1
|
Meitil IK, de O.G. Silva C, Pedersen AG, Agger JW. Classification of polyphenol oxidases shows ancient gene duplication leading to two distinct enzyme types. iScience 2025; 28:111771. [PMID: 39925425 PMCID: PMC11803259 DOI: 10.1016/j.isci.2025.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Polyphenol oxidases (PPOs) are coupled binuclear copper proteins that catalyze the oxidation of phenols. New functions of PPOs are continuously being discovered, latest with several fungal o-methoxy phenolases, which are active on lignin-derived compounds. Here, we perform a comprehensive phylogenetic analysis of PPOs from a wide taxonomic origin and define 12 PPO groups. We find that a deep gene duplication has led to two distinct PPO types. Type 1 includes PPOs from chordates and molluscs, as well as the fungal o-methoxy phenolases. Type 2 includes plant PPOs, molluscan hemocyanins, and fungal tyrosinases. Most of the type 2 proteins have a C-terminal shielding domain and a thioether bond in the copper-binding site. We also find that most ascomycetes contain high numbers of the PPO type 1 that includes the o-methoxy phenolases, which may indicate a role in the lignin conversion strategy of these fungi.
Collapse
Affiliation(s)
- Ida K.S. Meitil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Caio de O.G. Silva
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jane W. Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
3
|
de O G Silva C, Sun P, Barrett K, Sanders MG, van Berkel WJH, Kabel MA, Meyer AS, Agger JW. Polyphenol Oxidase Activity on Guaiacyl and Syringyl Lignin Units. Angew Chem Int Ed Engl 2024; 63:e202409324. [PMID: 39285758 DOI: 10.1002/anie.202409324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 11/01/2024]
Abstract
The natural heterogeneity of guaiacyl (G) and syringyl (S) compounds resulting from lignin processing hampers their direct use as plant-based chemicals and materials. Herein, we explore six short polyphenol oxidases (PPOs) from lignocellulose-degrading ascomycetes for their capacity to react with G-type and S-type phenolic compounds. All six PPOs catalyze the ortho-hydroxylation of G-type compounds (guaiacol, vanillic acid, and ferulic acid), forming the corresponding methoxy-ortho-diphenols. Remarkably, a subset of these PPOs is also active towards S-compounds (syringol, syringic acid, and sinapic acid) resulting in identical methoxy-ortho-diphenols. Assays with 18O2 demonstrate that these PPOs in particular catalyze ortho-hydroxylation and ortho-demethoxylation of S-compounds and generate methanol as a co-product. Oxidative (ortho-) demethoxylation of S-compounds is a novel reaction for PPOs, which we propose occurs by a distinct reaction mechanism as compared to aryl-O-demethylases. We further show that addition of a reducing agent can steer the PPO reaction to form methoxy-ortho-diphenols from both G- and S-type substrates rather than reactive quinones that lead to unfavorable polymerization. Application of PPOs opens for new routes to reduce the heterogeneity and methoxylation degree of mixtures of G and S lignin-derived compounds.
Collapse
Affiliation(s)
- Caio de O G Silva
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| | - Mark G Sanders
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The, Netherlands
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| | - Jane W Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs., Lyngby, 2800, Denmark
| |
Collapse
|
4
|
Cherubino Ribeiro TH, de Oliveira RR, das Neves TT, Santiago WD, Mansur BL, Saczk AA, Vilela de Resende ML, Chalfun-Junior A. Metabolic Pathway Reconstruction Indicates the Presence of Important Medicinal Compounds in Coffea Such as L-DOPA. Int J Mol Sci 2023; 24:12466. [PMID: 37569839 PMCID: PMC10419165 DOI: 10.3390/ijms241512466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The use of transcriptomic data to make inferences about plant metabolomes is a useful tool to help the discovery of important compounds in the available biodiversity. To unveil previously undiscovered metabolites of Coffea, of phytotherapeutic and economic value, we employed 24 RNAseq libraries. These libraries were sequenced from leaves exposed to a diverse range of environmental conditions. Subsequently, the data were meticulously processed to create models of putative metabolic networks, which shed light on the production of potential natural compounds of significant interest. Then, we selected one of the predicted compounds, the L-3,4-dihydroxyphenylalanine (L-DOPA), to be analyzed by LC-MS/MS using three biological replicates of flowers, leaves, and fruits from Coffea arabica and Coffea canephora. We were able to identify metabolic pathways responsible for producing several compounds of economic importance. One of the identified pathways involved in isoquinoline alkaloid biosynthesis was found to be active and producing L-DOPA, which is a common product of POLYPHENOL OXIDASES (PPOs, EC 1.14.18.1 and EC 1.10.3.1). We show that coffee plants are a natural source of L-DOPA, a widely used medicine for treatment of the human neurodegenerative condition called Parkinson's disease. In addition, dozens of other compounds with medicinal significance were predicted as potential natural coffee products. By further refining analytical chemistry techniques, it will be possible to enhance the characterization of coffee metabolites, enabling a deeper understanding of their properties and potential applications in medicine.
