1
|
Álvarez-Barrera L, Rodríguez-Mercado JJ, Mateos-Nava RA, Acosta-San Juan A, Altamirano-Lozano MA. Cytogenetic damage by vanadium(IV) and vanadium(III) on the bone marrow of mice. Drug Chem Toxicol 2024; 47:721-728. [PMID: 37795609 DOI: 10.1080/01480545.2023.2263669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Vanadium is a strategic metal that has many important industrial applications and is generated by the use of burning fossil fuels, which inevitably leads to their release into the environment, mainly in the form of oxides. The wastes generated by their use represent a major health hazard. Furthermore, it has attracted attention because several genotoxicity studies have shown that some vanadium compounds can affect DNA; among the most studied compounds is vanadium pentoxide, but studies in vivo with oxidation states IV and III are scarce and controversial. In this study, the genotoxic and cytotoxic potential of vanadium oxides was investigated in mouse bone marrow cells using structural chromosomal aberration (SCA) and mitotic index (MI) test systems. Three groups were administered vanadium(IV) tetraoxide (V2O4) intraperitoneally at 4.7, 9.4 or 18.8 mg/kg, and three groups were administered vanadium(III) trioxide (V2O3) at 4.22, 8.46 or 16.93 mg/kg body weight. The control group was treated with sterile water, and the positive control group was treated with cadmium(II) chloride (CdCl2). After 24 h, all doses of vanadium compounds increased the percentage of cells with SCA and decreased the MI. Our results demonstrated that under the present experimental conditions and doses, treatment with V2O4 and V2O3 induces chromosomal aberrations and alters cell division in the bone marrow of mice.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
- Carrera Médico Cirujano, Ciencias Biomédicas, BQ. FES-Zaragoza UNAM. Campus I, Ciudad de México, CP, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
| | - Adolfo Acosta-San Juan
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z), Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, CP, Mexico
| | | |
Collapse
|
2
|
Chmur K, Tesmar A, Zdrowowicz M, Rosiak D, Chojnacki J, Wyrzykowski D. Exploring the Antitumor Efficacy of N-Heterocyclic Nitrilotriacetate Oxidovanadium(IV) Salts on Prostate and Breast Cancer Cells. Molecules 2024; 29:2924. [PMID: 38930989 PMCID: PMC11206760 DOI: 10.3390/molecules29122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The crystal structures of two newly synthesized nitrilotriacetate oxidovanadium(IV) salts, namely [QH][VO(nta)(H2O)](H2O)2 (I) and [(acr)H][VO(nta)(H2O)](H2O)2 (II), were determined. Additionally, the cytotoxic effects of four N-heterocyclic nitrilotriacetate oxidovanadium(IV) salts-1,10-phenanthrolinium, [(phen)H][VO(nta)(H2O)](H2O)0.5 (III), 2,2'-bipyridinium [(bpy)H][VO(nta)(H2O)](H2O) (IV), and two newly synthesized compounds (I) and (II)-were evaluated against prostate cancer (PC3) and breast cancer (MCF-7) cells. All the compounds exhibited strong cytotoxic effects on cancer cells and normal cells (HaCaT human keratinocytes). The structure-activity relationship analysis revealed that the number and arrangement of conjugated aromatic rings in the counterion had an impact on the antitumor effect. The compound (III), the 1,10-phenanthrolinium analogue, exhibited the greatest activity, whereas the acridinium salt (II), with a different arrangement of three conjugated aromatic rings, showed the lowest toxicity. The increased concentrations of the compounds resulted in alterations to the cell cycle distribution with different effects in MCF-7 and PC3 cells. In MCF-7 cells, compounds I and II were observed to block the G2/M phase, while compounds III and IV were found to arrest the cell cycle in the G0/G1 phase. In PC3 cells, all compounds increased the rates of cells in the G0/G1 phase.
Collapse
Affiliation(s)
- Katarzyna Chmur
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.); (A.T.); (M.Z.)
| | - Aleksandra Tesmar
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.); (A.T.); (M.Z.)
| | - Magdalena Zdrowowicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.); (A.T.); (M.Z.)
| | - Damian Rosiak
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (D.R.); (J.C.)
| | - Jarosław Chojnacki
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; (D.R.); (J.C.)
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (K.C.); (A.T.); (M.Z.)
| |
Collapse
|
3
|
Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Kubacka M, Jurowska A, Cież D, Trzewik B, Szklarzewicz J, Papież MA. Vanadium Complexes with Thioanilide Derivatives of Amino Acids: Inhibition of Human Phosphatases and Specificity in Various Cell Models of Metabolic Disturbances. Pharmaceuticals (Basel) 2024; 17:229. [PMID: 38399444 PMCID: PMC10892041 DOI: 10.3390/ph17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In the text, the synthesis and characteristics of the novel ONS-type vanadium (V) complexes with thioanilide derivatives of amino acids are described. They showed the inhibition of human protein tyrosine phosphatases (PTP1B, LAR, SHP1, and SHP2) in the submicromolar range, as well as the inhibition of non-tyrosine phosphatases (CDC25A and PPA2) similar to bis(maltolato)oxidovanadium(IV) (BMOV). The ONS complexes increased [14C]-deoxy-D-glucose transport into C2C12 myocytes, and one of them, VC070, also enhanced this transport in 3T3-L1 adipocytes. These complexes inhibited gluconeogenesis in hepatocytes HepG2, but none of them decreased lipid accumulation in the non-alcoholic fatty liver disease model using the same cells. Compared to the tested ONO-type vanadium complexes with 5-bromosalicylaldehyde and substituted benzhydrazides as Schiff base ligand components, the ONS complexes revealed stronger inhibition of protein tyrosine phosphatases, but the ONO complexes showed greater activity in the cell models in general. Moreover, the majority of the active complexes from both groups showed better effects than VOSO4 and BMOV. Complexes from both groups activated AKT and ERK signaling pathways in hepatocytes to a comparable extent. One of the ONO complexes, VC068, showed activity in all of the above models, including also glucose utilizatiand ONO Complexes are Inhibitors ofon in the myocytes and glucose transport in insulin-resistant hepatocytes. The discussion section explicates the results within the wider scope of the knowledge about vanadium complexes.
