1
|
Wang Q, DiForte C, Aleshintsev A, Elci G, Bhattacharya S, Bongiorno A, Gupta R. Calcium mediated static and dynamic allostery in S100A12: Implications for target recognition by S100 proteins. Protein Sci 2024; 33:e4955. [PMID: 38501487 PMCID: PMC10949321 DOI: 10.1002/pro.4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution-state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF-I (N63A) or EF-II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF-II loop is the principal trigger for the conformational switch between 'closed' apo to the 'open' Ca2+ -bound conformation of the protein. Elimination of binding in S100-specific EF-I loop has limited impact on the calcium binding affinity of the EF-II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF-II loop significantly attenuates calcium affinity in the EF-I loop and the structure adopts a 'closed' apo-like conformation. Analysis of experimental amide nitrogen (15 N) relaxation rates (R1 , R2 , and 15 N-{1 H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico-nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C-terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF-I loop alone does not induce significant motions in the polypeptide chain, EF-I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF-II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.
Collapse
Affiliation(s)
- Qian Wang
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
| | - Christopher DiForte
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| | - Aleksey Aleshintsev
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| | - Gianna Elci
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
| | | | - Angelo Bongiorno
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| | - Rupal Gupta
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| |
Collapse
|
2
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
3
|
Yan X, Kumar K, Miclette Lamarche R, Youssef H, Shaw GS, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. Interactions between the Cell Membrane Repair Protein S100A10 and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9652-9663. [PMID: 34339205 DOI: 10.1021/acs.langmuir.1c00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein S100A10 participates in different cellular mechanisms and has different functions, especially at the membrane. Among those, it forms a ternary complex with annexin A2 and the C-terminal of AHNAK and then joins the dysferlin membrane repair complex. Together, they act as a platform enabling membrane repair. Both AHNAK and annexin A2 have been shown to have membrane binding properties. However, the membrane binding abilities of S100A10 are not clear. In this paper, we aimed to study the membrane binding of S100A10 in order to better understand its role in the cell membrane repair process. S100A10 was overexpressed by E. coli and purified by affinity chromatography. Using a Langmuir monolayer as a model membrane, the binding parameters and ellipsometric angles of the purified S100A10 were measured using surface tensiometry and ellipsometry, respectively. Phosphorus-31 solid-state nuclear magnetic resonance spectroscopy was also used to study the interaction of S100A10 with lipid bilayers. In the presence of a lipid monolayer, S100A10 preferentially interacts with unsaturated phospholipids. In addition, its behavior in the presence of a bilayer model suggests that S100A10 interacts more with the negatively charged polar head groups than the zwitterionic ones. This work offers new insights on the binding of S100A10 to different phospholipids and advances our understanding of the parameters influencing its membrane behavior.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| | - Kiran Kumar
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Gary S Shaw
- Departement of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| | - Isabelle Marcotte
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Dror E Warschawski
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, 75 005 France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| |
Collapse
|
4
|
Jiang S, Zhu Y, Chen Z, Huang Z, Liu B, Xu Y, Li Z, Lin Z, Li M. S100A14 inhibits cell growth and epithelial-mesenchymal transition (EMT) in prostate cancer through FAT1-mediated Hippo signaling pathway. Hum Cell 2021; 34:1215-1226. [PMID: 33890248 DOI: 10.1007/s13577-021-00538-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Prostate cancer (PCA) is an epithelial malignant tumor occurring in the prostate gland. It is the second most common male cancer in the world and one of the top five cancer deaths in men. To combat this disease, it is needed to identify important tumor suppressor genes and elucidate the molecular mechanisms. S100 calcium-binding protein A14 (S100A14), a member of the S100 family, is located on chromosome 1q21.3 and contains an EF-hand motif that binds calcium. S100A14 is involved in a variety of tumor biological processes in several types of cancers. Its expression level and related biological functions are tissue or tumor specific. However, its possible effects on prostate cancer are still unclear. Herein, we found the low expression of S100A14 in human prostate cancer tissues and cell lines. S100A14 suppressed the proliferation of prostate cancer cells and promoted cell apoptosis. Additionally, S100A14 suppressed the motility and EMT processes of prostate cancer cells. We further found S100A14 promoted the expression of FAT1 and activated the Hippo pathway, which, therefore, suppressed the prostate cancer progression. The in vivo assays confirmed that S100A14 suppressed tumor growth of prostate cancer cells through FAT1-mediated Hippo pathway in mice. In conclusion, we clarified the mechanism underlying S100A14 suppressing prostate cancer progression and, therefore, we thought S100A14 could serve as a tumor suppressor protein.