Collapse
Affiliation(s)
- Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| | - Taís Teixeira das Neves
- Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Wilder Douglas Santiago
- National Institute of Coffee Science and Technology (INCT-CAFÉ), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Bethania Leite Mansur
- Multiuser Instrumental Analysis Laboratory (LabMAI), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | - Adelir Aparecida Saczk
- Analytical and Electroanalytical Laboratory (LAE), Federal University of Lavras (UFLA), Lavras 37200-000, Brazil;
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-000, Brazil; (T.H.C.R.); (R.R.d.O.)
| |
Collapse
|
5
|
Liao J, Wei X, Tao K, Deng G, Shu J, Qiao Q, Chen G, Wei Z, Fan M, Saud S, Fahad S, Chen S. Phenoloxidases: catechol oxidase - the temporary employer and laccase - the rising star of vascular plants. HORTICULTURE RESEARCH 2023; 10:uhad102. [PMID: 37786731 PMCID: PMC10541563 DOI: 10.1093/hr/uhad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/16/2023] [Accepted: 05/05/2023] [Indexed: 10/04/2023]
Abstract
Phenolics are vital for the adaptation of plants to terrestrial habitats and for species diversity. Phenoloxidases (catechol oxidases, COs, and laccases, LACs) are responsible for the oxidation and polymerization of phenolics. However, their origin, evolution, and differential roles during plant development and land colonization are unclear. We performed the phylogeny, domain, amino acids, compositional biases, and intron analyses to clarify the origin and evolution of COs and LACs, and analysed the structure, selective pressure, and chloroplast targeting to understand the species-dependent distribution of COs. We found that Streptophyta COs were not homologous to the Chlorophyta tyrosinases (TYRs), and might have been acquired by horizontal gene transfer from bacteria. COs expanded in bryophytes. Structural-functionality and selective pressure were partially responsible for the species-dependent retention of COs in embryophytes. LACs emerged in Zygnemaphyceae, having evolved from ascorbate oxidases (AAOs), and prevailed in the vascular plants and strongly expanded in seed plants. COs and LACs coevolved with the phenolic metabolism pathway genes. These results suggested that TYRs and AAOs were the first-stage phenoloxidases in Chlorophyta. COs might be the second key for the early land colonization. LACs were the third one (dominating in the vascular plants) and might be advantageous for diversified phenol substrates and the erect growth of plants. This work provided new insights into how phenoloxidases evolved and were devoted to plant evolution.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Xuemei Wei
- School of Engineering, Dali University, Dali, Yunnan Province, 671003, China
| | - Keliang Tao
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Gang Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Jie Shu
- School of Life Science, Yunnan University, Yunnan Province, Kunming 650091, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Yunnan Province, Kunming 650091, China
| | - Gonglin Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Zhuo Wei
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Meihui Fan
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Yunnan University; Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan Province, Kunming 650091, China
| |
Collapse
|
6
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Ayipo YO, Osunniran WA, Babamale HF, Ayinde MO, Mordi MN. Metalloenzyme mimicry and modulation strategies to conquer antimicrobial resistance: Metal-ligand coordination perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Nikolaivits E, Valmas A, Dedes G, Topakas E, Dimarogona M. Considerations Regarding Activity Determinants of Fungal Polyphenol Oxidases Based on Mutational and Structural Studies. Appl Environ Microbiol 2021; 87:e00396-21. [PMID: 33741634 PMCID: PMC8208164 DOI: 10.1128/aem.00396-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Polyphenol oxidases (PPOs) are an industrially relevant family of enzymes, being involved in the postharvest browning of fruits and vegetables, as well as in human melanogenesis. Their involvement lies in their ability to oxidize phenolic or polyphenolic compounds, which subsequently form pigments. The PPO family includes tyrosinases and catechol oxidases, which, in spite of their high structural similarity, exhibit different catalytic activities. Long-standing research efforts have not yet managed to decipher the structural determinants responsible for this differentiation, as every new theory is disproved by a more recent study. In the present work, we combined biochemical along with structural data in order to better understand the function of a previously characterized PPO from Thermothelomyces thermophila (TtPPO). The crystal structure of a TtPPO variant, determined at 1.55 Å resolution, represents the second known structure of an ascomycete PPO. Kinetic data for structure-guided mutants prove the implication of "gate" residue L306, residue HB1+1 (G292), and HB2+1 (Y296) in TtPPO function against various substrates. Our findings demonstrate the role of L306 in the accommodation of bulky substrates and show that residue HB1+1 is unlikely to determine monophenolase activity, as was suggested from previous studies.IMPORTANCE PPOs are enzymes of biotechnological interest. They have been extensively studied both biochemically and structurally, with a special focus on the plant-derived counterparts. Even so, explicit description of the molecular determinants of their substrate specificity is still pending. For ascomycete PPOs, only one crystal structure has been determined so far, thus limiting our knowledge on this tree branch of the family. In the present study, we report the second crystal structure of an ascomycete PPO. Combined with site-directed mutagenesis and biochemical studies, we depict the amino acids in the vicinity of the active site that affect enzyme activity and perform a detailed analysis on a variety of substrates. Our findings improve current understanding of structure-function relations of microbial PPOs, which is a prerequisite for the engineering of biocatalysts of desired properties.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Grigorios Dedes
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Maria Dimarogona
- Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering, University of Patras, Patras, Greece
| |
Collapse
|
9
|
Oates NC, Abood A, Schirmacher AM, Alessi AM, Bird SM, Bennett JP, Leadbeater DR, Li Y, Dowle AA, Liu S, Tymokhin VI, Ralph J, McQueen-Mason SJ, Bruce NC. A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from Parascedosporium putredinis NO1. Proc Natl Acad Sci U S A 2021; 118:e2008888118. [PMID: 33903229 PMCID: PMC8106297 DOI: 10.1073/pnas.2008888118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major β-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.