Collapse
Affiliation(s)
- Grzegorz Kazek
- Department of Pharmacological Screening, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Kubacka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Jurowska
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Janusz Szklarzewicz
- Coordination Chemistry Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika A Papież
- Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
4
|
Grabowska O, Zdrowowicz M, Milaș D, Żamojć K, Chmur K, Tesmar A, Kapica M, Chmurzyński L, Wyrzykowski D. Implications of albumin in cell culture media on the biological action of vanadates(V). Int J Biol Macromol 2023; 253:127875. [PMID: 37924912 DOI: 10.1016/j.ijbiomac.2023.127875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
In this article, the implications of binding competition of vanadates(V) with dodecyl sulfates for bovine serum albumin on cytotoxicity of vanadium(V) species against prostate cancer cells have been investigated. The pH- and SDS-dependent vanadate(V)-BSA interactions were observed. At pH 5, there is only one site capable of binding ten vanadates(V) ions (logK(ITC)1 = 4.96 ± 0.06; ΔH(ITC)1 = -1.04 ± 0.03 kcal mol-1), whereas at pH 7 two distinctive binding sites on protein were found, saturated with two and seven V(V) ions, respectively (logK(ITC)1 = 6.11 ± 0.06; ΔH(ITC)1 = 0.78 ± 0.12 kcal mol-1; logK(ITC)2 = 4.80 ± 0.02; ΔH(ITC)2 = - 4.95 ± 0.14 kcal mol-1). SDS influences the stoichiometry and the stability of the resulting V(V)-BSA complexes. Finally, the cytotoxicity of vanadates(V) against prostate cancer cells (PC3 line) was examined in the presence and absence of SDS in the culture medium. In the case of a 24-h incubation with 100 μM vanadate(V), a ca. 20 % reduction in viability of PC3 cells was observed in the presence of SDS. However, in other considered cases (various concentrations and time of incubation) SDS does not affect the dose-dependent action of vanadates(V) on the investigated prostate cancer cells.
Collapse
Affiliation(s)
- Ola Grabowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Zdrowowicz
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dan Milaș
- Faculty of Chemistry, Biology, Geography, West University Timișoara, Strada Johann Heinrich Pestalozzi 16, Timișoara, Romania
| | - Krzysztof Żamojć
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Katarzyna Chmur
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Aleksandra Tesmar
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Martyna Kapica
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
5
|
Lujerdean C, Zăhan M, Dezmirean DS, Ștefan R, Simedru D, Damian G, Vedeanu NS. In Vitro Studies Demonstrate Antitumor Activity of Vanadium Ions from a CaO-P 2O 5-CaF 2:V 2O 5 Glass System in Human Cancer Cell Lines A375, A2780, and Caco-2. Int J Mol Sci 2023; 24:1149. [PMID: 36674660 PMCID: PMC9860932 DOI: 10.3390/ijms24021149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
In this research, we investigated the structural and biological properties of phosphate glasses (PGs) after the addition of V2O5. A xV2O5∙(100 − x)[CaF2∙3P2O5∙CaO] glass system with 0 ≤ x ≤ 16 mol% was synthesized via a conventional melt-quenching technique. Several analysis techniques (dissolution tests, pH, SEM-EDS, FT-IR, and EPR) were used to obtain new experimental data regarding the structural behavior of the system. In vitro tests were conducted to assess the antitumor character of V2O5-doped glass (x = 16 mol%) compared to the matrix (x = 0 mol%) and control (CTRL-) using several tumoral cell lines (A375, A2780, and Caco-2). The characterization of PGs showed an overall dissolution rate of over 90% for all vitreous samples (M and V1−V7) and the high reactivity of this system. EPR revealed a well-resolved hyperfine structure (hfs) typical of vanadyl ions in a C4v symmetry. FT-IR spectra showed the presence of all structural units expected for P2O5, as well as very clear depolymerization of the vitreous network induced by V2O5. The MTT assay indicated that the viability of tumor cells treated with V7-glass extract was reduced to 50% when the highest concentration was used (10 µg/mL) compared to the matrix treatment (which showed no cytotoxic effect at any concentration). Moreover, the matrix treatment (without V2O5) provided an optimal environment for tumor cell attachment and proliferation. In conclusion, the two types of treatment investigated herein were proven to be very different from a statistical point of view (p < 0.01), and the in vitro studies clearly underline the cytotoxic potential of vanadium ions from phosphate glass (V7) as an antitumor agent.
Collapse
Affiliation(s)
- Cristian Lujerdean
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Marius Zăhan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Răzvan Ștefan
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Dorina Simedru
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation Subsidiary (ICIA) Cluj-Napoca, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Grigore Damian
- Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Nicoleta Simona Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania
| |
Collapse
|
6
|
De Sousa-Coelho AL, Aureliano M, Fraqueza G, Serrão G, Gonçalves J, Sánchez-Lombardo I, Link W, Ferreira BI. Decavanadate and metformin-decavanadate effects in human melanoma cells. J Inorg Biochem 2022; 235:111915. [PMID: 35834898 DOI: 10.1016/j.jinorgbio.2022.111915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Decavanadate is a polyoxometalate (POMs) that has shown extensive biological activities, including antidiabetic and anticancer activity. Importantly, vanadium-based compounds as well as antidiabetic biguanide drugs, such as metformin, have shown to exert therapeutic effects in melanoma. A combination of these agents, the metformin-decavanadate complex, was also recognized for its antidiabetic effects and recently described as a better treatment than the monotherapy with metformin enabling lower dosage in rodent models of diabetes. Herein, we compare the effects of decavanadate and metformin-decavanadate on Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from rabbit skeletal muscles and on cell signaling events and viability in human melanoma cells. We show that unlike the decavanadate-mediated non-competitive mechanism, metformin-decavanadate inhibits Ca2+-ATPase by a mixed-type competitive-non-competitive inhibition with an IC50 value about 6 times higher (87 μM) than the previously described for decavanadate (15 μM). We also found that both decavanadate and metformin-decavanadate exert antiproliferative effects on melanoma cells at 10 times lower concentrations than monomeric vanadate. Western blot analysis revealed that both, decavanadate and metformin-decavanadate increased phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine protein kinase AKT signaling proteins upon 24 h drug exposure, suggesting that the anti-proliferative activities of these compounds act independent of growth-factor signaling pathways.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Escola Superior de Saúde (ESS), Universidade do Algarve, Faro, Portugal.
