1
|
Gao H, Xiong M, Kong C, Yang Z, Yang T. A theoretical study on hydrated sodium ion-phenylalanine clusters Na +(Phe)(H 2O) n ( n = 0-6; Phe = phenylalanine). Phys Chem Chem Phys 2023; 25:29576-29584. [PMID: 37877287 DOI: 10.1039/d3cp03144f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The cation-π interaction is of importance in many chemical and biological processes such as those involving protein geometries and functionals and ion channels. In this study, to understand the cation-π interaction between essential ions and protein in the water-aqueous environment, geometries, electronic structures, bonding properties, and dynamic stabilities of hydrated Na+-phenylalanine clusters Na+(Phe)(H2O)n (n = 0-6) were studied using density functional theory calculations and ab initio molecular dynamics simulations. After the addition of water molecules, Na+(Phe)(H2O)n structures change from a tridentate complex to quadridentate or pentadentate complexes while the cation-π interaction always exists. The fluctuation between quadridentate and pentadentate complexes results from the competition between cation-O bonding and hydrogen bonding. The charge analysis reveals that the positive charge is mainly located on the Na ion, whereas the further addition of water reduces the binding energy of water, electron affinity, and ionization potential. As the number of water molecules increases, the bonding interactions between the sodium ion and the remaining phenylalanine-water complex increase and correlate with the coordination number, in which the electrostatic interaction contributes more than the orbital interaction. The important orbital interaction terms come from the donation of the carboxyl and amino groups and water to the Na+ ion. Molecular dynamic simulations revealed that Na+(Phe)(H2O)6 is stable at 300 K.
Collapse
Affiliation(s)
- Haiyang Gao
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Mo Xiong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Chuncai Kong
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhimao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Tao Yang
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
- Xi'an Jiaotong University Suzhou Academy, Suzhou, China
| |
Collapse
|
2
|
Vladislav Victorovich K, Tatyana Aleksandrovna K, Victor Vitoldovich P, Aleksander Nicolaevich S, Larisa Valentinovna K, Anastasia Aleksandrovna A. Spectra of tryptophan fluorescence are the result of co-existence of certain most abundant stabilized excited state and certain most abundant destabilized excited state. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119784. [PMID: 33892250 DOI: 10.1016/j.saa.2021.119784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Fluorescence spectra of proteins and peptides are traditionally used to get an information on self-association of proteins and peptides, on their tertiary and quaternary structure. In this study it was shown that there are just three peaks of tryptophan fluorescence (at ∼308, at ∼330, and at ∼360 nm) in rough unsmoothed spectra of fluorescence of pure tryptophan in different solvents that change their heights depending on the polarity of a solvent. Two separate peaks at ∼330 nm and ∼360 nm are especially prominent in the spectrum of human epidermal growth factor. In contrast, in smoothed (either mathematically, or physically) spectra of Trp-containing proteins a single maximum of fluorescence varies between 330 and 360 nm. The theory of tryptophan fluorescence is discussed in light of three discrete peaks existence. A stabilizing hydrogen bond with aromatic system of benzene ring in the excited state is proposed as the cause of emission at ∼360 nm bringing Trp to the destabilized ground state. Emission from the destabilized excited state has a maximum at ∼330 nm if the ground state is destabilized, as well as if both states are stabilized. If the excited state is destabilized, while the ground state is stabilized by purely hydrophobic interactions, emitted light should have a maximum at ∼308 nm. The degree of hydrophilicity of tryptophan microenvironment is proposed to be measured as the ratio between the peak at 360 nm and the peak at 330 nm if the observed shifts are not "horizontal", but "vertical". The process of dissociation of hemagglutinin trimers from pandemic Influenza A(H1N1) virus is described as an example of the advantages of the proposed method.
