1
|
Cool AM, Lindert S. Umbrella Sampling Simulations of Cardiac Thin Filament Reveal Thermodynamic Consequences of Troponin I Inhibitory Peptide Mutations. J Chem Inf Model 2023; 63:3534-3543. [PMID: 37261389 PMCID: PMC10506665 DOI: 10.1021/acs.jcim.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The cardiac thin filament comprises F-actin, tropomyosin, and troponin (cTn). cTn is composed of three subunits: troponin C (cTnC), troponin I (cTnI), and troponin T (cTnT). To computationally study the effect of the thin filament on cTn activation events, we employed targeted molecular dynamics followed by umbrella sampling using a model of the thin filament to measure the thermodynamics of cTn transition events. Our simulations revealed that the thin filament causes an increase in the free energy required to open the cTnC hydrophobic patch and causes a more favorable interaction between this region and the cTnI switch peptide. Mutations to the cTn complex can lead to cardiomyopathy, a collection of diseases that present clinically with symptoms of hypertrophy or dilation of the cardiac muscle, leading to impairment of the heart's ability to function normally and ultimately myocardial infarction or heart failure. Upon introduction of cardiomyopathic mutations to R145 of cTnI, we observed a general decrease in the free energy of opening the cTnC hydrophobic patch, which is on par with previous experimental results. These mutations also exhibited a decrease in electrostatic interactions between cTnI-R145 and actin-E334. After introduction of a small molecule to the wild-type cTnI-actin interface to intentionally disrupt intersubunit contacts, we successfully observed similar thermodynamic consequences and disruptions to the same protein-protein contacts as observed with the cardiomyopathic mutations. Computational studies utilizing the cTn complex in isolation would have been unable to observe these effects, highlighting the importance of using a more physiologically relevant thin-filament model to investigate the global consequences of cardiomyopathic mutations to the cTn complex.
Collapse
Affiliation(s)
- Austin M. Cool
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
2
|
Hantz ER, Lindert S. Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C. J Chem Inf Model 2022; 62:6201-6208. [PMID: 36383927 PMCID: PMC10497304 DOI: 10.1021/acs.jcim.2c01132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium-dependent heart muscle contraction is regulated by the cardiac troponin protein complex (cTn) and specifically by the N-terminal domain of its calcium binding subunit (cNTnC). cNTnC contains one calcium binding site (site II), and altered calcium binding in this site has been studied for decades. It has been previously shown that cNTnC mutants, which increase calcium sensitization may have therapeutic benefits, such as restoring cardiac muscle contractility and functionality post-myocardial infarction events. Here, we computationally characterized eight mutations for their potential effects on calcium binding affinity in site II of cNTnC. We utilized two distinct methods to estimate calcium binding: adaptive steered molecular dynamics (ASMD) and thermodynamic integration (TI). We observed a sensitizing trend for all mutations based on the employed ASMD methodology. The TI results showed excellent agreement with experimentally known calcium binding affinities in wild-type cNTnC. Based on the TI results, five mutants were predicted to increase calcium sensitivity in site II. This study presents an interesting comparison of the two computational methods, which have both been shown to be valuable tools in characterizing the impacts of calcium sensitivity in mutant cNTnC systems.
Collapse
Affiliation(s)
- Eric R. Hantz
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
3
|
Rayani K, Seffernick J, Li AY, Davis JP, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. Binding of calcium and magnesium to human cardiac troponin C. J Biol Chem 2021; 296:100350. [PMID: 33548225 PMCID: PMC7961095 DOI: 10.1016/j.jbc.2021.100350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/03/2023] Open
Abstract
Cardiac muscle thin filaments are composed of actin, tropomyosin, and troponin that change conformation in response to Ca2+ binding, triggering muscle contraction. Human cardiac troponin C (cTnC) is the Ca2+-sensing component of the thin filament. It contains structural sites (III/IV) that bind both Ca2+ and Mg2+ and a regulatory site (II) that has been thought to bind only Ca2+. Binding of Ca2+ at this site initiates a series of conformational changes that culminate in force production. However, the mechanisms that underpin the regulation of binding at site II remain unclear. Here, we have quantified the interaction between site II and Ca2+/Mg2+ through isothermal titration calorimetry and thermodynamic integration simulations. Direct and competitive binding titrations with WT N-terminal cTnC and full-length cTnC indicate that physiologically relevant concentrations of both Ca2+/Mg2+ interacted with the same locus. Moreover, the D67A/D73A N-terminal cTnC construct in which two coordinating residues within site II were removed was found to have significantly reduced affinity for both cations. In addition, 1 mM Mg2+ caused a 1.4-fold lower affinity for Ca2+. These experiments strongly suggest that cytosolic-free Mg2+ occupies a significant population of the available site II. Interaction of Mg2+ with site II of cTnC likely has important functional consequences for the heart both at baseline as well as in diseased states that decrease or increase the availability of Mg2+, such as secondary hyperparathyroidism or ischemia, respectively.
