1
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
2
|
Ricci C, Abbandonato G, Giannangeli M, Matthews L, Almásy L, Sartori B, Podestà A, Caselli A, Boffi A, Thiel G, Del Favero E, Moroni A. Ferritin at different iron loading: From biological to nanotechnological applications. Int J Biol Macromol 2024; 276:133812. [PMID: 39032902 DOI: 10.1016/j.ijbiomac.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The characterization of the structure of ferritin in solution and the arrangement of iron stored in its cavity are intriguing subjects for both cell biology and applied science, since the protein structure, stability, and easiness of production make it an ideal tool for biomedical applications. We characterized the ferritin structure over a wide range of iron loadings by visible light, X-ray, and neutron scattering techniques. We found that the arrangement of iron ions inside the protein cage resulted in a more disposable arrangement at lower loading factors and then in a crystalline structure. At very high iron content the inner core is composed of magnetite more than ferrihydrite, and the shell of the protein is elastically deformed by the iron crystal growth in an ellipsoidal arrangement. The application of an external radiofrequency (RF) magnetic field affected ferritins at low iron loading factors. Notably the RF modified the iron disposition towards a more dispersed arrangement. The structural characterization of the ferritin at different LFs and in presence of magnetic fields provides useful insights into their physiological behaviour and can help in the design and fine-tuning of ferritin-based nanosystems for biotechnological applications.
Collapse
Affiliation(s)
| | | | | | - Lauren Matthews
- ESRF, The European Synchrotron, 71 avenue des Martyrs, 38043 Grenoble, France
| | - László Almásy
- HUN-REN Centre for Energy Research, POB 49, Budapest 1525, Hungary
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/4, Graz, Austria
| | - Alessandro Podestà
- Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | | | - Alberto Boffi
- Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Gerhard Thiel
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Sheng Y, Chen Z, Cherrier MV, Martin L, Bui TTT, Li W, Lynham S, Nicolet Y, Ebrahimi KH. A Versatile Virus-Mimetic Engineering Approach for Concurrent Protein Nanocage Surface-Functionalization and Cargo Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310913. [PMID: 38726952 DOI: 10.1002/smll.202310913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/26/2024] [Indexed: 08/02/2024]
Abstract
Naturally occurring protein nanocages like ferritin are self-assembled from multiple subunits. Because of their unique cage-like structure and biocompatibility, there is a growing interest in their biomedical use. A multipurpose and straightforward engineering approach does not exist for using nanocages to make drug-delivery systems by encapsulating hydrophilic or hydrophobic drugs and developing vaccines by surface functionalization with a protein like an antigen. Here, a versatile engineering approach is described by mimicking the HIV-1 Gap polyprotein precursor. Various PREcursors of nanoCages (PREC) are designed and created by linking two ferritin subunits via a flexible linker peptide containing a protease cleavage site. These precursors can have additional proteins at their N-terminus, and their protease cleavage generates ferritin-like nanocages named protease-induced nanocages (PINCs). It is demonstrated that PINC formation allows concurrent surface decoration with a protein and hydrophilic or hydrophobic drug encapsulation up to fourfold more than the amount achieved using other methods. The PINCs/Drug complex is stable and efficiently kills cancer cells. This work provides insight into the precursors' design rules and the mechanism of PINCs formation. The engineering approach and mechanistic insight described here will facilitate nanocages' applications in drug delivery or as a platform for making multifunctional therapeutics like mosaic vaccines.