Collapse
Affiliation(s)
- Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Amira Abood
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alexandra M Schirmacher
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Anna M Alessi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Susannah M Bird
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Joseph P Bennett
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Sarah Liu
- Department of Biochemistry, University of Wisconsin, Madison, WI 53726
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726
| | - Vitaliy I Tymokhin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53726
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726
| | - John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI 53726
- Department of Energy's Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom;
| |
Collapse
|
10
|
Kampatsikas I, Rompel A. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chembiochem 2021; 22:1161-1175. [PMID: 33108057 PMCID: PMC8049008 DOI: 10.1002/cbic.202000647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/25/2020] [Indexed: 12/23/2022]
Abstract
Type-III copper enzymes like polyphenol oxidases (PPOs) are ubiquitous among organisms and play a significant role in the formation of pigments. PPOs comprise different enzyme groups, including tyrosinases (TYRs) and catechol oxidases (COs). TYRs catalyze the o-hydroxylation of monophenols and the oxidation of o-diphenols to the corresponding o-quinones (EC 1.14.18.1). In contrast, COs only catalyze the oxidation of o-diphenols to the corresponding o-quinones (EC 1.10.3.1). To date (August 2020), 102 PDB entries encompassing 18 different proteins from 16 organisms and several mutants have been reported, identifying key residues for tyrosinase activity. The structural similarity between TYRs and COs, especially within and around the active center, complicates the elucidation of their modes of action on a structural basis. However, mutagenesis studies illuminate residues that influence the two activities and show that crystallography on its own cannot elucidate the enzymatic activity mode. Several amino acid residues around the dicopper active center have been proposed to play an essential role in the two different activities. Herein, we critically review the role of all residues identified so far that putatively affect the two activities of PPOs.
Collapse
Affiliation(s)
- Ioannis Kampatsikas
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieAlthanstraße 141090WienAustria
| |
Collapse
|
11
|
Masuda T, Baba S, Matsuo K, Ito S, Mikami B. The high-resolution crystal structure of lobster hemocyanin shows its enzymatic capability as a phenoloxidase. Arch Biochem Biophys 2020; 688:108370. [DOI: 10.1016/j.abb.2020.108370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/04/2023]
|
12
|
Affiliation(s)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Riciluca KCT, Borges AC, Mello JFR, de Oliveira UC, Serdan DC, Florez-Ariza A, Chaparro E, Nishiyama MY, Cassago A, Junqueira-de-Azevedo ILM, van Heel M, Silva PI, Portugal RV. Myriapod haemocyanin: the first three-dimensional reconstruction of Scolopendra subspinipes and preliminary structural analysis of S. viridicornis. Open Biol 2020; 10:190258. [PMID: 32228398 PMCID: PMC7241075 DOI: 10.1098/rsob.190258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.
