resistance in cancer cells, including reduced drug accumulation, enhanced drug detoxification, modulation of DNA repair mechanisms, and finally alterations in cisplatin DNA damage signaling preventing apoptosis in cancer cells. Regarding colorectal cancer, defects in mismatch repair and altered p53-mediated DNA damage signaling are the main factors controlling the resistance phenotype. In particular, p53 inactivation appears to be associated with chemoresistance and poor prognosis. To overcome resistance in cancers, several strategies can be envisaged. Improved cisplatin analogues, which retain activity in resistant cancer, might be applied. Targeting p53-mediated DNA damage signaling provides another therapeutic strategy to circumvent cisplatin resistance. This review provides an overview on the DNA repair pathways involved in the processing of cisplatin damage and will describe signal transduction from cisplatin DNA lesions, with special attention given to colorectal cancer cells. Furthermore, examples for improved platinum compounds and biochemical modulators of cisplatin DNA damage signaling will be presented in the context of colon cancer therapy.
Collapse
Affiliation(s)
- Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Sarah Schoch
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 223 81 Lund, Sweden
| |
Collapse
|
6
|
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol 2020; 68:209-229. [PMID: 32044472 DOI: 10.1016/j.semcancer.2020.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Targeted drugs and precision medicine have transformed the landscape of cancer therapy and significantly improved patient outcomes in many cases. However, as therapies are becoming more and more tailored to smaller patient populations and acquired resistance is limiting the duration of clinical responses, there is an ever increasing demand for new drugs, which is not easily met considering steadily rising drug attrition rates and development costs. Considering these challenges drug repurposing is an attractive complementary approach to traditional drug discovery that can satisfy some of these needs. This is facilitated by the fact that most targeted drugs, despite their implicit connotation, are not singularly specific, but rather display a wide spectrum of target selectivity. Importantly, some of the unintended drug "off-targets" are known anticancer targets in their own right. Others are becoming recognized as such in the process of elucidating off-target mechanisms that in fact are responsible for a drug's anticancer activity, thereby revealing potentially new cancer vulnerabilities. Harnessing such beneficial off-target effects can therefore lead to novel and promising precision medicine approaches. Here, we will discuss experimental and computational methods that are employed to specifically develop single target and network-based off-target repurposing strategies, for instance with drug combinations or polypharmacology drugs. By illustrating concrete examples that have led to clinical translation we will furthermore examine the various scientific and non-scientific factors that cumulatively determine the success of these efforts and thus can inform the future development of new and potentially lifesaving off-target based drug repurposing strategies for cancers that constitute important unmet medical needs.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Biber A, Durusu İZ, Özen C. In vitro anticancer effect of tricyclic antidepressant nortriptyline on multiple myeloma. Turk J Biol 2018; 42:414-421. [PMID: 30930625 PMCID: PMC6438120 DOI: 10.3906/biy-1802-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drug repurposing has been proved to be an effective strategy to meet the urgent need for novel anticancer agents for multiple myeloma (MM) treatment. In this work, we aimed to investigate the anticancer effect and mechanism of tricyclic antidepressant nortriptyline (NTP) on the U266 MM cell line. The in vitro inhibitory effect of NTP at various doses and time points was studied. The combination potential of cisplatin-NTP was also investigated. Cell cycle analysis and three flow cytometric apoptosis assays were performed. NTP showed dose- and time-dependent inhibitory effects on the U266 MM cell line. NTP had greater inhibitory effect than cisplatin (IC50 26 µM vs. 40 µM). The cisplatin-NTP combination is antagonistic. In addition to G2/M phase cell cycle arrest, NTP induced apoptosis as indicated by mitochondrial membrane potential and caspase-3 and annexin V assays. NTP has inhibitory and apoptotic effects on U266 MM cells. The cisplatin-NTP combination indicated strong antagonism, which may have significant clinical relevance since antidepressants are commonly employed in adjuvant therapy for cancer patients. Based on these findings, the therapeutic potential of NTP for MM treatment should be investigated with in-depth mechanistic studies and in vivo experiments.
