1
|
Nafaee ZH, Hajdu B, Hunyadi-Gulyás É, Gyurcsik B. Hydrolytic Mechanism of a Metalloenzyme Is Modified by the Nature of the Coordinated Metal Ion. Molecules 2023; 28:5511. [PMID: 37513383 PMCID: PMC10386286 DOI: 10.3390/molecules28145511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The nuclease domain of colicin E7 cleaves double-strand DNA non-specifically. Zn2+ ion was shown to be coordinated by the purified NColE7 as its native metal ion. Here, we study the structural and catalytic aspects of the interaction with Ni2+, Cu2+ and Cd2+ non-endogenous metal ions and the consequences of their competition with Zn2+ ions, using circular dichroism spectroscopy and intact protein mass spectrometry. An R447G mutant exerting decreased activity allowed for the detection of nuclease action against pUC119 plasmid DNA via agarose gel electrophoresis in the presence of comparable metal ion concentrations. It was shown that all of the added metal ions could bind to the apoprotein, resulting in a minor secondary structure change, but drastically shifting the charge distribution of the protein. Zn2+ ions could not be replaced by Ni2+, Cu2+ and Cd2+. The nuclease activity of the Ni2+-bound enzyme was extremely high in comparison with the other metal-bound forms, and could not be inhibited by the excess of Ni2+ ions. At the same time, this activity was significantly decreased in the presence of equivalent Zn2+, independent of the order of addition of each component of the mixture. We concluded that the Ni2+ ions promoted the DNA cleavage of the enzyme through a more efficient mechanism than the native Zn2+ ions, as they directly generate the nucleophilic OH- ion.
Collapse
Affiliation(s)
- Zeyad H Nafaee
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- College of Pharmacy, University of Babylon, Hillah 51001, Iraq
| | - Bálint Hajdu
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease. Chembiochem 2017; 19:66-75. [DOI: 10.1002/cbic.201700420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Indexed: 01/20/2023]
|
3
|
Jeżowska-Bojczuk M, Stokowa-Sołtys K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem 2017; 143:997-1009. [PMID: 29232589 DOI: 10.1016/j.ejmech.2017.11.086] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022]
Abstract
Peptide antibiotics are produced by bacterial, mammalian, insect or plant organisms in defense against invasive microbial pathogens. Therefore, they are gaining importance as anti-infective agents. There are a number of antibiotics that require metal ions to function properly. Metal ions play a key role in their action and are involved in specific interactions with proteins, nucleic acids and other biomolecules. On the other hand, it is well known that some antimicrobial agents possess functional groups that enable them interacting with metal ions present in physiological fluids. Some findings support a hypothesis that they may alter the serum metal ions concentration in humans. Complexes usually have a higher positive charge than uncomplexed compounds. This means that they might interact more tightly with polyanionic DNA and RNA molecules. It has been shown that several metal ion complexes with antibiotics promote degradation of DNA. Some of them, such as bleomycin, form stable complexes with redox metal ions and split the nucleic acids chain via the free radicals mechanism. However, this is not a rule. For example blasticidin does not cause DNA damage. This indicates that some peptide antibiotics can be considered as ligands that effectively lower the oxidative activity of transition metal ions.
Collapse
Affiliation(s)
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Németh E, Balogh RK, Borsos K, Czene A, Thulstrup PW, Gyurcsik B. Intrinsic protein disorder could be overlooked in cocrystallization conditions: An SRCD case study. Protein Sci 2016; 25:1977-1988. [PMID: 27508941 DOI: 10.1002/pro.3010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022]
Abstract
X-ray diffractometry dominates protein studies, as it can provide 3D structures of these diverse macromolecules or their molecular complexes with interacting partners: substrates, inhibitors, and/or cofactors. Here, we show that under cocrystallization conditions the results could reflect induced protein folds instead of the (partially) disordered original structures. The analysis of synchrotron radiation circular dichroism spectra revealed that the Im7 immunity protein stabilizes the native-like solution structure of unfolded NColE7 nuclease mutants via complex formation. This is consistent with the fact that among the several available crystal structures with its inhibitor or substrate, all NColE7 structures are virtually the same. Our results draw attention to the possible structural consequence of protein modifications, which is often hidden by compensational effects of intermolecular interactions. The growing evidence on the importance of protein intrinsic disorder thus, demands more extensive complementary experiments in solution phase with the unligated form of the protein of interest.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary.,MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary
| | - Ria K Balogh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary
| | - Katalin Borsos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary
| | - Anikó Czene
- MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary
| | - Peter W Thulstrup
- Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, 6720, Hungary. .,MTA-SZTE, Bioinorganic Chemistry Research Group, Hungarian Academy of Sciences, Szeged, 6720, Hungary.