Collapse
Affiliation(s)
- Shaoqin Jiang
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yaru Zhu
- Intensive Care Unit, Fujian Provincial Governmental Hospital, Fuzhou, 350001, Fujian, China
| | - Zhenlin Chen
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zhangcheng Huang
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Bingqiao Liu
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Yue Xu
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zhihao Li
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Zequn Lin
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Mengqiang Li
- Department of Urology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
5
|
Mohamed BF, Serag WM, Abdelal RM, Elsergany HF. S100A14 protein as diagnostic and prognostic marker in hepatocellular carcinoma. EGYPTIAN LIVER JOURNAL 2019. [DOI: 10.1186/s43066-019-0015-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Protein S100A14 has recently been implicated in the progress of several types of cancers. This study aimed to investigate the clinical significance of S100A14 in the diagnosis of hepatocellular carcinoma (HCC).
Results
S100A14 was significantly elevated in the HCC group. A cut-off value for serum S100A14 between the HCC group and cirrhosis group is > 0.47 with a sensitivity of 100% and specificity of 88.57%. S100A14 level was a significant diagnostic factor for HCC and a good reference for HCC progression.
Conclusion
These results suggest that S100A14 is a good diagnostic marker for HCC.
Collapse
|
6
|
S100A14 Is Increased in Activated NK Cells and Plasma of HIV-Exposed Seronegative People Who Inject Drugs and Promotes Monocyte-NK Crosstalk. J Acquir Immune Defic Syndr 2019; 80:234-241. [PMID: 30422902 DOI: 10.1097/qai.0000000000001911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV-exposed seronegative people who inject drugs (HESN-PWID) have been shown to have increased natural killer (NK) cell and myeloid activation when compared with control donors. METHODS We investigated potential mechanisms maintaining NK activation by conducting quantitative proteome comparisons of NK cells from HESN-PWID subjects and control donors. Proteins upregulated in NK cells were measured in the plasma of HESN-PWID subjects by ELISA and further investigated for their ability to induce innate immune activation in vitro. RESULTS The NK cell proteome comparison showed markedly higher levels of interferon-stimulated proteins and S100 proteins, including S100A14. Consistent with these results, we observed significantly higher levels of S100A14 in the plasma of HESN-PWID subjects compared with controls (P = 0.033, n = 25). In vitro, the addition of recombinant S100A14 protein significantly activated NK cells in a peripheral blood mononuclear cell mixture (P = 0.011, n = 9), but not purified NK cells alone. Treatment of purified monocytes with recombinant S100A14 protein induced secretion of TNF-alpha and led to significantly higher NK CD69 activation (P = 0.0156, n = 7) in a co-culture through a TLR4-dependent interaction. CONCLUSIONS Our study identified S100A14 as a novel protein increased within NK cells and plasma of HESN-PWID subjects with the capacity to sustain NK activation through TLR4-dependent activation of myeloid cells.
Collapse
|
7
|
Basnet S, Sharma S, Costea DE, Sapkota D. Expression profile and functional role of S100A14 in human cancer. Oncotarget 2019; 10:2996-3012. [PMID: 31105881 PMCID: PMC6508202 DOI: 10.18632/oncotarget.26861] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/23/2019] [Indexed: 12/17/2022] Open
Abstract
S100A14 is one of the new members of the multi-functional S100 protein family. Expression of S100A14 is highly heterogeneous among normal human tissues, suggesting that the regulation of S100A14 expression and its function may be tissue- and context-specific. Compared to the normal counterparts, S100A14 mRNA and protein levels have been found to be deregulated in several cancer types, indicating a functional link between S100A14 and malignancies. Accordingly, S100A14 is functionally linked with a number of key signaling molecules such as p53, p21, MMP1, MMP9, MMP13, RAGE, NF-kB, JunB, actin and HER2. Of interest, S100A14 seems to have seemingly opposite functions in malignancies arising from the gastrointestional tract (tissues rich in epithelial components) compared to cancers in the other parts of the body (tissues rich in mesenchymal components). The underlying mechanism for these observations are currently unclear and may be related to the relative abundance and differences in the type of interaction partners (effector protein) in different cancer types and tissues. In addition, several studies indicate that the expression pattern of S100A14 has a potential to be clinically useful as prognostic biomarker in several cancer types. This review attempts to provide a comprehensive summary on the expression pattern and functional roles/related molecular pathways in different cancer types. Additionally, the prognostic potential of S100A14 in the management of human malignancies will be discussed.
