1
|
Wang Y, Li Z, Li C, Qi Y, Li Q, Zhang P. [FeIV(O )(TMC)(Lax)]n+ for O-transfer reaction: Insight into the steric hindrance effect of the equatorial ligand. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
2
|
Terencio T, Andris E, Gamba I, Srnec M, Costas M, Roithová J. Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1923-1933. [PMID: 31399940 PMCID: PMC6805805 DOI: 10.1007/s13361-019-02251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.
Collapse
Affiliation(s)
- Thibault Terencio
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
- School of Chemical Science and Engineering, Yachay Tech University, 100650, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Ilaria Gamba
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic.
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic.
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands.
| |
Collapse
|
3
|
Zhang J, Wei WJ, Lu X, Yang H, Chen Z, Liao RZ, Yin G. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H2O2: DFT Calculations Reveal Multiple Channels for Oxygen Transfer. Inorg Chem 2017; 56:15138-15149. [DOI: 10.1021/acs.inorgchem.7b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Jie Wei
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoyan Lu
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hang Yang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Bigelow JO, England J, Klein JEMN, Farquhar ER, Frisch JR, Martinho M, Mandal D, Münck E, Shaik S, Que L. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity. Inorg Chem 2017; 56:3287-3301. [DOI: 10.1021/acs.inorgchem.6b02659] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer O. Bigelow
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason England
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Johannes E. M. N. Klein
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Erik R. Farquhar
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan R. Frisch
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marlène Martinho
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Debasish Mandal
- Institute of Chemistry and the Lise Meitner-Minerva
Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva
Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lawrence Que
- Department of Chemistry
and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Patra R, Coin G, Castro L, Dubourdeaux P, Clémancey M, Pécaut J, Lebrun C, Maldivi P, Latour JM. Rational design of Fe catalysts for olefin aziridination through DFT-based mechanistic analysis. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01283g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental and DFT-based mechanistic studies are used to optimise Fe catalysts for aziridination.
Collapse
|
6
|
Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L, Truhlar DG. Assessment of electronic structure methods for the determination of the ground spin states of Fe(ii), Fe(iii) and Fe(iv) complexes. Phys Chem Chem Phys 2017; 19:13049-13069. [DOI: 10.1039/c7cp01263b] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied spin states of Fe2+ ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Zoltan Varga
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Johannes E. M. N. Klein
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Center for Metals in Biocatalysis
| | - Christopher J. Cramer
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Lawrence Que
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Center for Metals in Biocatalysis
| | - Donald G. Truhlar
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| |
Collapse
|
7
|
Strengths, Weaknesses, Opportunities and Threats: Computational Studies of Mn- and Fe-Catalyzed Epoxidations. Catalysts 2016. [DOI: 10.3390/catal7010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|