Collapse
Affiliation(s)
- Yujie Sheng
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Zilong Chen
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Mickael V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Lydie Martin
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Tam T T Bui
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, SE11UL, UK
| | - Wei Li
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| | - Steven Lynham
- Proteomics Core Facility, James Black Centre, King's College London, London, SE5 9NU, UK
| | - Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, CS 10090, France
| | - Kourosh H Ebrahimi
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, UK
| |
Collapse
|
4
|
Bacterioferritin nanocage: Structure, biological function, catalytic mechanism, self-assembly and potential applications. Biotechnol Adv 2022; 61:108057. [DOI: 10.1016/j.biotechadv.2022.108057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
5
|
Distinct structural characteristics define a new subfamily of Mycoplasma ferritin. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Structural and functional relationship of mammalian and nematode ferritins. BIOTECHNOLOGIA 2021; 102:457-471. [PMID: 36605605 PMCID: PMC9642938 DOI: 10.5114/bta.2021.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Ferritin is a unique buffering protein in iron metabolism. By storing or releasing iron in a tightly controlled manner, it prevents the negative effects of free ferrous ions on biomolecules in all domains of life - from bacteria to mammals. This review focuses on the structural features and activity of the ferritin protein family with an emphasis on nematode ferritins and the similarities in their biological roles with mammalian ferritins. The conservative characteristic of the ferritin family across the species originates from the ferroxidase activity against redox-active iron. The antioxidative function of these proteins translates into their involvement in a wide range of important biological processes, e.g., aging, fat metabolism, immunity, anticancer activity, and antipathogenic activity. Moreover, disturbances in ferritin expression lead to severe iron-associated diseases. Research on the Caenorhabditis elegans model organism may allow us to better understand the wide spectrum of mechanisms involving ferritin activity.
Collapse
|
8
|
Pedone E, Fiorentino G, Bartolucci S, Limauro D. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants (Basel) 2020; 9:antiox9080703. [PMID: 32756530 PMCID: PMC7465337 DOI: 10.3390/antiox9080703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
- Correspondence:
| |
Collapse
|
9
|
Bacterioferritin of Magnetospirillum gryphiswaldense Is a Heterotetraeicosameric Complex Composed of Functionally Distinct Subunits but Is Not Involved in Magnetite Biomineralization. mBio 2019; 10:mBio.02795-18. [PMID: 31113903 PMCID: PMC6529640 DOI: 10.1128/mbio.02795-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The biomineralization pathway of magnetite in magnetotactic bacteria is still poorly understood and a matter of intense debates. In particular, the existence, nature, and location of possible mineral precursors of magnetite are not clear. One possible precursor has been suggested to be ferritin-bound ferrihydrite. To clarify its role for magnetite biomineralization, we analyzed and characterized ferritin-like proteins from the magnetotactic alphaproteobacterium Magnetospirillum gryphiswaldense MSR-1, employing genetic, biochemical, and spectroscopic techniques. Transmission Mössbauer spectroscopy of the wild type (WT) and a bacterioferritin (bfr) deletion strain uncovered that the presence of ferrihydrite in cells is coupled to the presence of Bfr. However, bfr and dps deletion mutants, encoding another ferritin-like protein, or even mutants with their codeletion had no impact on magnetite formation in MSR-1. Thus, ferritin-like proteins are not involved in magnetite biomineralization and Bfr-bound ferrihydrite is not a precursor of magnetite biosynthesis. Using transmission electron microscopy and bacterial two-hybrid and electrophoretic methods, we also show that MSR-1 Bfr is an atypical representative of the Bfr subfamily, as it forms tetraeicosameric complexes from two distinct subunits. Furthermore, our analyses revealed that these subunits are functionally divergent, with Bfr1 harboring a ferroxidase activity while only Bfr2 contributes to heme binding. Because of this functional differentiation and the poor formation of homooligomeric Bfr1 complexes, only heterooligomeric Bfr protects cells from oxidative stress in vivo. In summary, our results not only provide novel insights into the biomineralization of magnetite but also reveal the unique properties of so-far-uncharacterized heterooligomeric bacterioferritins.IMPORTANCE Magnetotactic bacteria like Magnetospirillum gryphiswaldense are able to orient along magnetic field lines due to the intracellular formation of magnetite nanoparticles. Biomineralization of magnetite has been suggested to require a yet-unknown ferritin-like ferrihydrite component. Here, we report the identification of a bacterioferritin as the source of ferrihydrite in M. gryphiswaldense and show that, contrary to previous reports, bacterioferritin is not involved in magnetite biomineralization but required for oxidative stress resistance. Additionally, we show that bacterioferritin of M. gryphiswaldense is an unusual member of the bacterioferritin subfamily as it is composed of two functionally distinct subunits. Thus, our findings extend our understanding of the bacterioferritin subfamily and also solve a longstanding question about the magnetite biomineralization pathway.