Collapse
Affiliation(s)
- Suyog Basnet
- Department of BioSciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sunita Sharma
- Department of Clinical Dentistry, Centre for Clinical Dental Research, University of Bergen, Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Reviewing the Crystal Structure of S100Z and Other Members of the S100 Family: Implications in Calcium-Regulated Quaternary Structure. Methods Mol Biol 2019; 1929:487-499. [PMID: 30710292 DOI: 10.1007/978-1-4939-9030-6_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper takes the cue from the previously solved crystal structure of human apo-S100Z and compares it with that of the calcium-bound S100Z from zebrafish in order to stress, for this particular S100, the significant role of the presence of calcium in promoting supramolecular assemblies with likely biological meaning. This consideration is then expanded through a wider review on analogous situations concerning all other S100s for which there is crystallographic o biochemical evidence of how the presence of calcium promotes the formation of quaternary complexes.The paper also deals with some considerations on the quality of the crystals obtained for the solved members of this family and on the need for experimental phasing for solving some of the structures where the good general sequence homology among the members of the family would have suggested molecular replacement (MR) as the easiest way to solve them.These considerations, along with the PCA analysis carried out on all the known S100s, further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation for several members of this family of proteins.
Collapse
|
9
|
Wheeler LC, Harms MJ. Human S100A5 binds Ca 2+ and Cu 2+ independently. BMC BIOPHYSICS 2017; 10:8. [PMID: 29201357 PMCID: PMC5700546 DOI: 10.1186/s13628-017-0040-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022]
Abstract
Background S100A5 is a calcium binding protein found in a small subset of amniote tissues. Little is known about the biological roles of S100A5, but it may be involved in inflammation and olfactory signaling. Previous work indicated that S100A5 displays antagonism between binding of Ca2+ and Cu2+ ions-one of the most commonly cited features of the protein. We set out to characterize the interplay between Ca2+ and Cu2+ binding by S100A5 using isothermal titration calorimetry (ITC), circular dichroism spectroscopy (CD), and analytical ultracentrifugation (AUC). Results We found that human S100A5 is capable of binding both Cu2+ and Ca2+ ions simultaneously. The wildtype protein was extremely aggregation-prone in the presence of Cu2+ and Ca2+. A Cys-free version of S100A5, however, was not prone to precipitation or oligomerization. Mutation of the cysteines does not disrupt the binding of either Ca2+ or Cu2+ to S100A5. In the Cys-free background, we measured Ca2+ and Cu2+ binding in the presence and absence of the other metal using ITC. Saturating concentrations of Ca2+ or Cu2+ do not disrupt the binding of one another. Ca2+ and Cu2+ binding induce structural changes in S100A5, which are measurable using CD spectroscopy. We show via sedimentation velocity AUC that the wildtype protein is prone to the formation of soluble oligomers, which are not present in Cys-free samples. Conclusions S100A5 can bind Ca2+ and Cu2+ ions simultaneously and independently. This observation is in direct contrast to previously-reported antagonism between binding of Cu2+ and Ca2+ ions. The previous result is likely due to metal-dependent aggregation. Little is known about the biology of S100A5, so an accurate understanding of the biochemistry is necessary to make informed biological hypotheses. Our observations suggest the possibility of independent biological functions for Cu2+ and Ca2+ binding by S100A5.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, 97403 OR USA.,Insitute of Molecular Biology, University of Oregon, Eugene, 97403 OR USA
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, 97403 OR USA.,Insitute of Molecular Biology, University of Oregon, Eugene, 97403 OR USA
| |
Collapse
|
10
|
S100A14 rs11548103 G>A polymorphism is associated with a decreased risk of esophageal cancer in a Chinese population. Oncotarget 2017; 8:86917-86923. [PMID: 29156846 PMCID: PMC5689736 DOI: 10.18632/oncotarget.20868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/30/2017] [Indexed: 02/06/2023] Open
Abstract