Collapse
Affiliation(s)
- Kaveh Rayani
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | - Alison Yueh Li
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Anne Marie Spuches
- Department of Chemistry, East Carolina University, 300 Science and Technology Building, Greenville, North Carolina, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Cardiac Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Bowman JD, Lindert S. Computational Studies of Cardiac and Skeletal Troponin. Front Mol Biosci 2019; 6:68. [PMID: 31448287 PMCID: PMC6696891 DOI: 10.3389/fmolb.2019.00068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/25/2019] [Indexed: 12/16/2022] Open
Abstract
Troponin is a key regulatory protein in muscle contraction, consisting of three subunits troponin C (TnC), troponin I (TnI), and troponin T (TnT). Calcium association to TnC initiates contraction by causing a series of dynamic and conformational changes that allow the switch peptide of TnI to bind and subsequently cross bridges to form between the thin and thick filament of the sarcomere. Owing to its pivotal role in contraction regulation, troponin has been the focus of numerous computational studies over the last decade. These studies elegantly supplemented a large volume of experimental work and focused on the structure, dynamics and function of the whole troponin complex, individual subunits, and even on segments of the thin filament. Molecular dynamics, Brownian dynamics, and free energy simulations have been used to elucidate the conformational dynamics and underlying free energy landscape of troponin, calcium, and switch peptide binding, as well as the effect of disease mutations, small molecules and post-translational modifications such as phosphorylation. Frequently, simulations have been used to confirm or explain experimental observations. Computer-aided drug discovery tools have been employed to identify novel potential calcium sensitizing agents binding to the TnC-TnI interface. Finally, Markov modeling has contributed to simulating contraction within the sarcomere on the mesoscale. Here we are reviewing and classifying the existing computational work on troponin and its subunits, outline current gaps in simulations elucidating troponin's role in contraction and suggest potential future developments in the field.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
In depth, thermodynamic analysis of Ca 2+ binding to human cardiac troponin C: Extracting buffer-independent binding parameters. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:359-366. [PMID: 30639425 DOI: 10.1016/j.bbapap.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/28/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Characterizing the thermodynamic parameters behind metal-biomolecule interactions is fundamental to understanding the roles metal ions play in biology. Isothermal Titration Calorimetry (ITC) is a "gold-standard" for obtaining these data. However, in addition to metal-protein binding, additional equilibria such as metal-buffer interactions must be taken into consideration prior to making meaningful comparisons between metal-binding systems. METHODS In this study, the thermodynamics of Ca2+ binding to three buffers (Bis-Tris, MES, and MOPS) were obtained from Ca2+-EDTA titrations using ITC. These data were used to extract buffer-independent parameters for Ca2+ binding to human cardiac troponin C (hcTnC), an EF-hand containing protein required for heart muscle contraction. RESULTS The number of protons released upon Ca2+ binding to the C- and N-domain of hcTnC were found to be 1.1 and 1.2, respectively. These values permitted determination of buffer-independent thermodynamic parameters of Ca2+-hcTnC binding, and the extracted data agreed well among the buffers tested. Both buffer and pH-adjusted parameters were determined for Ca2+ binding to the N-domain of hcTnC and revealed that Ca2+ binding under aqueous conditions and physiological ionic strength is both thermodynamically favorable and driven by entropy. CONCLUSIONS Taken together, the consistency of these data between buffer systems and the similarity between theoretical and experimental proton release is indicative of the reliability of the method used and the importance of extracting metal-buffer interactions in these studies. GENERAL SIGNIFICANCE The experimental approach described herein is clearly applicable to other metal ions and other EF-hand protein systems.
Collapse
|
6
|
Marques MA, Parvatiyar MS, Yang W, de Oliveira GAP, Pinto JR. The missing links within troponin. Arch Biochem Biophys 2018; 663:95-100. [PMID: 30584890 DOI: 10.1016/j.abb.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
Abstract
The cardiac contraction-relaxation cycle is controlled by a sophisticated set of machinery. Of particular interest, is the revelation that allosteric networks transmit effects of binding at one site to influence troponin complex dynamics and structural-mediated signaling in often distal, functional sites in the myofilament. Our recent observations provide compelling evidence that allostery can explain the function of large-scale macromolecular events. Here we elaborate on our recent findings of interdomain communication within troponin C, using cutting-edge structural biology approaches, and highlight the importance of unveiling the unknown, distant communication networks within this system to obtain more comprehensive knowledge of how allostery impacts cardiac physiology and disease.