| |
Collapse
|
5
|
Preorganization of the catalytic Zn2+-binding site in the HNH nuclease motif—A solution study. J Inorg Biochem 2015; 151:143-9. [DOI: 10.1016/j.jinorgbio.2015.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/18/2022]
|
6
|
Substrate binding activates the designed triple mutant of the colicin E7 metallonuclease. J Biol Inorg Chem 2014; 19:1295-303. [DOI: 10.1007/s00775-014-1186-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
7
|
Németh E, Schilli GK, Nagy G, Hasenhindl C, Gyurcsik B, Oostenbrink C. Design of a colicin E7 based chimeric zinc-finger nuclease. J Comput Aided Mol Des 2014; 28:841-50. [PMID: 24952471 PMCID: PMC4104000 DOI: 10.1007/s10822-014-9765-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/13/2014] [Indexed: 12/02/2022]
Abstract
Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity-offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720 Hungary
| | - Gabriella K. Schilli
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720 Hungary
| | - Gábor Nagy
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Hasenhindl
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged, 6720 Hungary
- MTA-SzTE Bioinorganic Chemistry Research Group of Hungarian Academy of Sciences, Dóm tér 7, Szeged, 6720 Hungary
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
8
|
Németh E, Körtvélyesi T, Thulstrup PW, Christensen HEM, Kožíšek M, Nagata K, Czene A, Gyurcsik B. Fine tuning of the catalytic activity of colicin E7 nuclease domain by systematic N-terminal mutations. Protein Sci 2014; 23:1113-22. [PMID: 24895333 DOI: 10.1002/pro.2497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal residues (446-449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuclease activity, but a detailed analysis of the role of the highly positive and flexible N-terminus is still missing. Here, we present the study of four mutants, with a decreased activity in the following order: NColE7 >> KGNK > KGNG ∼ GGNK > GGNG. At the same time, the folding, the metal-ion, and the DNA-binding affinity were unaffected by the mutations as revealed by linear and circular dichroism spectroscopy, isothermal calorimetric titrations, and gel mobility shift experiments. Semiempirical quantum chemical calculations and molecular dynamics simulations revealed that K446, K449, and/or the N-terminal amino group are able to approach the active centre in the absence of the other positively charged residues. The results suggested a complex role of the N-terminus in the catalytic process that could be exploited in the design of a controlled nuclease.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, 6720, Szeged, Hungary; Department of Physical Chemistry and Material Sciences, University of Szeged, 6720, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nagy G, Oostenbrink C. Dihedral-based segment identification and classification of biopolymers I: proteins. J Chem Inf Model 2014; 54:266-77. [PMID: 24364820 PMCID: PMC3904766 DOI: 10.1021/ci400541d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Indexed: 12/29/2022]
Abstract
A new structure classification scheme for biopolymers is introduced, which is solely based on main-chain dihedral angles. It is shown that by dividing a biopolymer into segments containing two central residues, a local classification can be performed. The method is referred to as DISICL, short for Dihedral-based Segment Identification and Classification. Compared to other popular secondary structure classification programs, DISICL is more detailed as it offers 18 distinct structural classes, which may be simplified into a classification in terms of seven more general classes. It was designed with an eye to analyzing subtle structural changes as observed in molecular dynamics simulations of biomolecular systems. Here, the DISICL algorithm is used to classify two databases of protein structures, jointly containing more than 10 million segments. The data is compared to two alternative approaches in terms of the amount of classified residues, average occurrence and length of structural elements, and pair wise matches of the classifications by the different programs. In an accompanying paper (Nagy, G.; Oostenbrink, C. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J. Chem. Inf. Model. 2013, DOI: 10.1021/ci400542n), the analysis of polynucleotides is described and applied. Overall, DISICL represents a potentially useful tool to analyze biopolymer structures at a high level of detail.