Objective In China in 2009, esophageal cancer was the fifth most commonly diagnosed malignancy and the fourth leading cause of malignancy-related death. Accumulating evidence indicates that genetic factors might play an important role in esophageal squamous cell carcinoma (ESCC) carcinogenesis. Materials and Methods In total, we recruited 629 ESCC patients and 686 controls. Genetic variations in the S100A14, MLH1, SMAD7 and CCL22/MDC genes were measured using the ligation detection reaction method. Results When the S100A14 rs11548103 GG genotype was considered as the reference group, the GA genotype associated with decreased risk of ESCC (GA vs. GG: adjusted OR = 0.73, 95% CI = 0.57–0.93, p = 0.009). In the dominant model, GA/AA variants were associated with a significantly decreased risk of ESCC compared with the GG genotype (GA/AA vs. GG: adjusted OR = 0.76, 95% CI = 0.61–0.95, p = 0.018). Logistic regression analyses showed that the MLH1 rs1800734 C>T, SMAD7 rs12953717 C>T and CCL22/MDC rs4359426C>A polymorphisms were not associated with the risk of ESCC in any of the models tested. Conclusions Our findings indicated that, in a Chinese population, rs11548103 might contribute to a decreased risk of ESCC. Further studies are need to confirm these data with results from a lager cohort and different ethnic origins.
Collapse
|
11
|
Zhu M, Wang H, Cui J, Li W, An G, Pan Y, Zhang Q, Xing R, Lu Y. Calcium-binding protein S100A14 induces differentiation and suppresses metastasis in gastric cancer. Cell Death Dis 2017; 8:e2938. [PMID: 28726786 PMCID: PMC5550849 DOI: 10.1038/cddis.2017.297] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 02/05/2023]
Abstract
S100A14 is a calcium-binding protein involved in cell proliferation and differentiation as well as the metastasis of human tumors. In this study, we characterized the regulation of S100A14 expression between biological signatures and clinical pathological features in gastric cancer (GC). Our data demonstrated that S100A14 induced the differentiation of GC by upregulating the expression of E-cadherin and PGII. Moreover, S100A14 expression negatively correlated with cell migration and invasion in in vitro and in vivo experimental models. Interestingly, S100A14 blocked the store-operated Ca2+ influx by suppressing Orai1 and STIM1 expression, leading to FAK expression activation, focal adhesion assembly and MMP downregulation. Taken together, our results indicate that S100A14 may have a role in the induction of differentiation and inhibition of cell metastasis in GC.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jiantao Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wenmei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yuanming Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Qingying Zhang
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Department of Preventive Medicine, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Jinping District, Guangdong 515041, China. Tel: +86 754 88900445; Fax: +86 754 88557562; E-mail:
| | - Rui Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| | - Youyong Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Haidian District, Beijing 100142, China. Tel: +86 10 88196731; Fax: +86 10 88122437; E-mail: or
| |
Collapse
|
12
|
Solving the crystal structure of human calcium-free S100Z: the siege and conquer of one of the last S100 family strongholds. J Biol Inorg Chem 2017; 22:519-526. [PMID: 28074300 DOI: 10.1007/s00775-017-1437-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
The X-ray structure of human apo-S100Z has been solved and compared with that of the zebrafish calcium-bound S100Z, which is the closest in sequence. Human apo-S100A12, which shows only 43% sequence identity to human S100Z, has been used as template model to solve the crystallographic phase problem. Although a significant buried surface area between the two physiological dimers is present in the asymmetric unit of human apo-S100Z, the protein does not form the superhelical arrangement in the crystal as observed for the zebrafish calcium-bound S100Z and human calcium-bound S100A4. These findings further demonstrate that calcium plays a fundamental role in triggering quaternary structure formation in several S100s. Solving the X-ray structure of human apo-S100Z by standard molecular replacement procedures turned out to be a challenge and required trying different models and different software tools among which only one was successful. The model that allowed structure solution was that with one of the lowest sequence identity with the target protein among the S100 family in the apo state. Based on the previously solved zebrafish holo-S100Z, a putative human holo-S100Z structure has been then calculated through homology modeling; the differences between the experimental human apo and calculated holo structure have been compared to those existing for other members of the family.