Collapse
Affiliation(s)
- Mayra A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, 107 Chieftan Way, Tallahassee, FL, 32306-1493, USA
| | - Wei Yang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Kasha Laboratory Building, 91 Chieftan Way, Tallahassee, FL, 32306-4380, USA
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908-0733, USA.
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
7
|
Bowman JD, Lindert S. Molecular Dynamics and Umbrella Sampling Simulations Elucidate Differences in Troponin C Isoform and Mutant Hydrophobic Patch Exposure. J Phys Chem B 2018; 122:7874-7883. [PMID: 30070845 DOI: 10.1021/acs.jpcb.8b05435] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Troponin C (TnC) facilitates muscle contraction through calcium-binding within its N-terminal region (NTnC). As previously observed using molecular dynamics (MD) simulations, this calcium-binding event leads to an increase in the dynamics of helices lining a hydrophobic patch on TnC. Simulation times of multiple microseconds were required to even see a partial opening of the hydrophobic patch, limiting the ability to thoroughly and quantitatively investigate these rare events. Here we describe the application of umbrella sampling to probe the TnC hydrophobic patch opening in a more targeted and quantitative fashion. Umbrella sampling was utilized to investigate the differences in the free energy of opening between cardiac (cTnC) and fast skeletal TnC (sTnC). We found that, in agreement with previous reports, holo (calcium-bound) sTnC had a lower free energy of opening compared with holo cTnC. Additionally, differences in the free energy of opening of hypertrophic (HCM) and dilated cardiomyopathy (DCM) cTnC systems were investigated. MD simulations and umbrella sampling revealed a lower free energy of opening for the HCM mutations A8V and A31S, as well as the calcium-sensitizing mutation L48Q. The DCM mutations, Y5H, Q50R, and E59D/D75Y, all exhibited a higher free energy of opening. An umbrella sampling simulation of cTnI-bound holo cTnC exhibited the lowest free energy in the open configuration, in agreement with experimental data. In conclusion, this study presents a novel and successful protocol for applying umbrella sampling simulations to quantitatively study the molecular basis of muscle contraction and proposes a mechanism by which HCM and DCM-associated mutations influence contraction.
Collapse
Affiliation(s)
- Jacob D Bowman
- Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry , Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
8
|
Stevens CM, Rayani K, Genge CE, Singh G, Liang B, Roller JM, Li C, Li AY, Tieleman DP, van Petegem F, Tibbits GF. Characterization of Zebrafish Cardiac and Slow Skeletal Troponin C Paralogs by MD Simulation and ITC. Biophys J 2017; 111:38-49. [PMID: 27410732 DOI: 10.1016/j.bpj.2016.05.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/06/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Zebrafish, as a model for teleost fish, have two paralogous troponin C (TnC) genes that are expressed in the heart differentially in response to temperature acclimation. Upon Ca(2+) binding, TnC changes conformation and exposes a hydrophobic patch that interacts with troponin I and initiates cardiac muscle contraction. Teleost-specific TnC paralogs have not yet been functionally characterized. In this study we have modeled the structures of the paralogs using molecular dynamics simulations at 18°C and 28°C and calculated the different Ca(2+)-binding properties between the teleost cardiac (cTnC or TnC1a) and slow-skeletal (ssTnC or TnC1b) paralogs through potential-of-mean-force calculations. These values are compared with thermodynamic binding properties obtained through isothermal titration calorimetry (ITC). The modeled structures of each of the paralogs are similar at each temperature, with the exception of helix C, which flanks the Ca(2+) binding site; this region is also home to paralog-specific sequence substitutions that we predict have an influence on protein function. The short timescale of the potential-of-mean-force calculation precludes the inclusion of the conformational change on the ΔG of Ca(2+) interaction, whereas the ITC analysis includes the Ca(2+) binding and conformational change of the TnC molecule. ITC analysis has revealed that ssTnC has higher Ca(2+) affinity than cTnC for Ca(2+) overall, whereas each of the paralogs has increased affinity at 28°C compared to 18°C. Microsecond-timescale simulations have calculated that the cTnC paralog transitions from the closed to the open state more readily than the ssTnC paralog, an unfavorable transition that would decrease the ITC-derived Ca(2+) affinity while simultaneously increasing the Ca(2+) sensitivity of the myofilament. We propose that the preferential expression of cTnC at lower temperatures increases myofilament Ca(2+) sensitivity by this mechanism, despite the lower Ca(2+) affinity that we have measured by ITC.