Collapse
|
10
|
Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019; 133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 μM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard J Naftalin
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
11
|
Hagen WR, Hagedoorn PL, Honarmand Ebrahimi K. The workings of ferritin: a crossroad of opinions. Metallomics 2018; 9:595-605. [PMID: 28573266 DOI: 10.1039/c7mt00124j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biochemistry of the essential element iron is complicated by radical chemistry associated with Fe(ii) ions and by the extremely low solubility of the Fe(iii) ion in near-neutral water. To mitigate these problems cells from all domains of life synthesize the protein ferritin to take up and oxidize Fe(ii) and to form a soluble storage of Fe(iii) from which iron can be made available for physiology. A long history of studies on ferritin has not yet resulted in a generally accepted mechanism of action of this enzyme. In fact strong disagreement exists between extant ideas on several key steps in the workings of ferritin. The scope of this review is to explain the experimental background of these controversies and to indicate directions towards their possible resolution.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | | | | |
Collapse
|
12
|
Yu HZ, Zhang SZ, Ma Y, Fei DQ, Li B, Yang LA, Wang J, Li Z, Muhammad A, Xu JP. Molecular Characterization and Functional Analysis of a Ferritin Heavy Chain Subunit from the Eri-Silkworm, Samia cynthia ricini. Int J Mol Sci 2017; 18:ijms18102126. [PMID: 29036914 PMCID: PMC5666808 DOI: 10.3390/ijms18102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Ferritins are conserved iron-binding proteins that are primarily involved in iron storage, detoxification and the immune response. Despite the importance of ferritin in organisms, little is known about their roles in the eri-silkworm (Samia cynthia ricini). We previously identified a ferritin heavy chain subunit named ScFerHCH in the S. c. ricini transcriptome database. The full-length S. c. ricini ferritin heavy chain subunit (ScFerHCH) was 1863 bp and encoded a protein of 231 amino acids with a deduced molecular weight of 25.89 kDa. Phylogenetic analysis revealed that ScFerHCH shared a high amino acid identity with the Bombyx mori and Danaus plexippus heavy chain subunits. Higher ScFerHCH expression levels were found in the silk gland, fat body and midgut of S. c. ricini by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Injection of Staphylococcus aureus and Pseudomonas aeruginosa was associated with an upregulation of ScFerHCH in the midgut, fat body and hemolymph, indicating that ScFerHCH may contribute to the host’s defense against invading pathogens. In addition, the anti-oxidation activity and iron-binding capacity of recombinant ScFerHCH protein were examined. Taken together, our results suggest that the ferritin heavy chain subunit from eri-silkworm may play critical roles not only in innate immune defense, but also in organismic iron homeostasis.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Azharuddin Muhammad
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship. Naturwissenschaften 2015; 102:64. [DOI: 10.1007/s00114-015-1314-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/06/2023]
|
14
|
Ebrahimi KH, Hagedoorn PL, Hagen WR. Self-assembly is prerequisite for catalysis of Fe(II) oxidation by catalytically active subunits of ferritin. J Biol Chem 2015; 290:26801-10. [PMID: 26370076 PMCID: PMC4646333 DOI: 10.1074/jbc.m115.678375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 12/16/2022] Open
Abstract
