1
|
Ruickoldt J, Jeoung JH, Rudolph MA, Lennartz F, Kreibich J, Schomäcker R, Dobbek H. Coupling CO 2 Reduction and Acetyl-CoA Formation: The Role of a CO Capturing Tunnel in Enzymatic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405120. [PMID: 38743001 DOI: 10.1002/anie.202405120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The bifunctional CO-dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex couples the reduction of CO2 to the condensation of CO with a methyl moiety and CoA to acetyl-CoA. Catalysis occurs at two sites connected by a tunnel transporting the CO. In this study, we investigated how the bifunctional complex and its tunnel support catalysis using the CODH/ACS from Carboxydothermus hydrogenoformans as a model. Although CODH/ACS adapted to form a stable bifunctional complex with a secluded substrate tunnel, catalysis and CO transport is even more efficient when two monofunctional enzymes are coupled. Efficient CO channeling appears to be ensured by hydrophobic binding sites for CO, which act in a bucket-brigade fashion rather than as a simple tube. Tunnel remodeling showed that opening the tunnel increased activity but impaired directed transport of CO. Constricting the tunnel impaired activity and CO transport, suggesting that the tunnel evolved to sequester CO rather than to maximize turnover.
Collapse
Affiliation(s)
- Jakob Ruickoldt
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| | - Jae-Hun Jeoung
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| | - Maik Alexander Rudolph
- Technische Universität Berlin, Institut für Chemie - Technische Chemie, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Frank Lennartz
- Helmholtz-Zentrum Berlin, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Julian Kreibich
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| | - Reinhard Schomäcker
- Technische Universität Berlin, Institut für Chemie - Technische Chemie, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Holger Dobbek
- Humboldt-Universität zu Berlin, Institut für Biologie, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
2
|
Muniz CN, Archer CA, Applebaum JS, Alagaratnam A, Schaab J, Djurovich PI, Thompson ME. Two-Coordinate Coinage Metal Complexes as Solar Photosensitizers. J Am Chem Soc 2023. [PMID: 37319428 DOI: 10.1021/jacs.3c02825] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Generating sustainable fuel from sunlight plays an important role in meeting the energy demands of the modern age. Herein, we report two-coordinate carbene-metal-amide (cMa, M = Cu(I) and Au(I)) complexes that can be used as sensitizers to promote the light-driven reduction of water to hydrogen. The cMa complexes studied here absorb visible photons (εvis > 103 M-1 cm-1), maintain long excited-state lifetimes (τ ∼ 0.2-1 μs), and perform stable photoinduced charge transfer to a target substrate with high photoreducing potential (E+/* up to -2.33 V vs Fc+/0 based on a Rehm-Weller analysis). We pair these coinage metal complexes with a cobalt-glyoxime electrocatalyst to photocatalytically generate hydrogen and compare the performance of the copper- and gold-based cMa complexes. We also find that the two-coordinate complexes herein can perform photodriven hydrogen production from water without the addition of the cobalt-glyoxime electrocatalyst. In this "catalyst-free" system, the cMa sensitizer partially decomposes to give metal nanoparticles that catalyze water reduction. This work identifies two-coordinate coinage metal complexes as promising abundant metal, solar fuel photosensitizers that offer exceptional tunability and photoredox properties.