Collapse
Affiliation(s)
- Charles M Stevens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christine E Genge
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gurpreet Singh
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Bo Liang
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Janine M Roller
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Cindy Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alison Yueh Li
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - D Peter Tieleman
- Biocomputing Group, University of Calgary, Calgary, Alberta, Canada
| | - Filip van Petegem
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen F Tibbits
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
9
|
Stevens CM, Rayani K, Singh G, Lotfalisalmasi B, Tieleman DP, Tibbits GF. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca 2+-sensitizing mutations. J Biol Chem 2017; 292:11915-11926. [PMID: 28533433 DOI: 10.1074/jbc.m116.770776] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/07/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca2+ TnC binding Ca2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnISW). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca2+ and TnISW Surprisingly the Ca2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca2+-binding site of cTnC.
Collapse
Affiliation(s)
- Charles M Stevens
- Cardiovascular Sciences, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kaveh Rayani
- Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Gurpreet Singh
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bairam Lotfalisalmasi
- Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Glen F Tibbits
- Cardiovascular Sciences, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada; Departments of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Departments of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
10
|
Veltri T, de Oliveira GAP, Bienkiewicz EA, Palhano FL, Marques MDA, Moraes AH, Silva JL, Sorenson MM, Pinto JR. Amide hydrogens reveal a temperature-dependent structural transition that enhances site-II Ca 2+-binding affinity in a C-domain mutant of cardiac troponin C. Sci Rep 2017; 7:691. [PMID: 28386062 PMCID: PMC5429600 DOI: 10.1038/s41598-017-00777-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/14/2017] [Indexed: 01/07/2023] Open
Abstract
The hypertrophic cardiomyopathy-associated mutant D145E, in cardiac troponin C (cTnC) C-domain, causes generalised instability at multiple sites in the isolated protein. As a result, structure and function of the mutant are more susceptible to higher temperatures. Above 25 °C there are large, progressive increases in N-domain Ca2+-binding affinity for D145E but only small changes for the wild-type protein. NMR-derived backbone amide temperature coefficients for many residues show a sharp transition above 30–40 °C, indicating a temperature-dependent conformational change that is most prominent around the mutated EF-hand IV, as well as throughout the C-domain. Smaller, isolated changes occur in the N-domain. Cardiac skinned fibres reconstituted with D145E are more sensitive to Ca2+ than fibres reconstituted with wild-type, and this defect is amplified near body-temperature. We speculate that the D145E mutation destabilises the native conformation of EF-hand IV, leading to a transient unfolding and dissociation of helix H that becomes more prominent at higher temperatures. This creates exposed hydrophobic surfaces that may be capable of binding unnaturally to a variety of targets, possibly including the N-domain of cTnC when it is in its open Ca2+-saturated state. This would constitute a potential route for propagating signals from one end of TnC to the other.
Collapse
Affiliation(s)
- Tiago Veltri
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.,Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas F° 373, Cidade Universitária, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ewa A Bienkiewicz
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Fernando L Palhano
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas F° 373, Cidade Universitária, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Mayra de A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adolfo H Moraes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martha M Sorenson
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas F° 373, Cidade Universitária, Rio de Janeiro, 21941-902, RJ, Brazil
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
11
|
Johnson RA, Manley OM, Spuches AM, Grossoehme NE. Dissecting ITC data of metal ions binding to ligands and proteins. Biochim Biophys Acta Gen Subj 2015; 1860:892-901. [PMID: 26327285 DOI: 10.1016/j.bbagen.2015.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND ITC is a powerful technique that can reliably assess the thermodynamic underpinnings of a wide range of binding events. When metal ions are involved, complications arise in evaluating the data due to unavoidable solution chemistry that includes metal speciation and a variety of linked equilibria. SCOPE OF REVIEW This paper identifies these concerns, provides recommendations to avoid common mistakes, and guides the reader through the mathematical treatment of ITC data to arrive at a set of thermodynamic state functions that describe identical chemical events and, ideally, are independent of solution conditions. Further, common metal chromophores used in biological metal sensing studies are proposed as a robust system to determine unknown solution competition. MAJOR CONCLUSIONS Metal ions present several complications in ITC experiments. This review presents strategies to avoid these pitfalls and proposes and experimentally validates mathematical approaches to deconvolute complex equilibria that exist in these systems. GENERAL SIGNIFICANCE This review discusses the wide range of complications that exists in metal-based ITC experiments. It provides a starting point for scientists new to this field and articulates concerns that will help experienced researchers troubleshoot experiments.