Collapse
|
13
|
Wheeler LC, Donor MT, Prell JS, Harms MJ. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family. PLoS One 2016; 11:e0164740. [PMID: 27764152 PMCID: PMC5072561 DOI: 10.1371/journal.pone.0164740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs-as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica-bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Micah T. Donor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
14
|
Pálfy G, Kiss B, Nyitray L, Bodor A. Multilevel Changes in Protein Dynamics upon Complex Formation of the Calcium-Loaded S100A4 with a Nonmuscle Myosin IIA Tail Fragment. Chembiochem 2016; 17:1829-1838. [PMID: 27418229 DOI: 10.1002/cbic.201600280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 11/11/2022]
Abstract
Dysregulation of Ca2+ -binding S100 proteins plays important role in various diseases. The asymmetric complex of Ca2+ -bound S100A4 with nonmuscle myosin IIA has high stability and highly increased Ca2+ affinity. Here we investigated the possible causes of this allosteric effect by NMR spectroscopy. Chemical shift-based secondary-structure analysis did not show substantial changes for the complex. Backbone dynamics revealed slow-timescale local motions in the H1 helices of homodimeric S100A4; these were less pronounced in the complex form and might be accompanied by an increase in dimer stability. Different mobilities in the Ca2+ -coordinating EF-hand sites indicate that they communicate by an allosteric mechanism operating through changes in protein dynamics; this must be responsible for the elevated Ca2+ affinity. These multilevel changes in protein dynamics as conformational adaptation allow S100A4 fine-tuning of its protein-protein interactions inside the cell during Ca2+ signaling.
Collapse
Affiliation(s)
- Gyula Pálfy
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1 A, 1117, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1 A, 1117, Budapest, Hungary.
| |
Collapse
|
15
|
Ehmsen S, Hansen LT, Bak M, Brasch-Andersen C, Ditzel HJ, Leth-Larsen R. S100A14 is a novel independent prognostic biomarker in the triple-negative breast cancer subtype. Int J Cancer 2015; 137:2093-103. [PMID: 25912829 DOI: 10.1002/ijc.29582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 04/14/2015] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) represents a heterogeneous subgroup with generally poor outcome and lack of an effective targeted therapy. Prognostic or predictive biomarkers to guide treatment decisions for this group of patients are needed. To evaluate the potential of S100A14 protein as a novel biomarker in TNBC, the protein expression of S100A14 was correlated with clinical outcomes in a Pilot Sample set and a Danish cohort of predominantly TNBC patients. Kaplan-Meier analysis identified a prognostic impact of S100A14 on disease-free survival and overall survival, showing that tumors with high S100A14 protein expression levels were significantly correlated with poor outcome in TNBC patients (p = 0.017; p = 0.038), particularly those in the basal-like subgroup (p = 0.006; p = 0.037). Importantly, TNBC patients with high S100A14 expression, but tumor-negative axillary lymph nodes (N-), had equally poor outcomes as those with tumor-positive axillary lymph nodes (N+), while TNBC/N- patients with low S100A14 expression had a significantly better disease free survival (p = 0.013). Multivariate analysis revealed that S100A14 is an independent prognostic factor for TNBC patients (p = 0.024; p = 0.05). At the cellular level, S100A14 was found to be expressed in epithelial-like, but not in mesenchymal-like, TNBC cells in vitro. S100A14 is an independent prognostic factor in TNBC and a novel potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Sidse Ehmsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lea Tykgaard Hansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
16
|
Cerofolini L, Amato J, Borsi V, Pagano B, Randazzo A, Fragai M. Probing the interaction of distamycin A with S100β: the "unexpected" ability of S100β to bind to DNA-binding ligands. J Mol Recognit 2015; 28:376-84. [PMID: 25694263 DOI: 10.1002/jmr.2452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/11/2022]
Abstract
DNA-minor-groove-binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA-interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B-DNA and G-quadruplex-forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100β, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)-loaded S100β reinforces the idea that some biological activities of the DNA-minor-groove-binding ligands arise from the binding to cellular proteins.