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, Faro, Portugal; Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal.
| | - Gil Fraqueza
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, Faro, Portugal; Instituto Superior de Engenharia (ISE), Universidade do Algarve, Faro, Portugal
| | - Gisela Serrão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal
| | - João Gonçalves
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Irma Sánchez-Lombardo
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM). Madrid, Spain
| | - Bibiana I Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Faro, Portugal; Algarve Biomedical Center (ABC), Faro, Portugal; Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
7
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Effects of Vanadyl Complexes with Acetylacetonate Derivatives on Non-Tumor and Tumor Cell Lines. Molecules 2021; 26:molecules26185534. [PMID: 34577005 PMCID: PMC8466412 DOI: 10.3390/molecules26185534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Vanadium has a good therapeutic potential, as several biological effects, but few side effects, have been demonstrated. Evidence suggests that vanadium compounds could represent a new class of non-platinum, metal antitumor agents. In the present study, we aimed to characterize the antiproliferative activities of fluorescent vanadyl complexes with acetylacetonate derivates bearing asymmetric substitutions on the β-dicarbonyl moiety on different cell lines. The effects of fluorescent vanadyl complexes on proliferation and cell cycle modulation in different cell lines were detected by ATP content using the CellTiter-Glo Luminescent Assay and flow cytometry, respectively. Western blotting was performed to assess the modulation of mitogen-activated protein kinases (MAPKs) and relevant proteins. Confocal microscopy revealed that complexes were mainly localized in the cytoplasm, with a diffuse distribution, as in podocyte or a more aggregate conformation, as in the other cell lines. The effects of complexes on cell cycle were studied by cytofluorimetry and Western blot analysis, suggesting that the inhibition of proliferation could be correlated with a block in the G2/M phase of cell cycle and an increase in cdc2 phosphorylation. Complexes modulated mitogen-activated protein kinases (MAPKs) activation in a cell-dependent manner, but MAPK modulation can only partly explain the antiproliferative activity of these complexes. All together our results demonstrate that antiproliferative effects mediated by these compounds are cell type-dependent and involve the cdc2 and MAPKs pathway.
Collapse
|
9
|
Mateos-Nava RA, Rodríguez-Mercado JJ, Álvarez-Barrera L, García-Rodríguez MDC, Altamirano-Lozano MA. Vanadium oxides modify the expression levels of the p21, p53, and Cdc25C proteins in human lymphocytes treated in vitro. ENVIRONMENTAL TOXICOLOGY 2021; 36:1536-1543. [PMID: 33913241 DOI: 10.1002/tox.23150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In vitro assays have demonstrated that vanadium compounds interact with biological molecules similar to protein kinases and phosphatases and have also shown that vanadium oxides decrease the proliferation of cells, including human lymphocytes; however, the mechanism, the phase in which the cell cycle is delayed and the proteins involved in this process are unknown. Therefore, we evaluated the effects of vanadium oxides (V2 O3 , V2 O4 and V2 O5 ) in human lymphocyte cultures (concentrations of 2, 4, 8, or 16 μg/ml) on cellular proliferation and the levels of the p53, p21 and Cdc25C proteins. After 24 h of treatment with the different concentrations of vanadium oxides, the cell cycle phases were determined by evaluating the DNA content using flow cytometry, and the levels of the p21, p53 and Cdc25C proteins were assessed by Western blot analysis. The results revealed that the DNA content remained unchanged in every phase of the cell cycle; however, only at high concentrations did protein levels increase. Although, according to previous reports, vanadium oxides induce a delay in proliferation, DNA analysis did not show this occurring in a specific cell cycle phase. Nevertheless, the increases in p53 protein levels may cause this delay.
Collapse
Affiliation(s)
- Rodrigo Aníbal Mateos-Nava
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Juan José Rodríguez-Mercado
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Lucila Álvarez-Barrera
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | | | - Mario Agustín Altamirano-Lozano
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
- Laboratorio 2, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| |
Collapse
|
10
|
Sachdeva S, Maret W. Comparative outcomes of exposing human liver and kidney cell lines to tungstate and molybdate. Toxicol Mech Methods 2021; 31:690-698. [PMID: 34320920 DOI: 10.1080/15376516.2021.1956031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tungsten has no known function in humans and is a relatively new contaminant, whereas molybdenum, its congener in the periodic table, is a nutritionally essential element. In addition to early studies on molybdosis in ruminants, their toxic effects in the form of tungstate and molybdate have been addressed primarily in rodents and are predominantly mediated by inducing oxidative stress in various tissues. The purpose of this study was to evaluate the differences between tungstate and molybdate in human liver (HepG2) and kidney (HEK293) cell lines in terms of retention in cells, effect on reactive oxygen species, and activities of xanthine oxidase and phosphatases. The cell lines were exposed to tungstate or molybdate (1 µM to 10 mM) for 24 h, lysed and analyzed for the above biochemical parameters. Despite the chemical similarity of the two anions, cell-specific differential effects were observed. At all concentrations, tungstate was retained more in HEK293 cells while molybdate was retained more in HepG2 cells. HepG2 cells were more sensitive to tungstate than molybdate, showing reduced viability at concentrations as low as 10 µM. Exposure to either anion resulted in the inhibition of protein tyrosine phosphatases at 1 mM and an increased production of reactive oxygen species (ROS) at 100 µM despite their inhibition of the ROS-producing molybdenum enzyme xanthine oxidase. In conclusion, the results indicate that excess of nutritionally essential molybdate or non-essential tungstate causes toxicity by affecting ROS- and phosphorylation-dependent signaling pathways and ensuing gene expression.
Collapse
Affiliation(s)
- Sherry Sachdeva
- Division of Regulatory Toxicology, Defence Research Development Establishment, Gwalior, India
| | - Wolfgang Maret
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
11
|
Tian Y, Qi H, Wang G, Li L, Zhou D. Anticancer effect of sodium metavanadate on murine breast cancer both in vitro and in vivo. Biometals 2021; 34:557-571. [PMID: 33689084 DOI: 10.1007/s10534-021-00295-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/23/2021] [Indexed: 11/12/2022]
Abstract
Sodium metavanadate (NaVO3) exhibits important physiological effects including insulin-like, chemoprevention and anticancer activity. However, the effects of NaVO3 on breast cancer and underlying mechanisms are still unclear. In this study, our results revealed that NaVO3 was able to inhibit proliferation of murine breast cancer cells 4T1 with IC50 value of 8.19 μM and 1.92 μM at 24 h and 48 h, respectively. The mechanisms underlying the inhibition activity were that NaVO3 could increase reactive oxygen species (ROS) level in a concentration-dependent way, arrest cells at G2/M phase, diminish the mitochondrial membrane potential (MMP), finally promote the progress of apoptosis. Furthermore, NaVO3 also exhibited a dose-dependent anticancer activity in breast cancer-bearing mice that led to the shrinkage of tumor volume (about 50%), lower microvessel density, less propagating cells and more apoptotic cells in vivo, as compared to the saline group. Therefore, NaVO3 may act as a potential chemotherapeutic agent in breast cancer treatment.