Collapse
Affiliation(s)
- Rachel A Johnson
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Olivia M Manley
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29730, United States
| | - Anne M Spuches
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States.
| | - Nicholas E Grossoehme
- Department of Chemistry, Physics and Geology, Winthrop University, Rock Hill, SC 29730, United States.
| |
Collapse
|
12
|
Jensen D, Reynolds N, Yang YP, Shakya S, Wang ZQ, Stuehr DJ, Wei CC. The exchanged EF-hands in calmodulin and troponin C chimeras impair the Ca²⁺-induced hydrophobicity and alter the interaction with Orai1: a spectroscopic, thermodynamic and kinetic study. BMC BIOCHEMISTRY 2015; 16:6. [PMID: 25888318 PMCID: PMC4349623 DOI: 10.1186/s12858-015-0036-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/27/2015] [Indexed: 12/18/2022]
Abstract
Background Calmodulin (CaM) plays an important role in Ca2+-dependent signal transduction. Ca2+ binding to CaM triggers a conformational change, forming a hydrophobic patch that is important for target protein recognition. CaM regulates a Ca2+-dependent inactivation process in store-operated Ca2+ entry, by interacting Orai1. To understand the relationship between Ca2+-induced hydrophobicity and CaM/Orai interaction, chimera proteins constructed by exchanging EF-hands of CaM with those of Troponin C (TnC) are used as an informative probe to better understand the functionality of each EF-hand. Results ANS was used to assess the context of the induced hydrophobic surface on CaM and chimeras upon Ca2+ binding. The exchanged EF-hands from TnC to CaM resulted in reduced hydrophobicity compared with wild-type CaM. ANS lifetime measurements indicated that there are two types of ANS molecules with rather distinct fluorescence lifetimes, each specifically corresponding to one lobe of CaM or chimeras. Thermodynamic studies indicated the interaction between CaM and a 24-residue peptide corresponding to the CaM-binding domain of Orail1 (Orai-CMBD) is a 1:2 CaM/Orai-CMBD binding, in which each peptide binding yields a similar enthalpy change (ΔH = −5.02 ± 0.13 kcal/mol) and binding affinity (Ka = 8.92 ± 1.03 × 105 M−1). With the exchanged EF1 and EF2, the resulting chimeras noted as CaM(1TnC) and CaM(2TnC), displayed a two sequential binding mode with a one-order weaker binding affinity and lower ΔH than that of CaM, while CaM(3TnC) and CaM(4TnC) had similar binding thermodynamics as CaM. The dissociation rate constant for CaM/Orai-CMBD was determined to be 1.41 ± 0.08 s−1 by rapid kinetics. Stern-Volmer plots of Orai-CMBD Trp76 indicated that the residue is located in a very hydrophobic environment but becomes more solvent accessible when EF1 and EF2 were exchanged. Conclusions Using ANS dye to assess induced hydrophobicity showed that exchanging EFs for all Ca2+-bound chimeras impaired ANS fluorescence and/or binding affinity, consistent with general concepts about the inadequacy of hydrophobic exposure for chimeras. However, such ANS responses exhibited no correlation with the ability to interact with Orai-CMBD. Here, the model of 1:2 binding stoichiometry of CaM/Orai-CMBD established in solution supports the already published crystal structure.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| | - Nicole Reynolds
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| | - Ya-Ping Yang
- Department of Pathobiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| | - Shubha Shakya
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| | - Zhi-Qiang Wang
- Department of Chemistry, Kent State University at Tuscarawas, New Philadelphia, OH, 44663, USA.
| | - Dennis J Stuehr
- Department of Pathobiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| | - Chin-Chuan Wei
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026, USA.
| |
Collapse
|
13
|
Sowole MA, Konermann L. Effects of Protein–Ligand Interactions on Hydrogen/Deuterium Exchange Kinetics: Canonical and Noncanonical Scenarios. Anal Chem 2014; 86:6715-22. [DOI: 10.1021/ac501849n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Modupeola A. Sowole
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Konermann L, Rodriguez AD, Sowole MA. Type 1 and Type 2 scenarios in hydrogen exchange mass spectrometry studies on protein–ligand complexes. Analyst 2014; 139:6078-87. [DOI: 10.1039/c4an01307g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ligand binding to a protein can elicit a wide range of responses when studied by HDX mass spectrometry.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London, Canada
| | | | | |
Collapse
|