Collapse
Affiliation(s)
- K C T Riciluca
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil.,Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A C Borges
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - J F R Mello
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - U C de Oliveira
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - D C Serdan
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - A Florez-Ariza
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - E Chaparro
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - M Y Nishiyama
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A Cassago
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - I L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - M van Heel
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - P I Silva
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - R V Portugal
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| |
Collapse
|
14
|
Kundu BK, Ranjan R, Mukherjee A, Mobin SM, Mukhopadhyay S. Mannich base Cu(II) complexes as biomimetic oxidative catalyst. J Inorg Biochem 2019; 195:164-173. [PMID: 30954693 DOI: 10.1016/j.jinorgbio.2019.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 11/16/2022]
Abstract
Galactose Oxidase (GOase) and catechol oxidase (COase) are the metalloenzymes of copper having monomeric and dimeric sites of coordination, respectively. This paper summarizes the results of our studies on the structural, spectral and catalytic properties of new mononuclear copper (II) complexes [CuL(OAc)] (1), and [CuL2] (2), (HL = 2,4‑dichloro‑6‑{[(2'‑dimethyl‑aminoethyl)methylamino]methyl}‑phenol) which can mimic the functionalities of the metalloenzymes GOase and COase. The structure of the compounds has been elucidated by X-ray crystallography and the mimicked Cu(II) catalysts were further characterized by EPR. These mimicked models were used for GOase and COase catalysis. The GOase catalytic results were identified by GC-MS and, analyzed by HPLC at room temperature. The conversion of benzyl alcohol to benzaldehyde were significant in presence of a strong base, Bu4NOMe in comparison to the neutral medium. Apart from that, despite of being monomeric in nature, both the homogeneous catalysts are very prone to participate in COase mimicking oxidation reaction. Nevertheless, during COase catalysis, complex 1 was found to convert 3,5‑ditertarybutyl catechol (3,5-DTBC) to 3,5‑ditertarybutyl quinone (3,5-DTBQ) having greater rate constant, kcat or turn over number (TON) value over complex 2. The generation of reactive intermediates during COase catalysis were accounted by electrospray ionization mass spectrometry (ESI-MS). Through mechanistic approach, we found that H2O2 is the byproduct for both the GOase and COase catalysis, thus, confirming the generation of reactive oxygen species during catalysis. Notably, complex 1 having mono-ligand coordinating atmosphere has superior catalytic activity for both cases in comparison to complex 2, that is having di-ligand environment.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Rishi Ranjan
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | | | - Shaikh M Mobin
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Suman Mukhopadhyay
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India; Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| |
Collapse
|
15
|
Matoba Y, Kihara S, Bando N, Yoshitsu H, Sakaguchi M, Kayama K, Yanagisawa S, Ogura T, Sugiyama M. Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein. PLoS Biol 2018; 16:e3000077. [PMID: 30596633 PMCID: PMC6312201 DOI: 10.1371/journal.pbio.3000077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Tyrosinase (EC 1.14.18.1), a copper-containing monooxygenase, catalyzes the conversion of phenol to the corresponding ortho-quinone. The Streptomyces tyrosinase is generated as a complex with a “caddie” protein that facilitates the transport of two copper ions into the active center. In our previous study, the Tyr98 residue in the caddie protein, which is accommodated in the pocket of active center of tyrosinase, has been found to be converted to a reactive quinone through the formations of the μ-η2:η2-peroxo-dicopper(II) and Cu(II)-dopasemiquinone intermediates. Until now—despite extensive studies for the tyrosinase reaction based on the crystallographic analysis, low-molecular-weight models, and computer simulations—the catalytic mechanism has been unable to be made clear at an atomic level. To make the catalytic mechanism of tyrosinase clear, in the present study, the cryo-trapped crystal structures were determined at very high resolutions (1.16–1.70 Å). The structures suggest the existence of an important step for the tyrosinase reaction that has not yet been found: that is, the hydroxylation reaction is triggered by the movement of CuA, which induces the syn-to-anti rearrangement of the copper ligands after the formation of μ-η2:η2-peroxo-dicopper(II) core. By the rearrangement, the hydroxyl group of the substrate is placed in an equatorial position, allowing the electrophilic attack to the aromatic ring by the Cu2O2 oxidant. The cryo-trapped crystal structures of tyrosinase in a complex with its “caddie” protein reveal structural insight into the catalytic mechanism of tyrosinase, the rate-limiting enzyme in the production of melanin. Tyrosinase is an enzyme that controls a rate-limiting reaction of melanogenesis: it catalyzes the conversion of a phenol to the corresponding ortho-quinone. Streptomyces tyrosinase is formed as a complex, with a “caddie” protein that assists with the transport of the two copper ions into the enzyme’s active center. In our previous study, we showed that the Tyr98 residue in the caddie protein, which is accommodated in the pocket of active center of tyrosinase, is converted to a reactive quinone through the formations of the μ-η2:η2-peroxo-dicopper(II) and Cu(II)-dopasemiquinone intermediates. Until now—despite extensive studies of the tyrosinase reaction based on the crystallographic analysis, low-molecular-weight model systems, and computer simulations—the catalytic mechanism was unclear at an atomic level. To understand the catalytic mechanism of tyrosinase in detail, we determined the cryo-trapped crystal structures at very high resolutions, which suggest an important new step for the tyrosinase reaction: the hydroxylation reaction triggered by the movement of CuA, which induces the syn-to-anti rearrangement of the copper ligands after the formation of μ-η2:η2-peroxo-dicopper(II) core.