Collapse
Affiliation(s)
- Collin N Muniz
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Claire A Archer
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jack S Applebaum
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anushan Alagaratnam
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jonas Schaab
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
4
|
Nforneh B, Warncke K. Control of Solvent Dynamics around the B 12-Dependent Ethanolamine Ammonia-Lyase Enzyme in Frozen Aqueous Solution by Using Dimethyl Sulfoxide Modulation of Mesodomain Volume. J Phys Chem B 2019; 123:5395-5404. [PMID: 31244099 DOI: 10.1021/acs.jpcb.9b02239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The temperature-dependent structure and dynamics of two concentric solvent phases, the protein-associated domain (PAD) and the mesodomain, that surround the ethanolamine ammonia-lyase (EAL) protein from Salmonella typhimurium in frozen polycrystalline aqueous solution are addressed by using electron paramagnetic resonance spectroscopy of the paramagnetic nitroxide spin probe, TEMPOL, over the temperature ( T) range 190-265 K. Dimethyl sulfoxide (DMSO), added at 0.5, 2.0, and 4.0% v/v and present at the maximum freeze concentration at T ≤ 245 K, varies the volume of the interstitial aqueous DMSO mesodomain ( Vmeso) relative to a fixed PAD volume ( VPAD). The increase in Vmeso/ VPAD from 0.8 to 6.0 is quantified by the partitioning of TEMPOL between the two phases. As Vmeso/ VPAD is increased, the Arrhenius parameters for activated TEMPOL rotational motion in the mesodomain remain uniform, whereas the parameters for TEMPOL in the PAD show a progressive transformation toward the mesodomain values (higher mobility). An order-disorder transition (ODT) in the PAD is detected by the exclusion of TEMPOL from the PAD into the mesodomain. The ODT T value is systematically lowered by increased Vmeso/ VPAD (from 215 to 200 K), and PAD ordering kinks the mesodomain Arrhenius dependence. Thus there is reciprocity in PAD-mesodomain solvent coupling. The results are interpreted as a dominant influence of ice-boundary confinement on the PAD solvent structure and dynamics, which is transmitted through the mesodomain and which decreases with mesodomain volume at increased added DMSO. The systematic tuning of PAD and mesodomain solvent dynamics by the variation of added DMSO is an incisive approach for the resolution of contributions of protein-solvent dynamical coupling to EAL catalysis.
Collapse
Affiliation(s)
- Benjamen Nforneh
- Department of Physics , Emory University , Atlanta , Georgia 30322 , United States
| | - Kurt Warncke
- Department of Physics , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
5
|
Shimakoshi H, Hisaeda Y. Bioinspired Molecular Transformations by Biorelated Metal Complexes Combined with Electrolysis and Photoredox Systems. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry, Kyushu University
| |
Collapse
|
6
|
Gregg CM, Goetzl S, Jeoung JH, Dobbek H. AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase. J Biol Chem 2016; 291:18129-38. [PMID: 27382049 DOI: 10.1074/jbc.m116.731638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA synthase (ACS) catalyzes the reversible condensation of CO, CoA, and a methyl-cation to form acetyl-CoA at a unique Ni,Ni-[4Fe4S] cluster (the A-cluster). However, it was unknown which proteins support the assembly of the A-cluster. We analyzed the product of a gene from the cluster containing the ACS gene, cooC2 from Carboxydothermus hydrogenoformans, named AcsFCh, and showed that it acts as a maturation factor of ACS. AcsFCh and inactive ACS form a stable 2:1 complex that binds two nickel ions with higher affinity than the individual components. The nickel-bound ACS-AcsFCh complex remains inactive until MgATP is added, thereby converting inactive to active ACS. AcsFCh is a MinD-type ATPase and belongs to the CooC protein family, which can be divided into homologous subgroups. We propose that proteins of one subgroup are responsible for assembling the Ni,Ni-[4Fe4S] cluster of ACS, whereas proteins of a second subgroup mature the [Ni4Fe4S] cluster of carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Christina M Gregg
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Sebastian Goetzl
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Jae-Hun Jeoung
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Holger Dobbek
- From the Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| |
Collapse
|
7
|
|
8
|
Shimakoshi H, Hisaeda Y. B12-TiO2Hybrid Catalyst for Light-Driven Hydrogen Production and Hydrogenation of CC Multiple Bonds. Chempluschem 2014. [DOI: 10.1002/cplu.201402081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Sommer DJ, Vaughn MD, Ghirlanda G. Protein secondary-shell interactions enhance the photoinduced hydrogen production of cobalt protoporphyrin IX. Chem Commun (Camb) 2014; 50:15852-5. [DOI: 10.1039/c4cc06700b] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient molecular catalyst for hydrogen production is generated by incorporating Co-protoporphyrin IX into myoglobin. The activity is modulated by engineered mutations.
Collapse
|