Collapse
Affiliation(s)
- Yu Tian
- Department of Occupational Health and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Haihui Qi
- Department of Occupational Health and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Dinglun Zhou
- Department of Occupational Health and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Levina A, Lay PA. Vanadium(V/IV)–Transferrin Binding Disrupts the Transferrin Cycle and Reduces Vanadium Uptake and Antiproliferative Activity in Human Lung Cancer Cells. Inorg Chem 2020; 59:16143-16153. [DOI: 10.1021/acs.inorgchem.0c00926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Molecular and Cellular Mechanisms of Cytotoxic Activity of Vanadium Compounds against Cancer Cells. Molecules 2020; 25:molecules25071757. [PMID: 32290299 PMCID: PMC7180481 DOI: 10.3390/molecules25071757] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Discovering that metals are essential for the structure and function of biomolecules has given a completely new perspective on the role of metal ions in living organisms. Nowadays, the design and synthesis of new metal-based compounds, as well as metal ion binding components, for the treatment of human diseases is one of the main aims of bioinorganic chemistry. One of the areas in vanadium-based compound research is their potential anticancer activity. In this review, we summarize recent molecular and cellular mechanisms in the cytotoxic activity of many different synthetic vanadium complexes as well as inorganic salts. Such mechanisms shall include DNA binding, oxidative stress, cell cycle regulation and programed cell death. We focus mainly on cellular studies involving many type of cancer cell lines trying to highlight some new significant advances.
Collapse
|
14
|
Korbecki J, Gutowska I, Wiercioch M, Łukomska A, Tarnowski M, Drozd A, Barczak K, Chlubek D, Baranowska-Bosiacka I. Sodium Orthovanadate Changes Fatty Acid Composition and Increased Expression of Stearoyl-Coenzyme A Desaturase in THP-1 Macrophages. Biol Trace Elem Res 2020; 193:152-161. [PMID: 30927246 PMCID: PMC6914714 DOI: 10.1007/s12011-019-01699-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 11/29/2022]
Abstract
Vanadium compounds are promising antidiabetic agents. In addition to regulating glucose metabolism, they also alter lipid metabolism. Due to the clear association between diabetes and atherosclerosis, the purpose of the present study was to assess the effect of sodium orthovanadate on the amount of individual fatty acids and the expression of stearoyl-coenzyme A desaturase (SCD or Δ9-desaturase), Δ5-desaturase, and Δ6-desaturase in macrophages. THP-1 macrophages differentiated with phorbol 12-myristate 13-acetate (PMA) were incubated in vitro for 48 h with 1 μM or 10 μM sodium orthovanadate (Na3VO4). The estimation of fatty acid composition was performed by gas chromatography. Expressions of the genes SCD, fatty acid desaturase 1 (FADS1), and fatty acid desaturase 2 (FADS2) were tested by qRT-PCR. Sodium orthovanadate in THP-1 macrophages increased the amount of saturated fatty acids (SFA) such as palmitic acid and stearic acid, as well as monounsaturated fatty acids (MUFA)-oleic acid and palmitoleic acid. Sodium orthovanadate caused an upregulation of SCD expression. Sodium orthovanadate at the given concentrations did not affect the amount of polyunsaturated fatty acids (PUFA) such as linoleic acid, arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). In conclusion, sodium orthovanadate changed SFA and MUFA composition in THP-1 macrophages and increased expression of SCD. Sodium orthovanadate did not affect the amount of any PUFA. This was associated with a lack of influence on the expression of FADS1 and FADS2.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Marta Wiercioch
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Arleta Drozd
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460, Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland.
| |
Collapse
|
15
|
Vanadium compounds induced damage of human umbilical vein endothelial cells and the protective effect of berberine. Biometals 2019; 32:785-794. [DOI: 10.1007/s10534-019-00211-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
16
|
Yu Q, Jiang W, Li D, Gu M, Liu K, Dong L, Wang C, Jiang H, Dai W. Sodium orthovanadate inhibits growth and triggers apoptosis of human anaplastic thyroid carcinoma cells in vitro and in vivo. Oncol Lett 2019; 17:4255-4262. [PMID: 30944619 PMCID: PMC6444324 DOI: 10.3892/ol.2019.10090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/17/2018] [Indexed: 01/28/2023] Open
Abstract
Vanadium and its compounds exhibit concentration- and time-dependent anticancer effects on various types of tumor; however, the effects of sodium orthovanadate (SOV) on anaplastic thyroid carcinoma (ATC) have not yet been reported. In the present study, the anticancer effects of SOV on ATC were evaluated. In vitro experiments, including cell viability assays, plate colony formation assays, cell cycle analysis and apoptosis analysis were used to study the role of SOV in ATC. Using in vivo experiments, the effects of SOV on the growth and apoptosis of an ATC-xenograft tumor were studied by comparing the SOV-treatment with the control group. The results revealed that treatment of the human ATC cell line 8505C with SOV inhibited cell viability, induced G2/M phase cell cycle arrest, stimulated apoptosis and reduced mitochondrial membrane potential in a concentration-dependent manner. These findings were confirmed in vivo in a nude mouse ATC xenograft model. In conclusion, the present study demonstrated that SOV inhibited human ATC by regulating proliferation, cell cycle progression and apoptosis, thus suggesting that SOV may be considered a novel option for the treatment of ATC.
Collapse
Affiliation(s)
- Qingan Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenjing Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dan Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingqi Gu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kunpeng Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Liqian Dong
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chaoqun Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongchi Jiang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenjie Dai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol Trace Elem Res 2019; 188:68-98. [PMID: 30350272 PMCID: PMC6373340 DOI: 10.1007/s12011-018-1540-6] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Vanadium compounds have been primarily investigated as potential therapeutic agents for the treatment of various major health issues, including cancer, atherosclerosis, and diabetes. The translation of vanadium-based compounds into clinical trials and ultimately into disease treatments remains hampered by the absence of a basic pharmacological and metabolic comprehension of such compounds. In this review, we examine the development of vanadium-containing compounds in biological systems regarding the role of the physiological environment, dosage, intracellular interactions, metabolic transformations, modulation of signaling pathways, toxicology, and transport and tissue distribution as well as therapeutic implications. From our point of view, the toxicological and pharmacological aspects in animal models and humans are not understood completely, and thus, we introduced them in a physiological environment and dosage context. Different transport proteins in blood plasma and mechanistic transport determinants are discussed. Furthermore, an overview of different vanadium species and the role of physiological factors (i.e., pH, redox conditions, concentration, and so on) are considered. Mechanistic specifications about different signaling pathways are discussed, particularly the phosphatases and kinases that are modulated dynamically by vanadium compounds because until now, the focus only has been on protein tyrosine phosphatase 1B as a vanadium target. Particular emphasis is laid on the therapeutic ability of vanadium-based compounds and their role for the treatment of diabetes mellitus, specifically on that of vanadate- and polioxovanadate-containing compounds. We aim at shedding light on the prevailing gaps between primary scientific data and information from animal models and human studies.
