1
|
Ghazi N, Warren JJ. The Influence of pH on Long-Range Electron Transfer and Proton-Coupled Electron Transfer in Ruthenium-Modified Azurin. Molecules 2025; 30:472. [PMID: 39942577 PMCID: PMC11821252 DOI: 10.3390/molecules30030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Long-range electron transfer (ET) is an essential component of all biological systems. Reactions of metalloproteins are important in this context. Recent work on protein "charge ladders" has revealed how the redox state of embedded metal ions can influence the ionization of amino acid residues at protein surface sites. Inspired by these observations, we carried out a variable pH investigation of intramolecular ET reactions in a ruthenium-modified protein system built on azurin from Pseudomonas aeruginosa. We also generate a Pourbaix diagram that describes the variable pH redox behavior of a Ru model complex, Ru(2,2'-bipyridyl)2(imidazole)2(PF6)2. The intramolecular ET rate constants for the oxidation of azurin-Cu+ by flash-quench-generated Ru3+ oxidants do not follow the predictions of the semi-classical ET rate expression with fixed values of reorganization energy (λ) and electronic coupling (HDA). Based on the pH dependence of the Ru3+/2+ redox couple, we propose a model where pure ET is operative at acidic pH values (≤ 7) and the mechanism changes to proton-coupled electron transfer at pH ≥ 7.5. The implications of this mechanistic proposal are discussed in the context of biological redox reactions and with respect to other examples of intramolecular ET reactions in the literature.
Collapse
Affiliation(s)
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
2
|
Gibbs CA, Ghazi N, Tao J, Warren JJ. An Investigation of the Influence of Tyrosine Local Interactions on Electron Hopping in a Model Protein. Molecules 2024; 29:350. [PMID: 38257263 PMCID: PMC10818705 DOI: 10.3390/molecules29020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-step electron transfer reactions are important to the function of many cellular systems. The ways in which such systems have evolved to direct electrons along specific pathways are largely understood, but less so are the ways in which the reduction-oxidation potentials of individual redox sites are controlled. We prepared a series of three new artificial variants of Pseudomonas aeruginosa azurin where a tyrosine (Tyr109) is situated between the native Cu ion and a Ru(II) photosensitizer tethered to a histidine (His107). Arginine, glutamine, or methionine were introduced as position 122, which is near to Tyr109. We investigated the rate of CuI oxidation by a flash-quench generated Ru(III) oxidant over pH values from 5 to 9. While the identity of the residue at position 122 affects some of the physical properties of Tyr109, the rates of CuI oxidation are only weakly dependent on the identity of the residue at 122. The results highlight that more work is still needed to understand how non-covalent interactions of redox active groups are affected in redox proteins.
Collapse
Affiliation(s)
| | | | | | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
3
|
Koronkiewicz B, Swierk J, Regan K, Mayer JM. Shallow Distance Dependence for Proton-Coupled Tyrosine Oxidation in Oligoproline Peptides. J Am Chem Soc 2020; 142:12106-12118. [PMID: 32510937 PMCID: PMC7545454 DOI: 10.1021/jacs.0c01429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have explored the kinetic effect of increasing electron transfer (ET) distance in a biomimetic, proton-coupled electron-transfer (PCET) system. Biological ET often occurs simultaneously with proton transfer (PT) in order to avoid the high-energy, charged intermediates resulting from the stepwise transfer of protons and electrons. These concerted proton-electron-transfer (CPET) reactions are implicated in numerous biological ET pathways. In many cases, PT is coupled to long-range ET. While many studies have shown that the rate of ET is sensitive to the distance between the electron donor and acceptor, extensions to biological CPET reactions are sparse. The possibility of a unique ET distance dependence for CPET reactions deserves further exploration, as this could have implications for how we understand biological ET. We therefore explored the ET distance dependence for the CPET oxidation of tyrosine in a model system. We prepared a series of metallopeptides with a tyrosine separated from a Ru(bpy)32+ complex by an oligoproline bridge of increasing length. Rate constants for intramolecular tyrosine oxidation were measured using the flash-quench transient absorption technique in aqueous solutions. The rate constants for tyrosine oxidation decreased by 125-fold with three added proline residues between tyrosine and the oxidant. By comparison, related intramolecular ET rate constants in very similar constructs were reported to decrease by 4-5 orders of magnitude over the same number of prolines. The observed shallow distance dependence for tyrosine oxidation is proposed to originate in part from the requirement for stronger oxidants, leading to a smaller hole-transfer effective tunneling barrier height. The shallow distance dependence observed here and extensions to distance-dependent CPET reactions have potential implications for long-range charge transfers.
Collapse
Affiliation(s)
- Brian Koronkiewicz
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - John Swierk
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kevin Regan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
4
|
Devlin T, Hofman CR, Acevedo ZPV, Kohler KR, Tao L, Britt RD, Hoke KR, Hunsicker-Wang LM. DEPC modification of the Cu A protein from Thermus thermophilus. J Biol Inorg Chem 2018; 24:117-135. [PMID: 30523412 DOI: 10.1007/s00775-018-1632-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
The CuA center is the initial electron acceptor in cytochrome c oxidase, and it consists of two copper ions bridged by two cysteines and ligated by two histidines, a methionine, and a carbonyl in the peptide backbone of a nearby glutamine. The two ligating histidines are of particular interest as they may influence the electronic and redox properties of the metal center. To test for the presence of reactive ligating histidines, a portion of cytochrome c oxidase from the bacteria Thermus thermophilus that contains the CuA site (the TtCuA protein) was treated with the chemical modifier diethyl pyrocarbonate (DEPC) and the reaction followed through UV-visible, circular dichroism, and electron paramagnetic resonance spectroscopies at pH 5.0-9.0. A mutant protein (H40A/H117A) with the non-ligating histidines removed was similarly tested. Introduction of an electron-withdrawing DEPC-modification onto the ligating histidine 157 of TtCuA increased the reduction potential by over 70 mV, as assessed by cyclic voltammetry. Results from both proteins indicate that DEPC reacts with one of the two ligating histidines, modification of a ligating histidine raises the reduction potential of the CuA site, and formation of the DEPC adduct is reversible at room temperature. The existence of the reactive ligating histidine suggests that this residue may play a role in modulating the electronic and redox properties of TtCuA through kinetically-controlled proton exchange with the solvent. Lack of reactivity by the metalloproteins Sco and azurin, both of which contain a mononuclear copper center, indicate that reactivity toward DEPC is not a characteristic of all ligating histidines.
Collapse
Affiliation(s)
- Taylor Devlin
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
- Department of Biophysics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Cristina R Hofman
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Zachary P V Acevedo
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Kelsey R Kohler
- Department of Chemistry, Trinity University, San Antonio, TX, 78212-7200, USA
| | - Lizhi Tao
- Department of Chemistry, University of California at Davis, Davis, CA, 95616, USA
| | - R David Britt
- Department of Chemistry, University of California at Davis, Davis, CA, 95616, USA
| | - Kevin R Hoke
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, 30149, USA
| | | |
Collapse
|