Collapse
Affiliation(s)
- Yasuyuki Matoba
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (YM); (MS)
| | - Shogo Kihara
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naohiko Bando
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hironari Yoshitsu
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Sakaguchi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Kure’e Kayama
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Sachiko Yanagisawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Masanori Sugiyama
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail: (YM); (MS)
| |
Collapse
|
16
|
Versatile Fungal Polyphenol Oxidase with Chlorophenol Bioremediation Potential: Characterization and Protein Engineering. Appl Environ Microbiol 2018; 84:AEM.01628-18. [PMID: 30266731 PMCID: PMC6238066 DOI: 10.1128/aem.01628-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/21/2018] [Indexed: 12/24/2022] Open
Abstract
Polyphenol oxidases (PPOs) have been mostly associated with the undesirable postharvest browning in fruits and vegetables and have implications in human melanogenesis. Nonetheless, they are considered useful biocatalysts in the food, pharmaceutical, and cosmetic industries. The aim of the present work was to characterize a novel PPO and explore its potential as a bioremediation agent. A gene encoding an extracellular tyrosinase-like enzyme was amplified from the genome of Thermothelomyces thermophila and expressed in Pichia pastoris The recombinant enzyme (TtPPO) was purified and biochemically characterized. Its production reached 40 mg/liter, and it appeared to be a glycosylated and N-terminally processed protein. TtPPO showed broad substrate specificity, as it could oxidize 28/30 compounds tested, including polyphenols, substituted phenols, catechols, and methoxyphenols. Its optimum temperature was 65°C, with a half-life of 18.3 h at 50°C, while its optimum pH was 7.5. The homology model of TtPPO was constructed, and site-directed mutagenesis was performed in order to increase its activity on mono- and dichlorophenols (di-CPs). The G292N/Y296V variant of TtPPO 5.3-fold increased activity on 3,5-dichlorophenol (3,5-diCP) compared to the wild type.IMPORTANCE A novel fungal PPO was heterologously expressed and biochemically characterized. Construction of single and double mutants led to the generation of variants with altered specificity against CPs. Through this work, knowledge is gained regarding the effect of mutations on the substrate specificity of PPOs. This work also demonstrates that more potent biocatalysts for the bioremediation of harmful CPs can be developed by applying site-directed mutagenesis.
Collapse
|
17
|
Penttinen L, Rutanen C, Jänis J, Rouvinen J, Hakulinen N. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae
Catechol Oxidase. Chembiochem 2018; 19:2348-2352. [DOI: 10.1002/cbic.201800387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Leena Penttinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Chiara Rutanen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Janne Jänis
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Juha Rouvinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Nina Hakulinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| |
Collapse
|
18
|
What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.04.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Decker H, Solem E, Tuczek F. Are glutamate and asparagine necessary for tyrosinase activity of type-3 copper proteins? Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
A new crystal form of Aspergillus oryzae catechol oxidase and evaluation of copper site structures in coupled binuclear copper enzymes. PLoS One 2018; 13:e0196691. [PMID: 29715329 PMCID: PMC5929527 DOI: 10.1371/journal.pone.0196691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/17/2018] [Indexed: 11/19/2022] Open
Abstract
Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.
Collapse
|
21
|
Dancs Á, Selmeczi K, May NV, Gajda T. On the copper(ii) binding of asymmetrically functionalized tripodal peptides: solution equilibrium, structure, and enzyme mimicking. NEW J CHEM 2018. [DOI: 10.1039/c7nj04716a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing histidyl functionalisation of tren results in the fundamental impact on the structure, stability and catecholase activity of its copper(ii) complexes.
Collapse
Affiliation(s)
- Ágnes Dancs
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
- Université de Lorraine – CNRS
| | - Katalin Selmeczi
- Université de Lorraine – CNRS
- UMR 7053 L2CM
- 54506 Vandœuvre-lès-Nancy
- France
| | - Nóra V. May
- Institute of Organic Chemistry
- Research Centre for Natural Sciences HAS
- H-1117 Budapest
- Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| |
Collapse
|
22
|
Hamann JN, Herzigkeit B, Jurgeleit R, Tuczek F. Small-molecule models of tyrosinase: From ligand hydroxylation to catalytic monooxygenation of external substrates. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Dancs Á, May NV, Selmeczi K, Darula Z, Szorcsik A, Matyuska F, Páli T, Gajda T. Tuning the coordination properties of multi-histidine peptides by using a tripodal scaffold: solution chemical study and catechol oxidase mimicking. NEW J CHEM 2017. [DOI: 10.1039/c6nj03126a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histidine-rich tripodal peptides form unique oligonuclear complexes with copper(ii), which exhibit efficient catecholase-like activity.