Fe(III) storage by ferritin is an essential process of the iron homeostasis machinery. It begins by translocation of Fe(II) from outside the hollow spherical shape structure of the protein, which is formed as the result of self-assembly of 24 subunits, to a di-iron binding site, the ferroxidase center, buried in the middle of each active subunit. The pathway of Fe(II) to the ferroxidase center has remained elusive, and the importance of self-assembly for the functioning of the ferroxidase center has not been investigated. Here we report spectroscopic and metal ion binding studies with a mutant of ferritin from Pyrococcus furiosus (PfFtn) in which self-assembly was abolished by a single amino acid substitution. We show that in this mutant metal ion binding to the ferroxidase center and Fe(II) oxidation at this site was obliterated. However, metal ion binding to a conserved third site (site C), which is located in the inner surface of each subunit in the vicinity of the ferroxidase center and is believed to be the path for Fe(II) to the ferroxidase center, was not disrupted. These results are the basis of a new model for Fe(II) translocation to the ferroxidase center: self-assembly creates channels that guide the Fe(II) ions toward the ferroxidase center directly through the protein shell and not via the internal cavity and site C. The results may be of significance for understanding the molecular basis of ferritin-related disorders such as neuroferritinopathy in which the 24-meric structure with 432 symmetry is distorted.
Collapse
Affiliation(s)
| | - Peter-Leon Hagedoorn
- From the Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | - Wilfred R Hagen
- From the Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| |
Collapse
|
15
|
Sana B, Johnson E, Lim S. The unique self-assembly/disassembly property of Archaeoglobus fulgidus ferritin and its implications on molecular release from the protein cage. Biochim Biophys Acta Gen Subj 2015; 1850:2544-51. [PMID: 26341788 DOI: 10.1016/j.bbagen.2015.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND In conventional in vitro encapsulation of molecular cargo, the multi-subunit ferritin protein cages are disassembled in extremely acidic pH and re-assembled in the presence of highly concentrated cargo materials, which results in poor yields due to the low-pH treatment. In contrast, Archaeoglobus fulgidus open-pore ferritin (AfFtn) and its closed-pore mutant (AfFtn-AA) are present as dimeric species in neutral buffers that self-assemble into cage-like structure upon addition of metal ions. METHODS To understand the iron-mediated self-assembly and ascorbate-mediated disassembly properties, we studied the iron binding and release profile of the AfFtn and AfFtn-AA, and the corresponding oligomerization of their subunits. RESULTS Fe(2+) binding and conversion to Fe(3+) triggered the self-assembly of cage-like structures from dimeric species of AfFtn and AfFtn-AA subunits, while disassembly was induced by dissolving the iron core with reducing agents. The closed-pore AfFtn-AA has identical iron binding kinetics but lower iron release rates when compared to AfFtn. While the iron binding rate is proportional to Fe(2+) concentration, the iron release rate can be controlled by varying ascorbate concentrations. CONCLUSION The AfFtn and AfFtn-AA cages formed by iron mineralization could be disassembled by dissolving the iron core. The open-pores of AfFtn contribute to enhanced reductive iron release while the small channels located at the 3-fold symmetry axis (3-fold channels) are used for iron uptake. GENERAL SIGNIFICANCE The iron-mediated self-assembly/disassembly property of AfFtn offers a new set of molecular trigger for formation and dissociation of the protein cage, which can potentially regulate uptake and release of molecular cargo from protein cages.