Collapse
Affiliation(s)
| | - Khrustaleva Tatyana Aleksandrovna
- Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | | | | | - Kordyukova Larisa Valentinovna
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, Moscow 119991, Russia
| | | |
Collapse
|
3
|
Datta LP, Samanta S, Govindaraju T. Polyampholyte-Based Synthetic Chaperone Modulate Amyloid Aggregation and Lithium Delivery. ACS Chem Neurosci 2020; 11:2812-2826. [PMID: 32816457 DOI: 10.1021/acschemneuro.0c00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding and aggregation is the pathological hallmark of Alzheimer's disease (AD). The etiopathogenesis of AD involves the accumulation of amyloid-β (Aβ) plaques in the brain, which disrupt the neuronal network and communication, causing neuronal death and severe cognitive impairment. Modulation of Aβ aggregation by exogenous therapeutic agents is considered an effective strategy to treat AD. Frequent failure of drug candidates in various phases of clinical trials reiterates the need for alternative therapeutic strategies for AD treatment. Polyampholytes with cationic and anionic segments are considered as artificial protein mimics capable of modulating the protein misfolding and aggregation. We report a diblock copolymer of tryptophan-functionalized methacrylic acid (PTMA) polyampholyte synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. Investigation revealed that PTMA acts as a synthetic chaperone to protect the native structure of the lysozyme under heat-induced aggregation conditions. PTMA effectively modulates Aβ aggregation and rescues neuronal cells. Lithium has been shown to exhibit therapeutic efficacy in chronic neurological diseases including AD. PTMA sequesters and releases lithium ions in response to neuropathological pH stimuli, making it a promising candidate for lithium transport and delivery. The detailed studies demonstrate PTMA as aggregation modulator and lithium carrier with implications for combinational therapy to treat AD.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
4
|
Tang B, Devenish SO, Lummis SCR. Identification of Novel Functionally Important Aromatic Residue Interactions in the Extracellular Domain of the Glycine Receptor. Biochemistry 2018; 57:4029-4035. [DOI: 10.1021/acs.biochem.8b00425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijun Tang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QH, U.K
| | - Steven O. Devenish
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QH, U.K
| | - Sarah C. R. Lummis
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QH, U.K
| |
Collapse
|
5
|
Elius Hossain M, Mahmudul Hasan M, Halim ME, Ehsan MQ, Halim MA. Interaction between transition metals and phenylalanine: a combined experimental and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:499-508. [PMID: 25528509 DOI: 10.1016/j.saa.2014.11.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 10/30/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic.
Collapse
Affiliation(s)
- Md Elius Hossain
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Md Mahmudul Hasan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M E Halim
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Q Ehsan
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Mohammad A Halim
- Bangladesh Institute of Computational Chemistry and Biochemistry, 38 Green Road West, Dhaka 1205, Bangladesh.
| |
Collapse
|
6
|
Rodríguez-Sanz AA, Cabaleiro-Lago EM, Rodríguez-Otero J. On the interaction between the imidazolium cation and aromatic amino acids. A computational study. Org Biomol Chem 2015; 13:7961-72. [DOI: 10.1039/c5ob01108f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phe, Tyr and Trp form parallel complexes with cation⋯π interactions. His complexes are the strongest, but without making contact with the aromatic cloud.
Collapse
Affiliation(s)
- Ana A. Rodríguez-Sanz
- Departamento de Química Física
- Facultade de Ciencias
- Universidade de Santiago de Compostela
- Lugo
- Spain
| | | | - Jesús Rodríguez-Otero
- Centro de investigación en Química Biolóxica e Materiais Moleculares
- CIQUS
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| |
Collapse
|
7
|
Rodríguez-Sanz AA, Cabaleiro-Lago EM, Rodríguez-Otero J. Interaction between the guanidinium cation and aromatic amino acids. Phys Chem Chem Phys 2014; 16:22499-512. [DOI: 10.1039/c4cp02630f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Remko M, Broer R, Remková A. A comparative study of the molecular structure, lipophilicity, solubility, acidity, absorption and polar surface area of coumarinic anticoagulants and direct thrombin inhibitors. RSC Adv 2014. [DOI: 10.1039/c3ra42347f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The methods of computational chemistry have been used to elucidate the molecular properties of coumarinic anticoagulants (acenocoumarol, phenprocoumon, warfarin and tecarfarin) and direct thrombin inhibitors (melagatran, dabigatran and their prodrug forms).
Collapse
Affiliation(s)
- Milan Remko
- Comenius University in Bratislava
- Faculty of Pharmacy
- Department of Pharmaceutical Chemistry
- SK-832 32 Bratislava, Slovakia
- Center for Hemostasis and Thrombosis
| | - Ria Broer
- Department of Theoretical Chemistry
- Zernike Institute for Advanced Materials
- University of Groningen
- 9747 AG Groningen, The Netherlands
| | - Anna Remková
- Center for Hemostasis and Thrombosis
- Hemo Medika Bratislava
- 851 04 Bratislava, Slovakia
| |
Collapse
|
9
|
Theoretical study of hydrated Ca2+-amino acids (glycine, threonine and phenylalanine) clusters. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Structures of a Na+-coupled, substrate-bound MATE multidrug transporter. Proc Natl Acad Sci U S A 2013; 110:2099-104. [PMID: 23341609 DOI: 10.1073/pnas.1219901110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na(+) or H(+) gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na(+)-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs(+) (a Na(+) congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation-π interaction in the Na(+)-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na(+)-induced drug export. Based on our structural and functional analyses, we suggest that Na(+) triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport.
Collapse
|
11
|
Mahadevi AS, Sastry GN. Cation-π interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2012; 113:2100-38. [PMID: 23145968 DOI: 10.1021/cr300222d] [Citation(s) in RCA: 782] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- A Subha Mahadevi
- Molecular Modeling Group, CSIR-Indian Institute of Chemical Technology Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
| | | |
Collapse
|