Collapse
Affiliation(s)
- Ágnes Dancs
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
- Université de Lorraine – CNRS
| | - Nóra V. May
- Research Centre for Natural Sciences HAS
- H-1117 Budapest
- Hungary
| | - Katalin Selmeczi
- Université de Lorraine – CNRS
- UMR 7565 SRSMC
- 54506 Vandœuvre-lès-Nancy
- France
| | - Zsuzsanna Darula
- Institute of Biochemistry
- Biological Research Centre
- Hungarian Academy of Sciences
- H-6724 Szeged
- Hungary
| | - Attila Szorcsik
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged
- Hungary
| | - Ferenc Matyuska
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Tibor Páli
- Institute of Biophysics
- Biological Research Centre
- Hungarian Academy of Sciences
- H-6724 Szeged
- Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| |
Collapse
|
24
|
Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, Vincken JP, Weijers D, van Berkel WJH, Gruppen H, Kabel MA. Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:121. [PMID: 28491137 PMCID: PMC5424327 DOI: 10.1186/s13068-017-0810-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/03/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Many fungi boost the deconstruction of lignocellulosic plant biomass via oxidation using lytic polysaccharide monooxygenases (LPMOs). The application of LPMOs is expected to contribute to ecologically friendly conversion of biomass into fuels and chemicals. Moreover, applications of LPMO-modified cellulose-based products may be envisaged within the food or material industry. RESULTS Here, we show an up to 75-fold improvement in LPMO-driven cellulose degradation using polyphenol oxidase-activated lignin building blocks. This concerted enzymatic process involves the initial conversion of monophenols into diphenols by the polyphenol oxidase MtPPO7 from Myceliophthora thermophila C1 and the subsequent oxidation of cellulose by MtLPMO9B. Interestingly, MtPPO7 shows preference towards lignin-derived methoxylated monophenols. Sequence analysis of genomes of 336 Ascomycota and 208 Basidiomycota reveals a high correlation between MtPPO7 and AA9 LPMO genes. CONCLUSIONS The activity towards methoxylated phenolic compounds distinguishes MtPPO7 from well-known PPOs, such as tyrosinases, and ensures that MtPPO7 is an excellent redox partner of LPMOs. The correlation between MtPPO7 and AA9 LPMO genes is indicative for the importance of the coupled action of different monooxygenases in the concerted degradation of lignocellulosic biomass. These results will contribute to a better understanding in both lignin deconstruction and enzymatic lignocellulose oxidation and potentially improve the exploration of eco-friendly routes for biomass utilization in a circular economy.
Collapse
Affiliation(s)
- Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Sumanth Kumar Mutte
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Martijn J. Koetsier
- DuPont Industrial Biosciences, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Sandra W. A. Hinz
- DuPont Industrial Biosciences, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Jaap Visser
- Fungal Genetics & Technology Consultancy, P.O. Box 39b, 6700 AJ Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Harry Gruppen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
25
|
Matyuska F, May NV, Bényei A, Gajda T. Control of structure, stability and catechol oxidase activity of copper(ii) complexes by the denticity of tripodal platforms. NEW J CHEM 2017. [DOI: 10.1039/c7nj02013a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The speciation and catecholase-like activity of trinuclear complexes can be fine tuned by the denticity of tripodal platforms.
Collapse
Affiliation(s)
- Ferenc Matyuska
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Nóra V. May
- Research Centre for Natural Sciences HAS
- H-1117 Budapest
- Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry
- University of Debrecen
- Debrecen H-4032
- Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| |
Collapse
|
26
|
Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Proc Natl Acad Sci U S A 2016; 113:E1806-15. [PMID: 26976571 DOI: 10.1073/pnas.1523575113] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tyrosinases and catechol oxidases belong to the family of polyphenol oxidases (PPOs). Tyrosinases catalyze theo-hydroxylation and oxidation of phenolic compounds, whereas catechol oxidases were so far defined to lack the hydroxylation activity and catalyze solely the oxidation of o-diphenolic compounds. Aurone synthase from Coreopsis grandiflora (AUS1) is a specialized plant PPO involved in the anabolic pathway of aurones. We present, to our knowledge, the first crystal structures of a latent plant PPO, its mature active and inactive form, caused by a sulfation of a copper binding histidine. Analysis of the latent proenzyme's interface between the shielding C-terminal domain and the main core provides insights into its activation mechanisms. As AUS1 did not accept common tyrosinase substrates (tyrosine and tyramine), the enzyme is classified as a catechol oxidase. However, AUS1 showed hydroxylase activity toward its natural substrate (isoliquiritigenin), revealing that the hydroxylase activity is not correlated with the acceptance of common tyrosinase substrates. Therefore, we propose that the hydroxylase reaction is a general functionality of PPOs. Molecular dynamics simulations of docked substrate-enzyme complexes were performed, and a key residue was identified that influences the plant PPO's acceptance or rejection of tyramine. Based on the evidenced hydroxylase activity and the interactions of specific residues with the substrates during the molecular dynamics simulations, a novel catalytic reaction mechanism for plant PPOs is proposed. The presented results strongly suggest that the physiological role of plant catechol oxidases were previously underestimated, as they might hydroxylate their--so far unknown--natural substrates in vivo.