Collapse
Affiliation(s)
- Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Eduardo Sánchez-Lara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Brenda L. Sanchez-Gaytan
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Jose Manuel Perez-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| | - Enrique González-Vergara
- Centro de Química, ICUAP, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, C.P. 72570 Puebla, PUE Mexico
| |
Collapse
|
18
|
Del Carpio E, Hernández L, Ciangherotti C, Villalobos Coa V, Jiménez L, Lubes V, Lubes G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Coord Chem Rev 2018; 372:117-140. [PMID: 32226092 PMCID: PMC7094547 DOI: 10.1016/j.ccr.2018.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/03/2018] [Indexed: 12/11/2022]
Abstract
In the last 30 years, since the discovery that vanadium is a cofactor found in certain enzymes of tunicates and possibly in mammals, different vanadium-based drugs have been developed targeting to treat different pathologies. So far, the in vitro studies of the insulin mimetic, antitumor and antiparasitic activity of certain compounds of vanadium have resulted in a great boom of its inorganic and bioinorganic chemistry. Chemical speciation studies of vanadium with amino acids under controlled conditions or, even in blood plasma, are essential for the understanding of the biotransformation of e.g. vanadium antidiabetic complexes at the physiological level, providing clues of their mechanism of action. The present article carries out a bibliographical research emphaticizing the chemical speciation of the vanadium with different amino acids and reviewing also some other important aspects such as its chemistry and therapeutical applications of several vanadium complexes.
Collapse
Key Words
- 2,2′-bipy, 2,2-bipyridine
- 6-mepic, 6-methylpicolinic acid
- Ad, adenosine
- Ala, alanine
- Ala-Gly, alanylglycine
- Ala-His, alanylhistidine
- Ala-Ser, alanylserine
- Amino acids
- Antidiabetics
- Antitumors
- Asp, aspartic acid
- BEOV, bis(ethylmaltolate)oxovanadium(IV)
- Chemical speciation
- Cys, cysteine
- Cyt, citrate
- DMF, N,N-dimethylformamide
- DNA, deoxyribonucleic acid
- EPR, Electron Paramagnetic Resonance
- G, Gauss
- Glu, glutamic acid
- Gly, glycine
- GlyAla, glycylalanine
- GlyGly, glycylglycine
- GlyGlyCys, glycylglycylcysteine
- GlyGlyGly, glycylglycylglycine
- GlyGlyHis, glycylglycylhistidine
- GlyPhe, glycylphenylalanine
- GlyTyr, glycyltyrosine
- GlyVal, glycylvaline
- HIV, human immunodeficiency virus
- HSA, albumin
- Hb, hemoglobin
- His, histidine
- HisGlyGly, histidylglycylglycine
- Ig, immunoglobulins
- Im, imidazole
- L-Glu(γ)HXM, l-glutamic acid γ-monohydroxamate
- LD50, the amount of a toxic agent (such as a poison, virus, or radiation) that is sufficient to kill 50 percent of population of animals
- Lac, lactate
- MeCN, acetonitrile
- NADH and NAD+, nicotinamide adenine dinucleotide
- NEP, neutral endopeptidas
- NMR, Nuclear Magnetic Resonance
- Ox, oxalate
- PI3K, phosphoinositide 3-kinase
- PTP1B, protein tyrosine phosphatase 1B
- Pic, picolinic acid
- Pro, proline
- Pro-Ala, prolylalanine
- RNA, ribonucleic acid
- SARS, severe acute respiratory syndrome
- Sal-Ala, N-salicylidene-l-alaninate
- SalGly, salicylglycine
- SalGlyAla, salicylglycylalanine
- Ser, serine
- T, Tesla
- THF, tetrahydrofuran
- Thr, threonine
- VBPO, vanadium bromoperoxidases
- VanSer, Schiff base formed from o-vanillin and l-serine
- Vanadium complexes
- acac, acetylacetone
- dhp, 1,2-dimethyl-3-hydroxy-4(1H)-pyridinone
- dipic, dipicolinic acid
- dmpp, 1,2-dimethyl-3-hydroxy-4-pyridinonate
- hTf, transferring
- hpno, 2-hydroxypyridine-N-oxide
- l.m.m., low molecular mass
- mal, maltol
- py, pyridine
- sal-l-Phe, N-salicylidene-l-tryptophanate
- salGlyGly, N-salicylideneglycylglycinate
- salSer, N-salicylideneserinate
- salTrp, N-salicylidene-L tryptophanate
- salVal, N-salicylidene-l-valinate
- salophen, N,N′-bis(salicylidene)-o-phenylenediamine
- saltrp, N-salicylidene-l-tryptophanate
- γ-PGA, poly-γ-glutamic acid
Collapse
Affiliation(s)
- Edgar Del Carpio
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Unidad de Química Medicinal, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Lino Hernández
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
- Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Venezuela
| | - Carlos Ciangherotti
- Laboratorio de Neuropéptidos, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
- Laboratorio de Bioquímica, Facultad de Farmacia, Escuela “Dr. Jesús María Bianco”, Universidad Central de Venezuela, Venezuela
| | - Valentina Villalobos Coa
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Lissette Jiménez
- Facultad de ingeniería Química, Universidad de Carabobo, Venezuela
| | - Vito Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| | - Giuseppe Lubes
- Laboratorio de Equilibrios en Solución, Universidad Simón Bolívar (USB), Apartado 89000, Caracas 1080 A, Venezuela
| |
Collapse
|
19
|
Bertinat R, Westermeier F, Gatica R, Nualart F. Sodium tungstate: Is it a safe option for a chronic disease setting, such as diabetes? J Cell Physiol 2018; 234:51-60. [DOI: 10.1002/jcp.26913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA Bio‐Bio Facultad de Ciencias Biológicas, Universidad de Concepción Concepción Chile
| | - Francisco Westermeier
- Department of Health Studies Institute of Biomedical Science, FH JOANNEUM Gesellschaft mbH University of Applied Sciences Graz Austria
- Facultad de Ciencia, Universidad San Sebastián Santiago Chile
| | - Rodrigo Gatica
- Laboratorio de Patología Veterinaria Escuela de Veterinaria, Facultad de Ciencias, Universidad Mayor Santiago Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA Bio‐Bio Facultad de Ciencias Biológicas, Universidad de Concepción Concepción Chile
| |
Collapse
|
20
|
El Fawal GF, Abu-Serie MM, Hassan MA, Elnouby MS. Hydroxyethyl cellulose hydrogel for wound dressing: Fabrication, characterization and in vitro evaluation. Int J Biol Macromol 2018; 111:649-659. [PMID: 29339283 DOI: 10.1016/j.ijbiomac.2018.01.040] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 01/07/2018] [Indexed: 01/15/2023]
Abstract
In this study, new hydrogel membranes were developed based on hydroxyethyl cellulose (HEC) supplemented with tungsten oxide for further implementing in wound treatment. HEC hydrogel membranes were fabricated and crosslinked using citric acid (CA). Various tests were carried out including FTIR, XRD, porosity measurements, swelling, mechanical properties, gel fraction, and thermal gravimetric analysis to evaluate the efficiency of the prepared membranes as wound dressing material. In addition, wound healing activity of the examined membranes for human dermal fibroblast cell line was investigated employing in vitro scratching model. Furthermore, the potency of the prepared membranes to suppress wound complications was studied via determination of their anti-inflammatory and antibacterial activities exploiting MTT, ELISA, and disk agar diffusion methods. The results demonstrated that the HEC hydrogel membranes revealed an anti-inflammatory and antibacterial efficacy. Moreover, HEC improved the safety of tungsten oxide toward normal human cells (white blood cells and dermal fibroblast). Furthermore, HEC membranes loaded with WO3 revealed the highest activities against Salmonella sp. pursued by P. aeruginosa in compared with the negative HEC hydrogel membrane. The current approach corroborated that HEC amended by tungsten oxide could be applied as a promising safe candidate for wound dressing material.