Collapse
Affiliation(s)
- Ayşenur Biber
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| | - İpek Z Durusu
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| | - Can Özen
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| |
Collapse
|
8
|
Gorle AK, Zhang J, Liu Q, Berners‐Price SJ, Farrell NP. Structural Factors Affecting Binding of Platinum Anticancer Agents with Phospholipids: Influence of Charge and Phosphate Clamp Formation. Chemistry 2018; 24:4643-4652. [DOI: 10.1002/chem.201705822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Anil Kumar Gorle
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
| | - Junyong Zhang
- School of Biomedical, Biomolecular & Chemical Sciences University of Western Australia Crawley WA 6009 Australia
- Present address: College of Biological Chemical Science and Engineering, Jiaxing University Jiaxing 314001 P. R. China
| | - Qin Liu
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
- Present address: College of Food Science and Engineering Nanjing University of Finance and Economics Nanjing 210023 P. R. China
| | - Susan J. Berners‐Price
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
- School of Biomedical, Biomolecular & Chemical Sciences University of Western Australia Crawley WA 6009 Australia
| | - Nicholas P. Farrell
- Institute for Glycomics Griffith University, Gold Coast Campus Southport Queensland 4222 Australia
- Department of Chemistry and The Massey Cancer Center Virginia Commonwealth University Richmond 23284 Virginia USA
| |
Collapse
|
9
|
Cisplatin delivery vehicles based on stabilized polymeric aggregates comprising poly(acrylic acid) chains. Polym J 2017. [DOI: 10.1038/pj.2017.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Discovery of a potent and highly specific β 2 proteasome inhibitor from a library of copper complexes. Bioorg Med Chem Lett 2016; 26:5780-5784. [DOI: 10.1016/j.bmcl.2016.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 11/15/2022]
|
11
|
Reich M, Kotecki N. Interactions médicamenteuses entre les psychotropes et les thérapies pharmacologiques en oncologie : quelles modalités de prescription ? PSYCHO-ONCOLOGIE 2016. [DOI: 10.1007/s11839-015-0540-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Doro FG, Ferreira KQ, da Rocha ZN, Caramori GF, Gomes AJ, Tfouni E. The versatile ruthenium(II/III) tetraazamacrocycle complexes and their nitrosyl derivatives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo. Eur J Pharmacol 2015; 761:309-20. [DOI: 10.1016/j.ejphar.2015.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/15/2023]
|
14
|
Zhang Z, Bi C, Fan Y, Zhang N, Deshmukh R, Yan X, Lv X, Zhang P, Zhang X, Dou QP. L-Ornithine Schiff base-copper and -cadmium complexes as new proteasome inhibitors and apoptosis inducers in human cancer cells. J Biol Inorg Chem 2015; 20:109-121. [PMID: 25467055 DOI: 10.1007/s00775-014-1219-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/14/2014] [Indexed: 01/12/2023]
Abstract
Ubiquitin-proteasome system (UPS) plays a crucial role in many cellular processes such as cell cycle, proliferation and apoptosis. Aberrant activation of UPS may result in cellular transformation or other altered pathological conditions. Previous studies have shown that metal-based complexes could inhibit proteasome activity and induce apoptosis in certain human cancer cells. In the current study, we report that the cadmium and copper complexes with heterocycle-ornithine Schiff base are potent inhibitors of proteasomal chymotrypsin-like (CT-like) activity, leading to induction of apoptosis in cancer cells. Two novel copper-containing complexes and two novel cadmium-containing complexes with different heterocycle-ornithine Schiff base structures as ligands were synthesized and characterized. We found that complexes Cu1, Cd1 and Cd2 show proteasome-inhibitory activities in human breast cancer MDA-MB-231 and human prostate cancer LNCaP cells, resulting in the accumulation of p27, a natural proteasome substrate and other ubiquitinated proteins, followed by the induction of apoptosis. Our results suggest that metal complexes with heterocycle-ornithine Schiff base have proteasome-inhibitory capabilities and have the potential to be developed into novel anticancer drugs.
Collapse
Affiliation(s)
- Zhongyu Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
- Department of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201, USA
| | - Caifeng Bi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China.
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
| | - Nan Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
| | - Rahul Deshmukh
- Department of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201, USA
| | - Xingchen Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
| | - Xiuwen Lv
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
| | - Pengfei Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, Shandong, China
| | - Q Ping Dou
- Department of Oncology, Pharmacology and Pathology, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, 540.1 HWCRC, 4100 John R Road, Detroit, MI, 48201, USA.
| |
Collapse
|