Collapse
|
27
|
Solem E, Tuczek F, Decker H. Tyrosinase versus Catecholoxidase: ein Asparagin macht den Unterschied. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Even Solem
- Institut für Molekulare Biophysik; Johannes Gutenberg Universität; Jakob-Welder-Weg 26 55128 Mainz Deutschland
| | - Felix Tuczek
- Institut für Anorganische Chemie; Christian-Albrechts-Universität zu Kiel; Max-Eyth-Straße 2 24118 Kiel Deutschland
| | - Heinz Decker
- Institut für Molekulare Biophysik; Johannes Gutenberg Universität; Jakob-Welder-Weg 26 55128 Mainz Deutschland
| |
Collapse
|
28
|
Solem E, Tuczek F, Decker H. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Angew Chem Int Ed Engl 2016; 55:2884-8. [DOI: 10.1002/anie.201508534] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Even Solem
- Institute of Molecular Biophysics; Johannes Gutenberg University; Jakob Welder Weg 26 55128 Mainz Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry; Christian Albrechts University Kiel; Max Eyth Straße 2 24118 Kiel Germany
| | - Heinz Decker
- Institute of Molecular Biophysics; Johannes Gutenberg University; Jakob Welder Weg 26 55128 Mainz Germany
| |
Collapse
|
29
|
Szorcsik A, Matyuska F, Bényei A, Nagy NV, Szilágyi RK, Gajda T. A novel 1,3,5-triaminocyclohexane-based tripodal ligand forms a unique tetra(pyrazolate)-bridged tricopper(ii) core: solution equilibrium, structure and catecholase activity. Dalton Trans 2016; 45:14998-5012. [DOI: 10.1039/c6dt01228k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polydentate tripodal ligand forms a series of tricopper(ii) complexes, that feature unique pyrazolate-bridged linear core. The Cu3H−3L2 complex is an efficient catecholase mimic with a surprisingly low pH optimum at pH = 5.6.
Collapse
Affiliation(s)
- Attila Szorcsik
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged
- Hungary
| | - Ferenc Matyuska
- Department of Inorganic and Analytical Chemistry
- University of Szeged
- H-6720 Szeged
- Hungary
| | - Attila Bényei
- Department of Physical Chemistry
- University of Debrecen
- Debrecen H-4032
- Hungary
| | - Nóra V. Nagy
- Institute of Organic Chemistry
- Research Centre for Natural Sciences HAS
- H-1117 Budapest
- Hungary
| | - Róbert K. Szilágyi
- Department of Chemistry and Biochemistry
- Montana State University
- Bozeman
- USA
- Department of Analytical Chemistry
| | - Tamás Gajda
- MTA-SZTE Bioinorganic Chemistry Research Group
- H-6720 Szeged
- Hungary
- Department of Inorganic and Analytical Chemistry
- University of Szeged
| |
Collapse
|
30
|
Kanteev M, Goldfeder M, Fishman A. Structure-function correlations in tyrosinases. Protein Sci 2015; 24:1360-9. [PMID: 26104241 DOI: 10.1002/pro.2734] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/19/2015] [Indexed: 11/08/2022]
Abstract
Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure-function correlations in tyrosinases along with comparison to other type-3 copper proteins.
Collapse
Affiliation(s)
- Margarita Kanteev
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mor Goldfeder
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
31
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
32
|
Buitrago E, Vuillamy A, Boumendjel A, Yi W, Gellon G, Hardré R, Philouze C, Serratrice G, Jamet H, Réglier M, Belle C. Exploring the interaction of N/S compounds with a dicopper center: tyrosinase inhibition and model studies. Inorg Chem 2014; 53:12848-58. [PMID: 25415587 DOI: 10.1021/ic501829s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tyrosinase (Ty) is a copper-containing enzyme widely present in plants, bacteria, and humans, where it is involved in biosynthesis of melanin-type pigments. Development of Ty inhibitors is an important approach to control the production and the accumulation of pigments in living systems. In this paper, we focused our interest in phenylthiourea (PTU) and phenylmethylene thiosemicarbazone (PTSC) recognized as inhibitors of tyrosinase by combining enzymatic studies and coordination chemistry methods. Both are efficient inhibitors of mushroom tyrosinase and they can be considered mainly as competitive inhibitors. Computational studies verify that PTSC and PTU inhibitors interact with the metal center of the active site. The KIC value of 0.93 μM confirms that PTSC is a much more efficient inhibitor than PTU, for which a KIC value of 58 μM was determined. The estimation of the binding free energies inhibitors/Ty confirms the high inhibitor efficiency of PTSC. Binding studies of PTSC along with PTU to a dinuclear copper(II) complex ([Cu2(μ-BPMP)(μ-OH)](ClO4)2 (1); H-BPMP = 2,6-bis-[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) known to be a structural and functional model for the tyrosinase catecholase activity, have been performed. Interactions of the compounds with the dicopper model complex 1 were followed by spectrophotometry and electrospray ionization (ESI). The molecular structure of 1-PTSC and 1-PTU adducts were determined by single-crystal X-ray diffraction analysis showing for both an unusual bridging binding mode on the dicopper center. These results reflect their adaptable binding mode in relation to the geometry and chelate size of the dicopper center.