Collapse
Affiliation(s)
- Gomaa F El Fawal
- Polymer Materials Research Department, Advanced Technology and New Material Research Institute (ATNMRI), Scientific Research and Technological Applications City (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Scientific Research and Technological Applications City (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), Scientific Research and Technological Applications City (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mohamed S Elnouby
- Composite and Nanostructured Materials Research Department, Advanced Technology and New Material Research Institute (ATNMRI). Scientific Research and Technological Applications City (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
21
|
Fatola OI, Olaolorun FA, Olopade FE, Olopade JO. Trends in vanadium neurotoxicity. Brain Res Bull 2018; 145:75-80. [PMID: 29577939 DOI: 10.1016/j.brainresbull.2018.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/05/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Vanadium, atomic number 23, is a transition metal widely distributed in nature. It is a major contaminant of fossil fuels and is widely used in industry as catalysts, in welding, and making steel alloys. Over the years, vanadium compounds have been generating interests due to their use as therapeutic agents in the control of diabetes, tuberculosis, and some neoplasms. However, the toxicity of vanadium compounds is well documented in literature with occupational exposure of workers in vanadium allied industries, environmental pollution from combustion of fossil fuels and industrial exhausts receiving concerns as major sources of toxicity and a likely predisposing factor in the aetiopathogenesis of neurodegenerative diseases. A lot has been done to understand the neurotoxic effects of vanadium, its mechanisms of action and possible antidotes. Sequel to our review of the subject in 2011, this present review is to detail the recent insights gained in vanadium neurotoxicity.
Collapse
Affiliation(s)
| | | | | | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
22
|
Vanadium Compounds as PTP Inhibitors. Molecules 2017; 22:molecules22122269. [PMID: 29257048 PMCID: PMC6150004 DOI: 10.3390/molecules22122269] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023] Open
Abstract
Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.
Collapse
|
23
|
Giono LE, Resnick-Silverman L, Carvajal LA, St Clair S, Manfredi JJ. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase. Oncogene 2017; 36:6762-6773. [PMID: 28806397 PMCID: PMC6002854 DOI: 10.1038/onc.2017.254] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/15/2017] [Accepted: 06/27/2017] [Indexed: 12/16/2022]
Abstract
Upon different types of stress, the gene encoding the mitosis-promoting phosphatase Cdc25C is transcriptionally repressed by p53, contributing to p53's enforcement of a G2 cell cycle arrest. In addition, Cdc25C protein stability is also decreased following DNA damage. Mdm2, another p53 target gene, encodes a ubiquitin ligase that negatively regulates p53 levels by ubiquitination. Ablation of Mdm2 by siRNA led to an increase in p53 protein and repression of Cdc25C gene expression. However, Cdc25C protein levels were actually increased following Mdm2 depletion. Mdm2 is shown to negatively regulate Cdc25C protein levels by reducing its half-life independently of the presence of p53. Further, Mdm2 physically interacts with Cdc25C and promotes its degradation through the proteasome in a ubiquitin-independent manner. Either Mdm2 overexpression or Cdc25C downregulation delays cell cycle progression through the G2/M phase. Thus, the repression of the Cdc25C promoter by p53, together with p53-dependent induction of Mdm2 and subsequent degradation of Cdc25C, could provide a dual mechanism by which p53 can enforce and maintain a G2/M cell cycle arrest.
Collapse
Affiliation(s)
- L E Giono
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Resnick-Silverman
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L A Carvajal
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S St Clair
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J J Manfredi
- Department of Oncological Sciences and Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Levina A, Lay PA. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species? Chem Asian J 2017; 12:1692-1699. [PMID: 28401668 DOI: 10.1002/asia.201700463] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/12/2022]
Abstract
Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H2 VO4- ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to VV and/or VIV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| | - Peter A Lay
- School of Chemistry, University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
25
|
Ottolini D, Calí T, Szabò I, Brini M. Alpha-synuclein at the intracellular and the extracellular side: functional and dysfunctional implications. Biol Chem 2017; 398:77-100. [DOI: 10.1515/hsz-2016-0201] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Abstract
Alpha-synuclein (α-syn) is an abundant neuronal protein whose physiological function, even if still not completely understood, has been consistently related to synaptic function and vesicle trafficking. A group of disorders known as synucleinopathies, among which Parkinson’s disease (PD), is deeply associated with the misfolding and aggregation of α-syn, which can give rise to proteinaceous inclusion known as Lewy bodies (LB). Proteostasis stress is a relevant aspect in these diseases and, currently, the presence of oligomeric α-syn species rather than insoluble aggregated forms, appeared to be associated with cytotoxicity. Many observations suggest that α-syn is responsible for neurodegeneration by interfering with multiple signaling pathways. α-syn protein can directly form plasma membrane channels or modify with their activity, thus altering membrane permeability to ions, abnormally associate with mitochondria and cause mitochondrial dysfunction (i.e. mitochondrial depolarization, Ca2+ dys-homeostasis, cytochrome c release) and interfere with autophagy regulation. The picture is further complicated by the fact that single point mutations, duplications and triplication in α-syn gene are linked to autosomal dominant forms of PD. In this review we discuss the multi-faced aspect of α-syn biology and address the main hypothesis at the basis of its involvement in neuronal degeneration.