Collapse
Affiliation(s)
- Barindra Sana
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore
| | - Eric Johnson
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sierin Lim
- School of Chemical & Biomedical Engineering, Division of Bioengineering, Nanyang Technological University, 637457, Singapore.
| |
Collapse
|
16
|
Pozzi C, Di Pisa F, Bernacchioni C, Ciambellotti S, Turano P, Mangani S. Iron binding to human heavy-chain ferritin. ACTA ACUST UNITED AC 2015; 71:1909-20. [PMID: 26327381 DOI: 10.1107/s1399004715013073] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Maxi-ferritins are ubiquitous iron-storage proteins with a common cage architecture made up of 24 identical subunits of five α-helices that drive iron biomineralization through catalytic iron(II) oxidation occurring at oxidoreductase sites (OS). Structures of iron-bound human H ferritin were solved at high resolution by freezing ferritin crystals at different time intervals after exposure to a ferrous salt. Multiple binding sites were identified that define the iron path from the entry ion channels to the oxidoreductase sites. Similar data are available for another vertebrate ferritin: the M protein from Rana catesbeiana. A comparative analysis of the iron sites in the two proteins identifies new reaction intermediates and underlines clear differences in the pattern of ligands that define the additional iron sites that precede the oxidoreductase binding sites along this path. Stopped-flow kinetics assays revealed that human H ferritin has different levels of activity compared with its R. catesbeiana counterpart. The role of the different pattern of transient iron-binding sites in the OS is discussed with respect to the observed differences in activity across the species.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
17
|
Pozzi C, Di Pisa F, Lalli D, Rosa C, Theil E, Turano P, Mangani S. Time-lapse anomalous X-ray diffraction shows how Fe(2+) substrate ions move through ferritin protein nanocages to oxidoreductase sites. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:941-53. [PMID: 25849404 PMCID: PMC4388269 DOI: 10.1107/s1399004715002333] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022]
Abstract
Ferritin superfamily protein cages reversibly synthesize internal biominerals, Fe2O3·H2O. Fe(2+) and O2 (or H2O2) substrates bind at oxidoreductase sites in the cage, initiating biomineral synthesis to concentrate iron and prevent potentially toxic reactions products from Fe(2+)and O2 or H2O2 chemistry. By freezing ferritin crystals of Rana catesbeiana ferritin M (RcMf) at different time intervals after exposure to a ferrous salt, a series of high-resolution anomalous X-ray diffraction data sets were obtained that led to crystal structures that allowed the direct observation of ferrous ions entering, moving along and binding at enzyme sites in the protein cages. The ensemble of crystal structures from both aerobic and anaerobic conditions provides snapshots of the iron substrate bound at different cage locations that vary with time. The observed differential occupation of the two iron sites in the enzyme oxidoreductase centre (with Glu23 and Glu58, and with Glu58, His61 and Glu103 as ligands, respectively) and other iron-binding sites (with Glu53, His54, Glu57, Glu136 and Asp140 as ligands) reflects the approach of the Fe(2+) substrate and its progression before the enzymatic cycle 2Fe(2+) + O2 → Fe(3+)-O-O-Fe(3+) → Fe(3+)-O(H)-Fe(3+) and turnover. The crystal structures also revealed different Fe(2+) coordination compounds bound to the ion channels located at the threefold and fourfold symmetry axes of the cage.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Flavio Di Pisa
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Lalli
- Dipartimento di Chimica and CERM, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Camilla Rosa
- Dipartimento di Chimica and CERM, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Elizabeth Theil
- Children’s Hospital, Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | - Paola Turano
- Dipartimento di Chimica and CERM, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| | - Stefano Mangani
- Dipartimento di Biotecnologie, Chimica e Farmacia, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
18
|
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev 2014; 115:295-326. [DOI: 10.1021/cr5004908] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| |
Collapse
|
19
|
Ebrahimi KH, Hagedoorn PL, Hagen WR. A Conserved Tyrosine in Ferritin Is a Molecular Capacitor. Chembiochem 2013; 14:1123-33. [DOI: 10.1002/cbic.201300149] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Indexed: 11/06/2022]
|
20
|
Watt RK. A Unified Model for Ferritin Iron Loading by the Catalytic Center: Implications for Controlling “Free Iron” during Oxidative Stress. Chembiochem 2013; 14:415-9. [DOI: 10.1002/cbic.201200783] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Indexed: 11/07/2022]
|