Collapse
Affiliation(s)
- Elina Buitrago
- Université Grenoble Alpes, DCM, CNRS, F-38000 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A. Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2301-15. [PMID: 25195745 PMCID: PMC4157443 DOI: 10.1107/s1399004714013777] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/12/2014] [Indexed: 01/08/2023]
Abstract
Tyrosinases, bifunctional metalloenzymes, catalyze the oxidation of monophenols and o-diphenols to o-quinones, the precursor compounds of the brown-coloured pigment melanin. In eukaryotic organisms, tyrosinases are expressed as latent zymogens that have to be proteolytically cleaved in order to form highly active enzymes. This activation mechanism, known as the tyrosinase maturation process, has scientific and industrial significance with respect to biochemical and technical applications of the enzyme. Here, not only the first crystal structure of the mushroom tyrosinase abPPO4 is presented in its active form (Ser2-Ser383) and in its 21 kDa heavier latent form (Ser2-Thr545), but furthermore the simultaneous presence of both forms within one single-crystal structure is shown. This allows for a simple approach to investigate the transition between these two forms. Isoform abPPO4 was isolated and extensively purified from the natural source (Agaricus bisporus), which contains a total of six polyphenol oxidases (PPOs). The enzyme formed crystals (diffracting to a resolution of 2.76 Å) owing to the employment of the 6-tungstotellurate(VI) salt (Na6[TeW6O24]·22H2O) as a cocrystallization agent. Two of these disc-shaped Anderson-type polyoxoanions [TeW6O24](6-) separate two asymmetric units comprising one crystallographic heterodimer of abPPO4, thus resulting in very interesting crystal packing.
Collapse
Affiliation(s)
- Stephan Gerhard Mauracher
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Christian Molitor
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Rami Al-Oweini
- School of Engineering and Science, Jacobs University, PO Box 750 561, 28725 Bremen, Germany
| | - Ulrich Kortz
- School of Engineering and Science, Jacobs University, PO Box 750 561, 28725 Bremen, Germany
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
34
|
Masuda T, Momoji K, Hirata T, Mikami B. The crystal structure of a crustacean prophenoloxidase provides a clue to understanding the functionality of the type 3 copper proteins. FEBS J 2014; 281:2659-73. [PMID: 24720693 DOI: 10.1111/febs.12812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Phenoloxidase (PO), which is classified as a type 3 copper protein, catalyzes the hydroxylation of monophenol to o-diphenol and subsequent oxidation to the corresponding o-quinone. The geometry and coordination environment of the active site of the arthropod PO are very similar to those of the arthropod hemocyanin (Hc). However, unlike the POs, Hc is an oxygen carrier in crustaceans, and does not possess PO activity in general. Recently, we identified a new type of proPO from a crustacean and designated it proPOβ. This enzyme has many characteristics that are rather similar to those of Hc, such as its maturation, localization, and oligomeric state. Here, we determined the crystal structure of proPOβ prepared from the hemolymph of kuruma prawns (Marsupenaeus japonicus) at 1.8-Å resolution. M. japonicus proPOβ forms a homohexamer rather similar to that of arthropod Hc. The geometry of the active copper site in proPOβ is nearly identical to that of arthropod Hc. Furthermore, the well-characterized 'place-holder' phenylalanine is present (Phe72). However, the accessibility to the active site differs in several ways. First, another phenylalanine, which shields the active site by interacting with a copper-coordinated histidine in crustacean Hc, is replaced by valine in the proPOβ structure. Second, two tyrosines, Tyr208 and Tyr209, both of which are absent in Hc, show the alternative conformations and form a pathway providing access to the reaction center. Thus, the present crystal structure clarifies the similarities and differences in the activity of two closely related proteins, PO and Hc. DATABASE Structural data are available in the RSCB protein data bank under the accession number 3WKY. ray crystallography (View interaction).
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
35
|
|
36
|
Dey SK, Mukherjee A. The synthesis, characterization and catecholase activity of dinuclear cobalt(ii/iii) complexes of an O-donor rich Schiff base ligand. NEW J CHEM 2014. [DOI: 10.1039/c4nj00715h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dinuclear CoIII complex oxidizes 3,5-di-tert-butylcatechol by binding to two molecules of the substrate simultaneously during oxidation along with the formation of H2O2.
Collapse
Affiliation(s)
- Suman Kr Dey
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, India
| | - Arindam Mukherjee
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246, India
| |
Collapse
|