Collapse
Affiliation(s)
- Gabor Nagy
- University of Natural Resources
and Life Sciences, Institute for Molecular
Modeling and Simulation, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- University of Natural Resources
and Life Sciences, Institute for Molecular
Modeling and Simulation, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
10
|
Czene A, Tóth E, Németh E, Otten H, Poulsen JCN, Christensen HEM, Rulíšek L, Nagata K, Larsen S, Gyurcsik B. A new insight into the zinc-dependent DNA-cleavage by the colicin E7 nuclease: a crystallographic and computational study. Metallomics 2014; 6:2090-9. [DOI: 10.1039/c4mt00195h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure of a colicin E7 metallonuclease mutant complemented by QM/MM calculations suggests an alternative catalytic mechanism of Zn2+-containing HNH nucleases.
Collapse
Affiliation(s)
- Anikó Czene
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged, Hungary
| | - Eszter Tóth
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged, Hungary
| | - Eszter Németh
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged, Hungary
| | - Harm Otten
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen, Denmark
| | | | | | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences of the Czech Republic
- 166 10 Prague 6, Czech Republic
| | - Kyosuke Nagata
- Nagata Special Laboratory
- Faculty of Medicine
- University of Tsukuba
- Tsukuba 305-8575, Japan
| | - Sine Larsen
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen, Denmark
| | - Béla Gyurcsik
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged, Hungary
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged, Hungary
| |
Collapse
|
11
|
Gyurcsik B, Czene A, Jankovics H, Jakab-Simon NI, Ślaska-Kiss K, Kiss A, Kele Z. Cloning, purification and metal binding of the HNH motif from colicin E7. Protein Expr Purif 2013; 89:210-8. [DOI: 10.1016/j.pep.2013.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/26/2022]
|
12
|
Czene A, Tóth E, Gyurcsik B, Otten H, Poulsen JCN, Lo Leggio L, Larsen S, Christensen HEM, Nagata K. Crystallization and preliminary crystallographic analysis of an Escherichia coli-selected mutant of the nuclease domain of the metallonuclease colicin E7. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:551-4. [PMID: 23695575 DOI: 10.1107/s1744309113008233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/25/2013] [Indexed: 11/10/2022]
Abstract
The metallonuclease colicin E7 is a member of the HNH family of endonucleases. It serves as a bacterial toxin in Escherichia coli, protecting the host cell from other related bacteria and bacteriophages by degradation of their chromosomal DNA under environmental stress. Its cell-killing activity is attributed to the nonspecific nuclease domain (NColE7), which possesses the catalytic ββα-type metal ion-binding HNH motif at its C-terminus. Mutations affecting the positively charged amino acids at the N-terminus of NColE7 (444-576) surprisingly showed no or significantly reduced endonuclease activity [Czene et al. (2013), J. Biol. Inorg. Chem. 18, 309-321]. The necessity of the N-terminal amino acids for the function of the C-terminal catalytic centre poses the possibility of allosteric activation within the enzyme. Precise knowledge of the intramolecular interactions of these residues that affect the catalytic activity could turn NColE7 into a novel platform for artificial nuclease design. In this study, the N-terminal deletion mutant ΔN4-NColE7-C* of the nuclease domain of colicin E7 selected by E. coli was overexpressed and crystallized at room temperature by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.6 Å resolution and could be indexed and averaged in the trigonal space group P3121 or P3221, with unit-cell parameters a = b = 55.4, c = 73.1 Å. Structure determination by molecular replacement is in progress.
Collapse
Affiliation(s)
- Anikó Czene
- MTA-SZTE Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720 Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|