Collapse
|
26
|
Wu JX, Hong YH, Yang XG. Bis(acetylacetonato)-oxidovanadium(IV) and sodium metavanadate inhibit cell proliferation via ROS-induced sustained MAPK/ERK activation but with elevated AKT activity in human pancreatic cancer AsPC-1 cells. J Biol Inorg Chem 2016; 21:919-929. [PMID: 27614430 DOI: 10.1007/s00775-016-1389-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
In this study, the antiproliferative effect of bis(acetylacetonato)-oxidovanadium(IV) and sodium metavanadate and the underlying mechanisms were investigated in human pancreatic cancer cell line AsPC-1. The results showed that both exhibited an antiproliferative effect through inducing G2/M cell cycle arrest and can also cause elevation of reactive oxygen species (ROS) levels in cells. Moreover, the two vanadium compounds induced the activation of both PI3K/AKT and MAPK/ERK signaling pathways dose- and time-dependently, which could be counteracted with the antioxidant N-acetylcysteine. In the presence of MEK-1 inhibitor, the degradation of Cdc25C, inactivation of Cdc2 and accumulation of p21 were relieved. However, the treatment of AKT inhibitor did not cause any significant effect. Therefore, it demonstrated that the ROS-induced sustained MAPK/ERK activation rather than AKT contributed to vanadium compounds-induced G2/M cell cycle arrest. The current results also exhibited that the two vanadium compounds did not induce a sustained increase of ROS generation, but the level of ROS reached a plateau instead. The results revealed that an intracellular feedback loop may be against the elevated ROS level induced by vanadate or VO(acac)2, evidenced by the increased GSH content, the unchanged level at the expression of antioxidant enzymes. Therefore, vanadium compounds can be regarded as a novel type of anticancer drugs through the prolonged activation of MAPK/ERK pathway but retained AKT activity. The present results provided a proof-of-concept evidence that vanadium-based compounds may have the potential as both antidiabetic and antipancreatic cancer agents to prevent or treat patients suffering from both diseases.
Collapse
Affiliation(s)
- Jing-Xuan Wu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Yi-Hua Hong
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Xiao-Gai Yang
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
27
|
Kilcup N, Gaynard S, Werner-Zwanziger U, Tonkopi E, Hayes J, Boyd D. Stimulation of apoptotic pathways in liver cancer cells: An alternative perspective on the biocompatibility and the utility of biomedical glasses. J Biomater Appl 2015; 30:1445-59. [DOI: 10.1177/0885328215621663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A host of research opportunities with innumerable clinical applications are open to biomedical glasses if one considers their potential as therapeutic inorganic ion delivery systems. Generally, applications have been limited to repair and regeneration of hard tissues while compositions are largely constrained to the original bioactive glass developed in the 1960s. However, in oncology applications the therapeutic paradigm shifts from repair to targeted destruction. With this in mind, the composition–structure–property–function relationships of vanadium-containing zinc-silicate glasses (0.51SiO2–0.29Na2O–(0.20- X)ZnO– XV2O5, 0 ≤ X ≤ 0.09) were characterized in order to determine their potential as therapeutic inorganic ion delivery systems. Increased V2O5 mole fraction resulted in a linear decrease in density and glass transition temperature (Tg). 29Si MAS NMR peak maxima shifted upfield while 51V MAS NMR peak maxima were independent of V2O5 content and overlapped well with the spectra NaVO3. Increased V2O5 mole fraction caused ion release to increase. When human liver cancer cells, HepG2, were exposed to these ions they demonstrated a concentration-dependent cytotoxic response, mediated by apoptosis. This work demonstrates that the zinc-silicate system studied herein is capable of delivering therapeutic inorganic ions at concentrations that induce apoptotic cell death and provide a simple means to control therapeutic inorganic ion delivery.
Collapse
Affiliation(s)
- Nancy Kilcup
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Seán Gaynard
- Regenerative Medicine Institute, Bioscience Research Building, National University of Ireland Galway, Galway, Ireland
| | - Ulrike Werner-Zwanziger
- Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax, Canada
| | - Elena Tonkopi
- Department of Diagnostic Imaging and Interventional Radiology, QEII Health Sciences Centre, Victoria General Hospital, Victoria Building, Halifax, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada
| | - Jessica Hayes
- Regenerative Medicine Institute, Bioscience Research Building, National University of Ireland Galway, Galway, Ireland
| | - Daniel Boyd
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
- Department of Diagnostic Imaging and Interventional Radiology, QEII Health Sciences Centre, Victoria General Hospital, Victoria Building, Halifax, Canada
- Department of Applied Oral Sciences, Dentistry Building, Dalhousie University, Halifax, Canada
| |
Collapse
|
28
|
Bertinat R, Silva P, Mann E, Li X, Nualart F, Yáñez AJ. In vivo sodium tungstate treatment prevents E-cadherin loss induced by diabetic serum in HK-2 cell line. J Cell Physiol 2015; 230:2437-46. [PMID: 25728412 DOI: 10.1002/jcp.24974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
Diabetic nephropathy (DN) is characterized by interstitial inflammation and fibrosis, which is the result of chronic accumulation of extracellular matrix produced by activated fibroblasts in the renal tubulointerstitium. Renal proximal tubular epithelial cells (PTECs), through the process of epithelial-to-mesenchymal transition (EMT), are the source of fibroblasts within the interstitial space, and loss of E-cadherin has shown to be one of the earliest steps in this event. Here, we studied the effect of the anti-diabetic agent sodium tungstate (NaW) in the loss of E-cadherin induced by transforming growth factor (TGF) β-1, the best-characterized in vitro EMT promoter, and serum from untreated or NaW-treated diabetic rats in HK-2 cell line, a model of human kidney PTEC. Our results showed that both TGFβ-1 and serum from diabetic rat induced a similar reduction in E-cadherin expression. However, E-cadherin loss induced by TGFβ-1 was not reversed by NaW, whereas sera from NaW-treated rats were able to protect HK-2 cells. Searching for soluble mediators of NaW effect, we compared secretion of TGFβ isoforms and vascular endothelial growth factor (VEGF)-A, which have opposite actions on EMT. One millimolar NaW alone reduced secretion of both TGFβ-1 and -2, and stimulated secretion of VEGF-A after 48 h. However, these patterns of secretion were not observed after diabetic rat serum treatment, suggesting that protection from E-cadherin loss by serum from NaW-treated diabetic rats originates from an indirect rather than a direct effect of this salt on HK-2 cells, via a mechanism independent of TGFβ and VEGF-A functions.