Collapse
Affiliation(s)
- Linda Cerofolini
- Giotto Biotech, Via Madonna del Piano 6, Sesto Fiorentino, Florence, 50019, Italy
| | | | | | | | | | | |
Collapse
|
17
|
He H, Li S, Chen H, Li L, Xu C, Ding F, Zhan Y, Ma J, Zhang S, Shi Y, Qu C, Liu Z. 12-O-tetradecanoylphorbol-13-acetate promotes breast cancer cell motility by increasing S100A14 level in a Kruppel-like transcription factor 4 (KLF4)-dependent manner. J Biol Chem 2014; 289:9089-9099. [PMID: 24532790 PMCID: PMC3979376 DOI: 10.1074/jbc.m113.534271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/14/2014] [Indexed: 12/12/2022] Open
Abstract
The S100 protein family represents the largest subgroup of calcium binding EF-hand type proteins. These proteins have been reported to be involved in a wide range of biological functions that are related to normal cell development and tumorigenesis. S100A14 is a recently identified member of the S100 protein family and differentially expressed in a number of different human malignancies. However, the transcriptional regulation of S100A14 and its role in breast cancer needs to be further investigated. Here, we determined that 12-O-tetradecanoylphorbol-13-acetate (TPA) up-regulated the expression of KLF4 and facilitated its binding directly to two conserved GC-rich DNA segments within the S100A14 promoter, which is essential for the transactivation of KLF4 induced S100A14 expression. Furthermore, stable silencing of KLF4 significantly suppressed breast cancer cell migration induced by TPA. Collectively, these results offer insights into the fact that TPA provokes cell motility through regulating the expression and function of S100A14 in a KLF4-dependent manner.
Collapse
Affiliation(s)
- Huan He
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Sheng Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongyan Chen
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chengshan Xu
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fang Ding
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun Zhan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianlin Ma
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuguang Zhang
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yaoting Shi
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunfeng Qu
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
18
|
S100A14 interacts with S100A16 and regulates its expression in human cancer cells. PLoS One 2013; 8:e76058. [PMID: 24086685 PMCID: PMC3785438 DOI: 10.1371/journal.pone.0076058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/20/2013] [Indexed: 12/02/2022] Open
Abstract
Both S100A14 and S100A16 are members of the multifunctional S100 protein family. Formation of homo/heterodimers is considered to be one of the major mechanisms for S100 proteins to execute their diverse cellular functions. By employing a classical Yeast two hybrid (Y-2 H) screen, we identified S100A16 as the single interaction partner of S100A14. This interaction was verified by co-immunoprecipitation, double indirect immunofluorescence and double immunostaining in specimens of oral squamous cell carcinoma and normal oral mucosa. The functional significance of this interaction was examined by employing retroviral mediated over-expression and knock-down of these proteins in several cancer cell-lines. Over-expression and knock-down of S100A14 led to concomitant up- and down-regulation of S100A16 protein in the cell-lines examined. However, there was no up-regulation of S100A16 mRNA upon S100A14 over-expression, indicating that modulation of S100A16 expression was not due to enhanced transcriptional activity but possibly by post-transcriptional regulation. In contrary, over-expression of S100A16 was associated neither with the up-regulation of S100A14 mRNA nor its protein, suggesting a unidirectional regulation between S100A14 and S100A16. Cellular treatment with protein synthesis inhibitor cycloheximide demonstrated a time-dependent intracellular degradation of both S100A16 and S100A14 proteins. Additionally, regulation of S100A16 and S100A14 degradation was found to be independent of the classical proteasomal and lysosomal pathways of protein degradation. Further studies will therefore be necessary to understand the functional significance of this interaction and the mechanisms on how S100A14 is involved in the regulation of S100A16 expression.
Collapse
|