Collapse
Affiliation(s)
- Romina Bertinat
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Pamela Silva
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Elizabeth Mann
- Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuhang Li
- Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Francisco Nualart
- Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Alejandro J Yáñez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile.,Centro de Microscopía Avanzada (CMA)-Bío Bío, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
29
|
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases. Int J Mol Sci 2015; 16:12648-68. [PMID: 26053397 PMCID: PMC4490466 DOI: 10.3390/ijms160612648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/30/2023] Open
Abstract
This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| |
Collapse
|
30
|
Lemus R, Venezia CF. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit Rev Toxicol 2015; 45:388-411. [PMID: 25695728 PMCID: PMC4732414 DOI: 10.3109/10408444.2014.1003422] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 12/28/2014] [Indexed: 12/08/2022]
Abstract
Tungsten is a relatively rare metal with numerous applications, most notably in machine tools, catalysts, and superalloys. In 2003, tungsten was nominated for study under the National Toxicology Program, and in 2011, it was nominated for human health assessment under the US Environmental Protection Agency's (EPA) Integrated Risk Information System. In 2005, the Agency for Toxic Substances and Disease Registry (ATSDR) issued a toxicological profile for tungsten, identifying several data gaps in the hazard assessment of tungsten. By filling the data gaps identified by the ATSDR, this review serves as an update to the toxicological profile for tungsten and tungsten substances. A PubMed literature search was conducted to identify reports published during the period 2004-2014, in order to gather relevant information related to tungsten toxicity. Additional information was also obtained directly from unpublished studies from within the tungsten industry. A systematic approach to evaluate the quality of data was conducted according to published criteria. This comprehensive review has gathered new toxicokinetic information and summarizes the details of acute and repeated-exposure studies that include reproductive, developmental, neurotoxicological, and immunotoxicological endpoints. Such new evidence involves several relevant studies that must be considered when regulators estimate and propose a tungsten reference or concentration dose.
Collapse
Affiliation(s)
- Ranulfo Lemus
- International Tungsten Industry Association (ITIA), London, UK
| | | |
Collapse
|
31
|
Bertinat R, Nualart F, Li X, Yáñez AJ, Gomis R. Preclinical and Clinical Studies for Sodium Tungstate: Application in Humans. ACTA ACUST UNITED AC 2015; 6. [PMID: 25995968 PMCID: PMC4435618 DOI: 10.4172/2155-9899.1000285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes is a complex metabolic disorder triggered by the deficient secretion of insulin by the pancreatic β-cell or the resistance of peripheral tissues to the action of the hormone. Chronic hyperglycemia is the major consequence of this failure, and also the main cause of diabetic problems. Indeed, several clinical trials have agreed in that tight glycemic control is the best way to stop progression of the disease. Many anti-diabetic drugs for treatment of type 2 diabetes are commercially available, but no ideal normoglycemic agent has been developed yet. Moreover, weight gain is the most common side effect of many oral anti-diabetic agents and insulin, and increased weight has been shown to worsen glycemic control and increase the risk of diabetes progression. In this sense, the inorganic salt sodium tungstate (NaW) has been studied in different animal models of metabolic syndrome and diabetes, proving to have a potent effect on normalizing blood glucose levels and reducing body weight, without any hypoglycemic action. Although the liver has been studied as the main site of NaW action, positive effects have been also addressed in muscle, pancreas, brain, adipose tissue and intestine, explaining the effective anti-diabetic action of this salt. Here, we review NaW research to date in these different target organs. We believe that NaW deserves more attention, since all available anti-diabetic treatments remain suboptimal and new therapeutics are urgently needed.
Collapse
Affiliation(s)
- Romina Bertinat
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile ; Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Xuhang Li
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alejandro J Yáñez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile ; Centro de Microscopía Avanzada, CMA-Bío Bío, Universidad de Concepción, Concepción, Chile
| | - Ramón Gomis
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain ; Diabetes and Obesity Research Laboratory, IDIBAPS, Barcelona, Spain ; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain ; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Synthesis, characterization and biological evaluation of a novel vanadium complex as a possible anticancer agent. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.08.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Yang XG, Wang K. Chemical, biochemical, and biological behaviors of vanadate and its oligomers. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2014; 54:1-18. [PMID: 24420708 DOI: 10.1007/978-3-642-41004-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Vanadate is widely used as an inhibitor of protein tyrosine phosphatases (PTPase) and is routinely applied in cell lysis buffers or immunoprecipitations of phosphotyrosyl proteins. Additionally, vanadate has been extensively studied for its antidiabetic and anticancer effects. In most studies, orthovanadate or metavanadate was used as the starting compound, whereas these "vanadate" solutions may contain more or less oligomerized species. Whether and how different species of vanadium compounds formed in the biological media exert specific biological effect is still a mystery. In the present commentary, we focus on the chemical, biochemical, and biological behaviors of vanadate. On the basis of species formation of vanadate in chemical and biological systems, we compared the biological effects and working mechanism of monovanadate with that of its oligomers, especially the decamer. We propose that different oligomers may exert a specific biological effect, which depends on their structures and the context of the cell types, by different modes of action.
Collapse
Affiliation(s)
- Xiao-Gai Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | | |
Collapse
|
34
|
|
35
|
Abstract
In the early treatment of diabetes with vanadium, inorganic vanadium compounds have been the focus of attention; organic vanadium compounds are nowadays increasingly attracting attention. A key compound is bis(maltolato)oxidovanadium, which became introduced into clinical tests Phase IIa. Organic ligands help modulate the bioavailability, transport and targeting mechanism of a vanadium compound. Commonly, however, the active onsite species is vanadyl (VO(2+)) or vanadate (H(2)VO(4) (-)), generated by biospeciation. The mode of operation can be ascribed to interaction of vanadate with phosphatases and kinases, and to modulation of the level of reactive oxygen species interfering with phosphatases and/or DNA. This operating mode has also been inferred for most cancerostatic vanadium compounds, although some, for example vanadocenes, may directly intercalate with DNA. Novel medicinal potentiality of vanadium compounds is geared towards endemic diseases in tropical countries, in particular leishmaniasis, Chagas' disease and amoebiasis, and viral infections such as Dengue fever, SARS and HIV.
Collapse
|